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Lyapunov exponents and nonuniform hyperbolicity

Let F ∶M →M be a smooth diffeo. of a compact manifold M,
dimM ≥ 2.

Question

When is

λ1(p) ∶= lim sup
n→∞

1

n
log ∥dF n

p ∥ > 0

for a positive volume subset of p ∈M?

Positive Lyapunov exponent ⇒ sensitivity to initial
conditions

Nonuniform hyperbolicity: first step towards ergodic
components, mixing properties, limit laws, etc...
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Challenges

Estimating LE is a delicate cancellation problem:

Growing vectors ‘twisted’ into contracting directions

Dissipative: presence of sinks of high period

Conservative: elliptic islands

Obstructions are real:

Dissipative: coexistence of wild hyperbolic sets and
infinitely many sinks (Newhouse 74)

Conservative: For Chirikov standard map, proliferation of
elliptic islands for large set of L (Duarte 95)
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Existing positive results

Dissipative:

Dynamics of Hénon map in
(Benedicks & Carleson 91)

One direction of instability
(Wang & Young 01, 08)

Results entail intensive parame-
ter exclusion to rule out bad be-
havior, e.g., formation of sinks.

Conservative:

(Gorodetski 12) Chirikov standard map: λ1 > 0 on set of
Hausdorff dimension 2 (zero volume)
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Main problem:
LE
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Results II: LE
and DoC
(b ≤ 1)

Conclusion

Our goal:

Natural way of making problem tractable: small random
perturbations “unlock” hyperbolicity

Seek broad applicability: use only ‘rough’ geometry of
hyperbolicity

Look for checkable conditions: verifiable from finitely
many iterates

Not unrealistic: real world is inherently noisy
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The Model: maps with “Hénon flavor”

Write C = S1 ×R for the cylinder.

Let ψ ∶ S1 → R be C 3;

let a ∈ S1,b ∈ (0,1],L > 1.

Define F ∶ C → C by

Fψ,L,a,b(x , y) ∶= (fψ,L,a(x) − y ,bx) .

where fψ,L,a ∶= Lψ(x) + a.

Note: F discontinuous along D = {x = 0} if b < 1.
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Properties of F

↷
F is predominantly hyperbolic when L≫ 1:

Everywhere detdF ≡ b.

Outside critical strips (shaded), dF expands in horizontal
cone to order L.

Width of critical strips is O(L−1).
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Introducing the random model

Introduce IID random perturbations:

Fω(x , y) = F (x + ω, y)
F n
ω ∶= Fωn ○ ⋯ ○ Fω1

Here ω = (ω1, ω2,⋯), where ωi ∼ Unif[−ε, ε] are IID.

Heuristically: randomness helps avoid obstructions by
“smearing” away

Not so unnatural: real world is inherently noisy!
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Formulation of problem

“Large” perturbations: when L≫ 1, ε ≈ 1, simple exercise
to show

λε1(p) ≈ logL .

Question:

For a given (possibly large) L, how small can ε be for
randomness to ‘unlock’ hyperbolicity of F?
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Results: volume-preserving (b = 1)

Theorem (Joint with JX, LSY; Ann. Math. )

Assume ψ satisfies some (checkable) nondegeneracy conditions.
Then there exists L0, c > 0 such that for any L ≥ L0 and

ε > L−cL
9/10

,

the top Lyapunov exponent λε1(p) = limn→∞ 1
n log ∥(dF n

ω)p∥
exists, is almost surely constant over p, ω, and satisfies

λε1 ≥
9

10
logL .

Corollary

Theorem applies to Chirikov standard map

F (x , y) = (L sin(2πx) + 2x − y , x) .
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Comments on Theorem

No assumptions made on detailed dynamics of F :

Elliptic fixed points and periodic points allowed.
Typical length T of sojourn to vicinity of elliptic fixed
point:

T ≈ ε−1 = LcL
9/10

.

By precluding elliptic orbits of period ≤ 3, we can allow

ε > L−cL
19/10

.

Consistent with parameter exclusion ideas in [BC], [WY].
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LE and decay of correlations (b ≤ 1)

Theorem (Joint with JX and LSY; accepted to CMP)

Let ψ satisfy same nondegeneracy conditions. Let b ∈ (0,1].
Then there exists L0 = L0(ψ,b) > 0 such that for any L ≥ L0
and ε ≥ L−9/10, we have

the top Lyapunov exponent λε1 exists almost surely at all
points of C, and satisfies λε1 ≥ 9

10 logL; and

There exists K0 ∈ N, σ = σ(ψ) such that

∣∫ φd(µ1Pn) − ∫ φd(µ2Pn)∣ ≤ L−σ(n−K0) .

for all φ ∈ L∞(C), µ1, µ2 Borel probabilities on C, n ≥ K0.
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Conclusion

Comments on Theorem

No assumptions on detailed dynamics of F– sinks could
exist!

Sinks have basins of size O(L−1); perturbations are just
large enough to escape with high probability

Precluding sinks of period ≤ 3 permits us to take
ε ≥ L−19/10 instead.
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Proof sketch: dissipative case

Argument for ergodicity:
Let δ ∈ (0,1) and assume ε ≥ L−1+δ. Will show there exists
K = K(δ) so that for any (X0,Y0) ∈ C, XK is distributed with
positive density on [0,1).

Need only randomization of ω1:

γ0 ∶= [X0 − ε,X0 + ε] × {Y0}

For dist(x ,{f ′ = 0}) ≥ L−1+δ/2, have ∣f ′(x)∣ ≥ Lδ/2.

Pick component γ̌0 of γ0 ∖ {dist(x ,{f ′ = 0}) < L−1+δ/2}
and map forward
γ1 = F (γ̌0) is horizontal curve, length ≥ L−1+

5
4 δ.

Repeating, curves γ2, γ3,⋯ have successively longer length
until K = K(δ), when γK crosses C horizontally.
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Proof sketch: dissipative case

Elaboration on this argument implies:

Key Lemma

For any (X0,Y0), have that XK is distributed like

(1 − L−δ/4)Leb[0,1) +O(L−δ/4) .

Required only randomization of ω1.
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Proof sketch: dissipative case

Estimate LE: suffices to bound

∫ log ∥(dFωK+2
)(XK+1,YK+1)uK+1∥dP(ω1,⋯, ωK+2) ≈ logL

for arbitrary (X0,Y0,u0) ∈ P(C) (projective bundle).

For each ω2,⋯, ωK+2 fixed, XK+2 distributed evenly across
[0,1).

For uK+1: freeze ω1,⋯, ωK , ωK+2
Nondegeneracy of ψ implies uK+1 ‘sufficiently sensitive’ to
ωK+1.
Implies uK+1 is roughly horizontal with high probability

Combine: ∣f ′ωK+2
(XK+1)∣ ≈ L and uK+1 roughly horizontal

with high probability.
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Main problem:
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Results I: LE
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Results II: LE
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Conclusion

Conclusion

Small random perturbations simplify estimate of Lyapunov
exponents

Methods rely only on (checkable) rough geometry of the
maps, not on detailed infinite-time dynamics

Amenable to broad generalization (e.g. higher dimension)

Not so unnatural from modeling standpoint: the real world
is inherently noisy!
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Thank you!
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