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Introduction

@ Positive Lyapunov exponent = sensitivity to initial
conditions

@ Nonuniform hyperbolicity: first step towards ergodic
components, mixing properties, limit laws, etc...
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@ Growing vectors ‘twisted’ into contracting directions
@ Dissipative: presence of sinks of high period

@ Conservative: elliptic islands

Introduction Obstructions are real:

o Dissipative: coexistence of wild hyperbolic sets and
infinitely many sinks (Newhouse 74)

e Conservative: For Chirikov standard map, proliferation of
elliptic islands for large set of L (Duarte 95)
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Conservative:

@ (Gorodetski 12) Chirikov standard map: A; >0 on set of
Hausdorff dimension 2 (zero volume)



Our goal:
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STREEIE Natural way of making problem tractable: small random
perturbations “unlock” hyperbolicity

@ Seek broad applicability: use only ‘rough’ geometry of
hyperbolicity

Introduction @ Look for checkable conditions: verifiable from finitely
many iterates

Not unrealistic: real world is inherently noisy
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hypetrbolic Write C = Sl x R for the cylinder.
o Let 9: S - R be C3;
o let aeSt, be(0,1],L>1.

Define F:C — C by
The model F’(l),L,a,b(ng) = (f;ﬁ,L,a(X) _.y7 bX) .

where fy,; 5= Li)(x) + a.

Note: F discontinuous along D = {x =0} if b< 1.
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F is predominantly hyperbolic when L > 1:
o Everywhere detdF = b.

o Outside critical strips (shaded), dF expands in horizontal
cone to order L.

o Width of critical strips is O(L™1).

The model
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Here w = (w1,w2,++), where w; ~ Unif[—¢, €] are IID.

@ Heuristically: randomness helps avoid obstructions by

Main problem:

T ' smearing” away

@ Not so unnatural: real world is inherently noisy!
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to show

when L > 1, e ~ 1, simple exercise

(p) = log L.

R For a given (possibly large) L, how small can € be for
tE randomness to ‘unlock’ hyperbolicity of F?




Results: volume-preserving (b= 1)
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the top Lyapunov exponent \§(p) = lim,_ o0 + +log |[(dF))p|
exists, is almost surely constant over p,w, and satisfies

9
A > —logl.
1270 8

Results I: LE

(b=1)
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Results: volume-preserving (b= 1)

Theorem (Joint with JX, LSY; Ann. Math. )

Assume 1) satisfies some (checkable) nondegeneracy conditions.
Then there exists Ly, c > 0 such that for any L > Lo and

—cl9/10
e>L ,

: 1
the top Lyapunov exponent A{(p) = limy-o = log | (dF.)pl
exists, is almost surely constant over p,w, and satisfies

A > —logl.
127 og

Corollary

| o @
A\

Theorem applies to Chirikov standard map

F(x,y) = (Lsin(2mx) +2x - y,x).
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Results I: LE
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@ No assumptions made on detailed dynamics of F:

o Elliptic fixed points and periodic points allowed.
o Typical length T of sojourn to vicinity of elliptic fixed
point:

_ 9/10
Trael=Lt,

@ By precluding elliptic orbits of period < 3, we can allow

> L76L19/10

Results I: LE i i . i i
(b=1) o Consistent with parameter exclusion ideas in [BC], [WY].
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Results II: LE
and DoC
(CESY)
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systems

Let vy satisfy same nondegeneracy conditions. Let be (0,1].

Then there exists Lo = Lo(1), b) > 0 such that for any L > L
and € > L7910 we have

@ the top Lyapunov exponent \{ exists almost surely at all
points of C, and satisfies \{ > 1% log L; and

@ There exists Ky € N, o = o(1) such that

‘ [ od(uP) - [ od(uzP)

< L_U(”—KO) .

Results II: LE
and DoC

for all ¢ € L*(C), u1, 12 Borel probabilities on C, n > Kp.
(b<1)
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large enough to escape with high probability
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@ No assumptions on detailed dynamics of F— sinks could
exist!
o Sinks have basins of size O(L™!); perturbations are just
large enough to escape with high probability

@ Precluding sinks of period < 3 permits us to take
€ > L719/10 jnstead.

Results II: LE
and DoC
(b<1)
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Proof sketch: dissipative case

Random
s Argument for ergodicity:
redomnantly RS (0,1) and assume € > L™1*°_ Will show there exists
gl K = K(0) so that for any (Xo, Yo) € C, Xk is distributed with
positive density on [0,1).

@ Need only randomization of wy:

Y0 :=[Xo—€,Xo+€] x{Yo}

e For dist(x, {f" =0}) > L™1*%/2 have |f'(x)| > L9/2.
o Pick component ¥q of 7o \ {dist(x, {f’ = 0}) < L71*9/2}
and map forward
o 71 = F(%o) is horizontal curve, length > L7130,

Results II: LE
and DoC @ Repeating, curves 7»,73, - have successively longer length

(b<1)
until K = K(6), when ~x crosses C horizontally.
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Elaboration on this argument implies:

For any (Xo, Y0), have that Xk is distributed like

(1-L7%*) Lebpg 1) +O(L™/*).

Required only randomization of wj.

Results II: LE
and DoC
(b<1)
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/ log || (dFuy.s) (X, Yicsr) Uk +1ldP (w1, -+ wic12) = log L

for arbitrary (Xo, Yo, to) € P(C) (projective bundle).

@ For each wy, -+, wk.o fixed, Xk o distributed evenly across
[0,1).
@ For uk,1: freeze wy, -, wk, Wk 42
o Nondegeneracy of ¢ implies uk,1 ‘sufficiently sensitive' to
WK+1-
o Implies uk.1 is roughly horizontal with high probability

o Combine: |1ZK+2 (Xk+1)| » L and uk,1 roughly horizontal

Results II: LE

and DoC with high probability.

(b<1)
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@ Small random perturbations simplify estimate of Lyapunov
exponents

@ Methods rely only on (checkable) rough geometry of the
maps, not on detailed infinite-time dynamics

o Amenable to broad generalization (e.g. higher dimension)

@ Not so unnatural from modeling standpoint: the real world
is inherently noisy!

Conclusion
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Thank you!
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