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Aim of this talk

Explanation about my (not so) recent result

Theorem (T. arXiv:1601.00063)

Almost all volume-preserving Anosov flows in dimension 3 are
exponentially mixing.

The main idea behind this result is

Analysis of the “geometry” of stable and unstable foliations.

This enables us to state a quantitative condition on
non-integrability between the stable and unstable foliation.

Note that the stable and unstable foliations are generically
non-smooth.
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Mixing of Anosov flows

Consider a volume-preserving Anosov flow F t :M →M on a
closed R-manifold M , with the normalized R-volume m.

Definition

The flow F t is mixing if∣∣∣∣∫ φ · ψ ◦ F tdm−
∫
φdm

∫
ψdm

∣∣∣∣ t→∞−→ 0 ∀φ,ψ ∈ L2(M)

and is exponential mixing if ∃C, c > 0 s.t.∣∣∣∣∫ φ · ψ ◦ F tdm−
∫
φdm

∫
ψdm

∣∣∣∣ ≤ Ce−ct · ∥φ∥C1 · ∥ψ∥C1

for any φ,ψ ∈ C1(M).

Remark: For exponential mixing, we need to consider φ,ψ with
some smoothness, but the degree of smoothness is not important.
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A non-example

Let f : T2 → T2 be an vol-pres Anosov diffeomorphism and consider
its suspension flow with a constant roof function:

F t : X → X, F t(x, s) = (x, s+ t)

X = {(x, s) ∈ T2 × [0, 1]}/(x, 1) ∼ (f(x), 0)

This Anosov flow F t is not mixing (but its time-changes will be).

perturbation
f

The subtle problem in the case of flows is mixing in the flow direction.
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Bowen-Ruelle conjecture

Fs = {W s(p)}, Fu = {W u(p)} : the stable (unstable) foliations.

Theorem (Anosov-Sinai)

A volume-preserving Anosov flow F t is mixing if Fs and Fu are
not locally jointly integrable (an open dense property).

p
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Need to find a “quantitative” condition on non-integrability
between Fs and Fu.
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Dologpyat’s result

Theorem (Dolgopyat 1998)

If the stable and unstable foliations are C1 and not jointly
integrable, then the flow F t is exponential mixing.
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Projection along stable foliation

Unfortunately C1 condition on Fu and Fs is not generic.
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Main Result

Theorem (T. arXiv:1601.00063)

Exponential mixing is a Cr generic (r ≥ 3, open-dense) property
for volume-preserving Anosov flows on 3-dimensional manifolds.

Remark

In the setting above, Fu and Fs are not smooth generically.

We perturb flows by “time-changes” and prove the conclusion.

We can also show prevalence (“almost every” in measure
theoretical sense).

We show “spectral gap” for the transfer operator on some
”anisotropic” Sobolev space.

For the moment, the result (and proof) is limited to 3-dim.

For super polyonomial decay, there is a result by
Fields-Melbourne-Török in much more general setting.
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Structure of the proof

The proof of the theorem consists of two part:

1 Formulation of “quantitative non-integrability condition”
between Fu and Fs.

2 Proof that the “quantitative non-integrability condition”
implies exponential mixing.

The former is the main novelty behind the theorem and based on
geometric structure of the foliations Fu and Fs (which are not
smooth!).

The latter is an application of (the idea in) Dolgopyat argument,
which is not simple but discussed in many places.

In what follows, we focus on the former part, for which we need to
study the geometry of the stable and unstable foliation.
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The “linearizing” coordinates along unstable manifolds

For each p ∈M , consider the 2-dim vector bundle over W u(p):

N(p) := TWu(p)M/Eu (≃ Normal bundle of W u(p)).

Then introduce “dynamical” and “linearizing” coordinates on it

κp : N(p) → Rτ × R2
(x,y)

for all p ∈M simultaneously and C∞ bounded uniformly s.t.

κq ◦DF t ◦ κ−1
p (τ, x, y) = ( λuτ + c, λsx, y + x · (ατ + β) )

if q ∈ F t(W u(p)) where λσ, c, α, β depending only on p, q and t.

τ

y
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κq ◦DF t ◦ κ−1
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Geometry of unstable foliation Fu

Identify N(p) with the normal bundle of W u(p) and then consider

Ψp := exp ◦κ−1
p : R× R2 →M on a nbd of [−1, 1]× 0

as a local chart around p ∈M . If d(q, p) ≪ 1, W u
loc(q) is represented

as a graph of a section γp,q : [−1, 1] → R2.

Lemma (The geometric property of Fu)

There exists θ > 0 such that, if d(q, p) ≪ 1,

|γp,q(τ)− (τ, δ, δ(ατ + β))| < C · δ1+θ

for some α, β and δ ≲ d(p, q).

Ψ−1
p (Wu

loc(q))

graph of τ 7→ (δ, δ(ατ + β))δ
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Geometry of unstable foliation Fu (continued)

The content of the last lemma can be interpreted as follows.
Let ℓ : (−ε, ε) →M be a smooth curve s.t. ℓ(0) = p and ℓ′(0) is in
the (nearly) stable direction. Then we consider the curve in the infinite
dimensional space of curves:

ℓ̃ : (−ε, ε) ∋ s 7→W u
loc(ℓ(s)) ∈ “space of curves on M”

The last lemma tells that the curve ℓ̃ tangents to a 3-dim subspace at
each point on it (even though it is not differentiable!).

d(p0, p)

ℓ̃
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The “quantitative” condition on non-integrability

Let ψs
p : [−1, 1] → R be a continuous function “representing the

direction of Es” in the sense that

κ−1
p (τ, 1, ψs

p(τ)) ∈ [Es] ⊂ N(p) = TWu(p)M/Eu.

Definition (The non-integrability condition (NI)ρ for ρ > 0)∣∣∣∣∫ 1

−1
exp

(
ib
(
ψs
p(τ) + ατ

))
dτ

∣∣∣∣ < b−ρ

for sufficiently large b > 0 and all α ∈ R and p ∈M .

1

graph of ψs
p

1/b

lines with slope −α
directions of [Es]
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direction of Es” in the sense that

κ−1
p (τ, 1, ψs

p(τ)) ∈ [Es] ⊂ N(p) = TWu(p)M/Eu.

Definition (The non-integrability condition (NI)ρ for ρ > 0)∣∣∣∣∫ 1

−1
exp

(
ib
(
ψs
p(τ) + ατ

))
dτ

∣∣∣∣ < b−ρ

for sufficiently large b > 0 and all α ∈ R and p ∈M .

1
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1/b
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Genericity of the non-integrability condition

Genericity of (NI)ρ for some small ρ > 0 is not difficult to prove.
Roughly we use the facts that

by perturbation, we may vary ψs
p freely in an infinite dimensional

space of functions, but
α, p ∈M (and also b) are chosen in finite dimensional space.

1/b

Balls with radius b−1/r

where we purturb the flow independently
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Dolgopyat argument (very briefly)

Non-integrability condition =⇒ Exponential mixing.

As the transfer operator Lt : ψ 7→ ψ ◦ F−t (virtually)
preserves the frequency ω in the flow direction, we decompose
the functions on M with respect to it and consider the
components. (The limit ω → ∞ is important.)

We prove that A ◦ Lt is contracting the (L2) norm, where A
is an averaging along (small intervals in) the stable foliation.
The non-integrability condition works in this proof.
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Origin of the “finite dimensional property” of Fu

Suppose d(p, q) ≪ 1 and take t > 0 s.t. d(F−t(p), F−t(q)) ∼ 1.

Observation

The curves F−t(W u
loc(q)) and F

−t(W u
loc(p)) are very short and

their derivatives are bounded. Therefore they are approximated
very precisely by their Taylor expansion of (some) order r , which
is valid even after applying F t.

Wu
loc(q)

Wu
loc(p)

F−t(Wu
loc(q)) ⊂Wu

loc(F
−t(q))

F−t(Wu
loc(p))

F t
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Discussion about generalizations

For 3-dimensional C∞ partially hyperbolic diffeomorphisms,
our argument is valid (partly at least) and give the “Lemma”
with ατ + β replaced by some polynomial of order r
(depending on the pinching rate.)

In higher dim. case where some of Eσ is of dim ≥ 2, the
situation is much more complicated, by pinching inside Eσ.

Quesion: How does the (non-smooth) correspondence
q 7→W u

loc(q) look like in higher dimensional setting?

Thank you for your attention!
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