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Example

M a closed manifold of negative curvature. The geodesic flow Φt

acts on the unit tangent bundle T 1M of M. This flow is Anosov.
Periodic orbits correspond to conjugacy classes in π1(M).

Let M̃ be the universal covering of M, with geometric boundary
∂M̃. Invariant Borel probability measures on T 1M correspond to
π1(M)-invariant Radon measures on ∂M × ∂M −∆.

This correspondence is independent of a bounded time-change of
the flow.

Any flip-invariant Gibbs measure, eg the Bowen-Margulis measure,
defines a measure µ of quasi-product type, ie the measure class of
µ equals the class of ν × ν for some π1(M)-invariant measure class
ν.
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Geometric hyperbolicity

Definition
A geodesic metric space is δ-hyperbolic if for any geodesic triangle
T with sides a, b, c we have

a ⊂ Nδ(b ∪ c).

Example

Simply connected complete Riemannian manifolds of negative
sectional curvature are hyperbolic.

Hyperbolic spaces X admit a Gromov boundary ∂X , a metrizable
Iso(X )-space. They are non-elementary if ∂X has at least three
points. If X is proper then ∂X is compact.



Geometric hyperbolicity

Definition
A geodesic metric space is δ-hyperbolic if for any geodesic triangle
T with sides a, b, c we have

a ⊂ Nδ(b ∪ c).

Example

Simply connected complete Riemannian manifolds of negative
sectional curvature are hyperbolic.

Hyperbolic spaces X admit a Gromov boundary ∂X , a metrizable
Iso(X )-space. They are non-elementary if ∂X has at least three
points. If X is proper then ∂X is compact.



Geometric hyperbolicity

Definition
A geodesic metric space is δ-hyperbolic if for any geodesic triangle
T with sides a, b, c we have

a ⊂ Nδ(b ∪ c).

Example

Simply connected complete Riemannian manifolds of negative
sectional curvature are hyperbolic.

Hyperbolic spaces X admit a Gromov boundary ∂X , a metrizable
Iso(X )-space. They are non-elementary if ∂X has at least three
points. If X is proper then ∂X is compact.



Definition
A finitely generated group Γ is hyperbolic if its Cayley graph is
hyperbolic.

Example

Fundamental groups of closed negatively curved manifolds are
hyperbolic.
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Definition
An isometric action of a discrete group Γ on a metric space X is
weakly properly discontinuous if ∀R > 0 ∃ B(R) > 0,N(R) > 0:
If d(x , y) ≥ B(R) then

]{g ∈ Γ | d(x , gx) ≤ R, d(y , gy) ≤ R} ≤ N(R).



Definition
A discrete group Γ is acylindrically hyperbolic if it admits a
non-elementary weakly properly discontinuous action on a
separable δ-hyperbolic geodesic metric space.

Example

1. Hyperbolic groups

2. Fundamental group of finite volume pinched negatively curved
manifolds

3. Mapping class groups of surfaces of finite type
(Masur-Minsky, Bowditch)

4. Out(Fn) (Bestvina-Feighn)

But: Lattices in higher rank simple Lie groups are not acylindrically
hyperbolic (Burger-Monod, Bestvina-Fujiwara, H)
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Definition
A group Γ of homeomorphisms of an infinite compact metric space
B is a convergence group if, given any sequence of distinct gi ∈ Γ,
there are points c and b of B and a subsequence gni such that

gni (z)→ b

uniformly for all points z outside compact neighborhoods of c .

Equivalent (Gehring-Martin): The action of Γ on the space of
pairwise distinct triples of B is properly discontinuous

Example

A hyperbolic group Γ acts on its Gromov boundary as a
convergence group.



Definition
A group Γ of homeomorphisms of an infinite compact metric space
B is a convergence group if, given any sequence of distinct gi ∈ Γ,
there are points c and b of B and a subsequence gni such that

gni (z)→ b

uniformly for all points z outside compact neighborhoods of c .

Equivalent (Gehring-Martin): The action of Γ on the space of
pairwise distinct triples of B is properly discontinuous

Example

A hyperbolic group Γ acts on its Gromov boundary as a
convergence group.



Definition
A group Γ of homeomorphisms of an infinite compact metric space
B is a convergence group if, given any sequence of distinct gi ∈ Γ,
there are points c and b of B and a subsequence gni such that

gni (z)→ b

uniformly for all points z outside compact neighborhoods of c .

Equivalent (Gehring-Martin): The action of Γ on the space of
pairwise distinct triples of B is properly discontinuous

Example

A hyperbolic group Γ acts on its Gromov boundary as a
convergence group.



Proposition

Assume that Γ acts minimally on B as a convergence group.

1. (Tukia) Γ ∪ B is a compactification of Γ.

2. Let (gi ) ⊂ Γ be a sequence s.th. gi → b ∈ B; then
(gi )∗ν → δb for every non-atomic probability measure ν on B.

Theorem
(Sun 2016) A convergence group is acylindrically hyperbolic.
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Let Γ be a discrete group.
The space of P(Γ) of probability measures on Γ is the space of
non-negative integrable functions ν of `1-norm

‖ν‖1 =
∑
g

|ν(g)| = 1.

Definition
The action of the group Γ on a compact uniformly perfect
metrizable space B is called amenable if the following holds true.
There is a sequence ξn : B → P(Γ) with image consisting of
finitely supported measures such that

‖gξn(x)− ξn(gx)‖1 → 0

uniformly on compact subsets of B × Γ.



Amenability also makes sense for actions of countable discrete
groups Γ on measure spaces X preserving a measure class µ.

Example

1. A group Γ is amenable iff it admits an amenable action on a
point.

2. (Connes-Feldman-Weiss) Assume that Γ acts on (B, µ). The
action is amenable iff the orbit equivalence relation is
hyperfinite.

3. (Bowen) The stable foliation of a geodesic flow Φt on a closed
negatively curved manifold M is hyperfinite for any Gibbs
measure ⇒ the action of π1(M) on (∂M̃, ν) is amenable
where ν is the measure class on ∂M̃ induced by ν.



Example

1. The action of a lattice Γ in a simple Lie group G of
non-compact type on the Furstenberg boundary G/P of G is
amenable.

2. The action of a Gromov hyperbolic group Γ on the Gromov
boundary ∂Γ is amenable (Adams 1994)

3. The action of a group Γ relatively hyperbolic to a finite
collection of amenable subgroups on a geometric boundary is
amenable (Ozawa 06)

4. Mapping class groups admit an amenable action on an explicit
boundary (Kida, H 09)

5. Out(Fn) is boundary amenable (Bestvina, Guirardel, Horbez
17)



Definition
A universal boundary for Γ is a Γ-space X with the following
properties.

1. X is a compact uniformly perfect Polish space.

2. The action of Γ on X is amenable and minimal.

3. The action of Γ on X is a convergence action.



Groups which admit universal boundaries include groups which are
hyperbolic relative to a finite collection of amenable subgroups (eg
fundamental groups of finite volume pinched negatively curved
manifolds)

Proposition

If B is a universal boundary of a group Γ then Γ ∪ B = Γ is a
compactification of Γ which is small at infinity.

Means: The right translation action extends continuously to the
identity on B



Measures and flows

Let B be a universal boundary of a finitely generated group Γ and
let ν be a Borel probability measure on B whose measure class is
invariant.

Definition
The measure ν is of quasi-product type if there exists a Γ-invariant
Radon measure on B × B −∆ in the measure class of ν × ν.
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Example

Assume that Γ acts properly and cocompactly on a proper
hyperbolic geodesic metric space X . A Patterson Sullivan measure
ν on ∂X is a limit

lim
s↘δ

1∑
g e
−sd(x ,gx)

∑
g∈Γ

e−sd(x ,gx)δgx

where δ ≥ 0 is the critical exponent

A Patterson Sullivan measure is of quasi-product type

Example

Let M be a closed negatively curved manifold. The
Bowen-Margulis measure for the geodesic flow Φt on the unit
tangent bundle T 1M of M projects to a measure of quasi-product
type on the boundary ∂M̃ of the universal covering M̃ of M.
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Let µ be a regularized non-atomic Borel-probability measure on B
with Γ-invariant measure class and let ν be a Γ-invariant measure
on B × B −∆ in the measure class of µ× µ.

For µ× µ-a.e. (x , y) ∈ B × B, the Radon Nikodym derivative

c2(x , y) = dν(x , y)/d(µ× µ)(x , y)

exists. Define
Λ(g , (x , y , t)) = (gx , gy , s)

if e−tesc(g(x , y))/c(x , y) is the Jacobian of g at x w.r. to µ.

Proposition

Λ defines a smooth (=countably separated quotient Borel
structure) action of Γ on (B × B −∆)× R commuting with the
action of R by translations.
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Example

If µ is the Patterson Sullivan measure of the fundamental group Γ
of a closed negatively curved manifold M then Γ\(B × B −∆)×R
is the unit tangent bundle T 1M of M, with the geodesic flow Φt .

Example

If Γ is a hyperbolic group, with Gromov boundary ∂Γ, and if µ is
the exit measure of a finitely supported symmetric random walk,
then µ can be realized as a Borel measure on ∂Γ. The measure µ
is of quasi-product type, and Γ\(B × B −∆)× R is compact. The
translation flow Φt is expansive.

Babillot 02: Relate mixing of this flow to stable lengths of periodic
orbits
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Applications 1

Definition
A number r ≥ 0 is contained in the ratio set of a measure class
preserving action of Γ on (B, ν) if for A ⊂ B Borel, ν(A) > 0,
ε > 0 ∃A′ ⊂ A, ν(A′) > 0, g ∈ Γ s.th.

1. gA′ ⊂ A

2. |dν◦gdν − r | < ε for all b ∈ A′

The action is of type III if the ratio set is infinite, and of type III1
if the ratio set is all of R∗.

The Maharan extension is the action of Γ on B × R defined by

g(b, t) = (gb, t − log(
dν ◦ g
dν

(b)))

preserving the measure ν × θ, dθ = etdt. The action of type III1 if
and only if the action of Γ on B × R is ergodic.
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Theorem
Let Γ be a hyperbolic group with Gromov boundary ∂Γ.

1. If ν is a Patterson Sullivan measure of a word metric then the
action is of type III (L. Bowen 14), but it is not of type III1.

2. If ν is the exit measure of a finitely supported symmetric
random walk and if ∂Γ is connected then the action is of type
III1.



Generalizations

Theorem

1. (Sun 16) If Γ acts on B as a convergence group then the
Gromov boundary of an acylindrically hyperbolic Γ-space
admits a Γ-equivariant embedding into B.

2. (Maher-Tiozzo 15) If Γ admits an acylindrically action on a
hyperbolic space X then the exit measure of any finitely
supported symmetric random walk can be realized as a
measure on the Gromov boundary of X .

The action of Γ is of type III for measures on B of quasi-product
type, and it is of type III1 for exit measures of finitely supported
random walks if B is connected.



Applications 2

Let Γ be a hyperbolic group and ν the generating measure of a
random walk, finite and symmetric. Then ν defines a Green’s
metric d on Γ.
For R > 0 let N(R) be the number of conjugacy classes of
elements of Γ of translation length ≤ R for d .

Theorem
There is h > 0 s.th. N(R) ∼ ehR

hR as R →∞.

For word metrics one gets (Coorneart-Knieper 02, H)

Theorem
There are h > 0, 0 < a < b s.th. N(R) ∈ [a ehR

hR , b
ehR

hR ] for large R.



Lyapunov exponents

Oseledets multiplicative ergodic theorem: Let Φt be a flow on a
space X preserving a Borel probability measure µ,
c : X × R→ SL(n,R) a bounded cocycle for Φt ; then there is a
measurable filtration X × Rn = A1 ⊂ · · · ⊂ As , Ai → X a
measurable bundle, and numbers κ1 < · · · < κs s.th. for
v ∈ Ai − Ai−1, a.e. x ∈ X , limt→∞ log ‖Φtv‖ = κi .

Let Γ be a finitely generated group with universal boundary B,
ρ : Γ→ SL(n,R) a homomorphism, X̃ a geodesic metric space
with cocompact action of Γ, X = X̃/Γ
⇒ X̃ × Rn/Γ→ X is a flat vector bundle with canonical
connection which defines a cocycle over any flow Φt on X . Then
the Lyapunov exponents are defined for a Φt-invariant Borel
probability measure.
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The Lyapunov spectrum is simple if dim(Ai )− dim(Ai−1) = 1 for
all i . This is invariant under a bounded time change of the flow.

Example

Let Φt be the geodesic flow on a closed negatively curved manifold
M. Let µ be the invariant Gibbs measure defined by the exit
measure of a finitely supported random walk on π1(M). Let
ρ : π1(M)→ SL(n,R) be a homomorphism with Zariski dense
image. Then the Lyapunov spectrum of the cocycle is simple
(Guivarch-Raugy, Margulis)



Theorem
Let ν be a measure of product type on a universal boundary B of
Γ. Let ρ : Γ→ SL(n,R) be a homomorphism with Zariski dense
image. The for ν-a.e. x ∈ B, and a geodesic γ : [0,∞)→ Γ
ending at x , ex. a filtration A1 ⊂ · · · ⊂ An−1 ⊂ Rn s.th. for all
x ∈ Ai − Ai−1, y ∈ Ai−1 have

lim inf
t→∞

log
1

t
(log ‖c(γ(0), t)x‖ − log ‖c(γ(0), t)y‖) > ε(x) > 0.

Application: If µ is a Φt-invariant Borel probability measure for the
geodesic flow on M which is of quasi-product type and if
ρ : π1(M)→ SL(n,R) is a homomorphism with Zariski dense
image then the Lyapunov spectrum of the corresponding cocycle is
simple.
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Fact: Let Γ be a discrete group acting amenably on a compact
space, with invariant measure class µ. Assume that Γ acts on the
compact space X . Then ∃ equivariant measurable map
(B, µ)→ P(X ) Furstenberg map where P(X ) is the space of Borel
probability measures on X .

Show: Image consists of point masses (use convergence action, can
also be done using a strip condition in the sense of Kaimanovich).

Apply to action of Γ on the flag variety; deduce proximality of the
action.

Use regularity of a measure of product type to deduce information
on Lyapunov exponents.


