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Let (X,d) be a compact metric space, ¢ be a
homeomorphism of X such that (X,d, ) is an
irreducible Smale space or the basic set for an
Axiom A system.

For p>1, let

perp(X, @) = #{z € X | o"(z) = z}.

Theorem 1 (Manning). For (X,¢) as above,
the Artin-Mazur zeta function

@

Colt) = eap (Z perp(X, SO)tp>

p=1 b

is rational.



Bowen asked if there exist a homology the-
ory for such systems that explains this result.
(Problem 7.)

For eachn > 0, Hy(X, ¢) is a finite-dimensional
vector space, non-zero for only finitely many n,
automorphisms ¢, of each and

Y (=)™ Trl(pn)?P: Ho(X,p) — Hp(X,9)]
n=0

= #{z € X | P(z) =z},
for all p > 1.

This is an analogue of the Lefschetz formula
for smooth maps of manifolds and immediately
implies Manning’s rationality result.

The point of this talk: Yes.

In fact, there are two H;, HY, n € Z, and these
are finite rank abelian groups. (Use HS ® Q or
H> ® R above.)



Smale spaces (D. Ruelle)

(X,d) compact metric space, ¢ : X — X home-
omorphism, 0 < A\, eqg < 1,

There is a continuous map

['7'] : {(:c,y) € X XX | d(fb,y) SGO}%X

([x,y] is the intersection of the local stable set
of x with the local unstable set of y) such that

[z, 2] = =,
[z, [y, 2]] = [z, 2],
[z, y],2] = [z,2],
[p(x), p(y)] = ¢[z,y]

whenever all are defined and

[z, y] =y = d(e(z),e(y)) < Ad(z,y)

and

[2,y] = = = d(p 1 (2), ¢ 1 (y)) < Nd(z,y)
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We define, for x in X and 0 < e < ¢g, the local
stable and unstable sets by

X(x,¢) {ye X |d(x,y) <e¢, [z,y] =y},
X%z, e) = {ye X |d(z,y) <e[z,y] =z},

and the global stable and unstable sets by
X% (z) = {yeX| lim d(¢"(z),¢"(y)) =0},
n——+oo

X'(@) = {yeX| lim_dlp "(x),¢ ")) =0}

The map

[,-] : X%(z,¢) x X°(x,¢) = X

is @ homeomorphism to a neighbourhood of x
with inverse

y = (ly, z], [z, 9]).



Example 2 (Fried). Every basic set for an Ax-
iom A system is a Smale space (for some met-
ric).

e A Smale space does not need to be em-
bedded in a manifold.

e A Smale space can have wandering points.

e [ he fibred product of two Smale spaces is
again a Smale space.

Given y

A
XT 7
X
the fibred product is

{(y,2) eY x Z | w(y) = p(2)}



Example 3. Every shift of finite type (SFT) is
a Smale space. These are exactly the totally
disconnected Smale spaces.

Example 4. q/p-solenoid

Let p < g be primes.

X =QpxRxQqy/Z|(pg) 1|,
with

—1 —1 —1
olz,y,2] = [p gz, p Tay, p ez

Expanding coordinates Qp x R x {z} and con-
tracting coordinates {z} x {y} x Qq.

Example 5. Nekrashevych: construction from
actions of self-similar groups.

Example 6. R.F. Williams’ solenoids, expand-
ing attractors

Example 7. S. Wieler's solenoids.



To find a homology theory for Smale spaces.

Step 1: Find the invariant for shifts of finite
type: Wolfgang Krieger (1980). (There is also
another by Bowen and Franks.)

Step 2: Extend it to all Smale spaces.

Going from 1. to 2. involves Markov parti-
tions. But ordinary Markov partitions will not
do, we need better Markov partitions.



Krieger’s invariants for SFT's
Motivation: Cech cohomology

For any compact space X, its Cech cohomol-
ogy is computed by considering a finite, open
cover Uy,...,Uyxy and the nerve of the cover;
that is, the data of the non-empty intersec-
tions of these sets.

If X is totally disconnected, there are open cov-
ers which simplify this calculation: partitions
into clopen sets, so that the intersections are
all trivial.

Ultimately, the Cech cohomology (in dimen-
sion zero) is the abelian group generated by
the clopen sets with relations

U4+V=UUYV,

whenever U,V are disjoint.



Krieger's idea: look at

U C Z%e,e),

clopen in the relative topology. Equivalence
relation ~: if we have

U C Z5(e,€)
| ° w w |
| o |
| |
| : : |
| .f | | |
| |
| V CX5%(f,€) |
then U ~ V.

And U~V & o(U) ~ a(V).

The invariant D%(X, o) is an abelian group gen-
erated by the equivalence classes of relatively
clopen sets with relations [UUV] = [U]4+[V],UN
V = () and has a natural automorphism induced
by o.
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An obvious question about Krieger’s invariant:
can it be computed?

Theorem 8 (Krieger). If G is a finite directed
graph and (g, 0¢) is the associated SFT, then

A A
D3(Za,00) £ limzN =5 zN 24

where

N = #GO, Aq = adjacency matrix of G.

T he automorphism (7*_1

Corollary 9.

IS multiplication by Ag.

perp(Xg,06) = Tr(A%L) =Tr((cg)x")
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Another obvious question about Krieger’'s in-
variant: how did he think of it?

A superficial look at the definition - clopen set
modulo unstable equivalence - makes it look
like we are computing HO9(Z/X~%). We are not
and that is fortunate since, for mixing SFT's,
> /2% is uncountable and indiscrete.

One of the principles of noncommutative topol-
ogy is that when one finds such a quotient
space, one should have built a C*-algebra in-
stead. Krieger saw this C*-algebra quite ex-
plicitly and could compute its Kg-group. That
is the invariant.
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Recall the problem: find a homology theory for
Smale spaces.

Step 1: Find the invariant for shifts of finite
type: Wolfgang Krieger (1980).

Step 2: Extend it to all Smale spaces.

For the second step, we look to the proof of
Manning's Theorem ...
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Bowen’s Theorem
(Also, Adler-Weiss, Sinai, etc.)

Theorem 10 (Bowen). For a (non-wandering)
Smale space, (X, p), there exists a SFT (X,0)
and

(X, 0) = (X, p),

with mo o = @ om, continuous, surjective and
finite-to-one.

The proof is the existence of Markov parti-
tions.

(X,0) is not unique.
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Manning's proof: keep track of when 7 is N-
to-1, for various values of N.

For N > 0, define

>n(r) = {(egse1,---,en) |
m(en) = m(eo),
0<n<N}L
Forall N > 0, (X n(7),o0) is also a shift of finite
type and Sy acts on X (w).

We can form D3(X n(w), o))t

This is a good candidate for Hy(X, p) except
that it depends on (3,0) and .

Manning used the periodic point data from the
sequence X y(m) (with the action of Sy41) to
compute pern(X, ¢).

This is extremely reminiscent of using the nerve
of an open cover to compute homology of a
compact manifold.

15



Topology

Dynamics

'good’ open cover
Ui,...,Ur

Bowen’s T heorem
T (X,0) = (X,p)

multiplicities

multiplicities

UgN---NU; 0 > n(7)
groups groups
CN generated by DS (X n(7))adt

Ui, V- NU; # 0

boundary maps
81(U7; M UJ) = Uj — U,

boundary maps
77
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The problem:

For 0 <n <N, let 6, : Zny(m) - Zn_1(7) be
the map which deletes entry n. This is a nice
map between the dynamical systems.

Unfortunately, a map

p:(Z,0) = (X, 0)

between shifts of finite type does not always
induce a group homomorphism

px - D3(Z,0) — D*(Z/, o)

between Krieger’s invariants.

But this problem is well-understood in sym-
bolic dynamics ...
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Definition 11. A factormap « : (Y,v) — (X, ¢)
between Smale spaces is s-bijective if, for all y
inyY

T Y (y) = X(7(y))

is bijective.

It is a consequence that, for any y, ¢ > 0, there
is 6 > 0 such that #(Y%(y,d)) is an open subset
of X%(n(y),e) and « is a homeomorphism from
YS(y,d) to its image.

Theorem 12. Let 7w : (X,0) — (X/,0) be a
factor map between SFT's.

If m is s-bijective, then there is a map
78 D%(X,0) — D%(X/, o).

If = is u-bijective, then there is a map
%% D3(X/,0) — D%(Z,0).
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A better Bowen’s Theorem

Let (X,p) be a Smale space. We look for a
Smale space (Y,v) and a factor map

Ts - (Yaw) — (Xa 90)

satisfying:

1. 75 is s-bijective,

2. Y¥(y,e) totally disconnected.

That is, Y4%(y,¢) is totally disconnected, while
YS(y,e) is homeomorphic to X*4(mws(y),e).

This is a “one-coordinate’” version of Bowen's
T heorem.
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Similarly, we look for a Smale space (Z,¢() and
a wu-bijective factor map m : (Z,() — (X, )
with Z%(z, ) totally disconnected.

We call = = (Y, ¢, 7s,Z,(,m,) a s/u-bijective
pair for (X, ).

Theorem 13 (Better Bowen). If (X,p) is a
non-wandering Smale space, then there exists
an s/u-bijective pair, m = (Y, ¢, ms, Z,(, my).

Like the SFT in Bowen's Theorem, this is not
unique.

The fibred product is a SFT:
S ={(y,2) €Y x Z | ms(y) = mu(2)}

(Y,)
o7
(=,7) (X, )

(2,¢)
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For L, M > 0, we define

ZL,M(T‘-) — {(y07"'7yLazO7°°°7zM) ‘
Y EY,Zm S Z?

Ws(yl) — WU(Zm)}-
Each of these is a SFT.

Moreover, the maps

o, ° 2ZLM— 2L-1M>
Sm: XL M~ ZLM-1

which delete y; and z;, are s-bijective and u-
bijective, respectively.

This is the key point! These maps do induce
maps on Krieger's invariant and we can use
them to make boundary maps.
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We get a double complex:

D¥(X02)"—D%(X1 2)""—D*(Z32) ™" —

D3(Z0,1)"—D%(X1 1) —D*(Z2 1) —

D*(Z0,0)" ~—D*(X1,0)" —D*(£2,0) " —

Oy S m=nD*(Zp p)¥
— S m=N_1D5(Zp ar)*

O = Tho(-1)f + XA (—1)m M5

H () = ker(8%,)/Im (95 11).
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Theorem 14. The groups Hj/(w) depend on
(X, ), but not the choice of s/u-bijective pair
T — (Y7¢77T8727C77TU>'

From now on, we write H3 (X, ).

Theorem 15. The functor H;(X, p) is covari-
ant for s-bijective factor maps, contravariant
for u-bijective factor maps.

Theorem 16. The groups H}; (X, ) are all fi-

nite rank and non-zero for only finitely many
N € 7.
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Theorem 17 (Lefschetz Formula). Let (X, p)
be any non-wandering Smale space and let p >
1.

S (1N Trl(p®) P H{ (X, ¢)®@Q
NEeZ

— Hy (X, ¢) ® Q]

#{z € X | P(2) = 2}

24



Example 18. Shifts of finite type

If (X,p)=(X,0), then Y =3 =7 is an s/u-
bijective pair. In the double complex, only the
lower left group is non-zero and

H3(x,0) = D*(X,0),
H3/(Z, 0) 0, N # 0.

Remark 19. In any Smale space with totally
disconnected stable sets, we may choose Z =
X. Then the double complex is only non-zero
in its bottom row.

Example 20. %—so/enoid[N. Burke-P.]

Let p < g be primes and (X, p) the %—solenoid.

H(X,p) = Z[1/4]
Hi(X,¢) = 7Z[1/p]
H$(X,¢) = 0,N#0,1.
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Example 21. 1-dimensional solenoids of R.F.
Williams [Amini, P., Saeidi]

If (X, ) is an orientable 1-d solenoid, then

HE(X,9) 2 HY(X)
H(X,p) = HO(X) 21,
H(X,9) = O,N#0,1

If it is non-orientable, then these do not hold
(in general) and H?(X, ) has torsion.

Example 22. Full 2-shift x non-orientable 1solenoid
Deeley-Killough-Whittaker

This has the same homology as a SFT, but is
not a SFT.
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