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From Bowen’s LN:



Motivation

How and why many materials are ordered at low temperature
(crystalline or quasicrystalline order)?

This is a wide open program!

Perspective here: statistical mechanics of lattice systems (toy
models)

Rich interplay between statistical mechanics, ergodic theory and
(multidimensional) symbolic dynamics
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Prelude: cooling down finite systems

Let Ω be a �nite set (space of ‘con�gurations’):

‘state’ ≡ probability vector ν = (ν(ω) : ω ∈ Ω)

Entropy of ν: H(ν) = −
∑

ω∈Ω ν(ω) log ν(ω).

Energy function u : Ω→ R (assumed to take at least two distinct values).
In state ν the system has energy ν(u) :=

∑
ω∈Ω ν(u)u(ω).



Gibbs states

For β ∈ R (inverse temperature) the Gibbs state µβ is de�ned by

µβ(ω) :=
e−βu(ω)

Z(β)

where
Z(β) =

∑
ω∈Ω

e−βu(ω) (partition function of u).

Remarks:
physically β ≥ 0
all con�gurations have a strictly positive probability wrt µβ .



Zero temperature limit

The set of minimizing con�gurations for u:

Ωmin = Ωmin(u) = {ω : u(ω) = min
Ω

u}.

As β → +∞

µβ(ω)→ µ∞(ω) :=
1{ω∈Ωmin}

card(Ωmin)
(zero-temperature limit),

that is, the equidistribution on Ωmin.

The support ofµβ becomesΩmin ( Ω, but only in the limit β → +∞.
(For all �nite β, supp(µβ) = Ω.)

In particular

H(µ∞) = log Card(Ωmin) (= 0 if and only if Card(Ωmin) = 1).



The variational principle

Theorem. Each Gibbs state µβ satis�es

sup
ν

(
H(ν)− ν(βu)

)
= H(µβ)− µβ(βu) = P(β),

where P(β) := logZ(β).

A state ν for which the ‘sup’ is attained is called an equilibrium state for
βu.

Thus Gibbs states are equilibrium states.

In fact µβ is the only equilibrium state for βu.



Minimizing states (ground states)

By the variational principle: for all β > 0 and for any state ν

H(ν)

β
− ν(u) ≤

H(µβ)

β
− µβ(u)

thus, taking β → +∞,
µ∞(u) ≤ ν(u)

so
µ∞(u) = infν ν(u) = min

Ω
u.

A state ν for which the inf is attained is called a minimizing state for u.



The zero-temperature limit µ∞ is a minimizing state:

µ∞(u) =
∑
ω∈Ω

µ∞(ω)u(ω) =
∑

ω∈Ωmin

1
Card(Ωmin)

u(ω) = min
Ω

u.

Write Ωmin = {ω(1), . . . , ω(k)} where k := Card(Ωmin).

Then, any convex combination of the δω(i) is a minimizing state for u.

Observe that µ∞ is the evenly weighted centroid of the δω(i) :

µ∞ =
1

Card(Ωmin)

k∑
i=1

δω(i) .

Also

H(µ∞) = log Card(Ωmin) = max{H(ν) : ν minimizing state for ν}.
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Gibbs & eqilibrium states for infinite
lattice systems

Now the con�guration space is

Ω = SZ
d

where S is a �nite set of possible values of a con�guration at a
given site i ∈ Zd , e.g., S = {0, 1}.

So ω = (ωi)i∈Zd , with ωi ∈ S.

Dynamics: Zd acts on Ω by the shift
(
T j : j ∈ Zd

)
:(

T jω
)
i = ωi+j.

(d-dimensional full shift.)



Interaction potentials, Hamiltonians & local
energy functions

Interaction potential Φ = (ΦΛ)ΛbZd :
For each Λ b Zd , ΦΛ : Ω→ R is continuous
ΦΛ+j = ΦΛ ◦ T j for all j ∈ Zd , Λ b Zd (shift-invariance)∑

Λ30 ‖ΦΛ‖∞ <∞ (absolutely summability).

Fundamental subclass: �nite-range interaction potentials, i.e.,
∃r ∈ N s.t. ΦΛ ≡ 0 whenever diam(Λ) > r .

Energy (‘Hamiltonian’): UΛ(ω) =
∑

∆∩Λ6=∅Φ∆(ω).

Local energy function (‘potential’, for dynamicists): φ : Ω→ R

φ(ω) =
∑
Λ30

ΦΛ(ω)

Card(Λ)
(continuous) .



Example: the nearest-neighbor (r = 1) ferromagnetic
Ising model

S = {−,+} and

ΦΛ(ω) =

{
−ωi ωj if Λ = {i, j} s.t. |i − j|1 = 1
0 otherwise.

We have

φ(ω) = −
d∑

i=1
(ω0 ωei + ω0 ω−ei).



Basic facts on Gibbs & eqilibrium states

Take Φ as above.

One can de�ne (DLR equations), for each β ∈ R, the set of Gibbs
states (contains at least one shift-invariant Gibbs state).

An eqilibrium state for βφ is a shift-invariant measure µ
such that

sup {h(ν)− ν(βφ) : ν shift-invariant} = h(µ)−µ(βφ) = p(βφ).

Theorem
The set of equilibrium states for βφ coincides with the set of
shift-invariant Gibbs states for βΦ.



Examples

Take d = 1 and φ Hölder continuous, i.e., ∃C > 0 and θ ∈ [0, 1) s.t.

sup{|φ(ω)− φ(ω′)| : ωi = ω′i , |i| ≤ n} ≤ C θn, ∀n.

Then, for each β, there is a unique Gibbs state µβ for βφ, which is
also the unique equilibrium state (cf. Bowen’s lect. notes).
(Summability of ‘sup . . .’ is enough.)

Back to the Ising model:
For d = 1, ∃! Gibbs state for each β
For d = 2, there exists βc > 0 such that ∃! Gibbs state for each
β < βc , and the set of Gibbs states ≡ [µ−

β , µ
+
β ] for each β > βc , where

µ−
β , µ

+
β are ergodic

For d = 3, for all β large enough, there exist non-shift invariant
measures for βΦ.
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Back to freezing

Given an interaction potential Φ:

What kind of set is the set of minimizing con�gurations?

Does the limit of µβ (in weak topology) always exist? If it
does, is it equidistribution on the set of minimizing
con�gurations? What about its entropy?
Is it possible to have a ‘freezing phase transition’ (at
non-zero temperature, i.e., �nite β)?
Does the regularity of the local energy function φ matter?
Does the dimension d of the lattice matter?
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The minimizing subshift

Fix Φ. De�ne

Ωmin(Φ) =
{
ω ∈ Ω : UΛ(ω) ≤ UΛ(ω′ΛωZd\Λ), ∀ω′ ∈ Ω, ∀Λ b Zd

}
.

A shift-invariant measure µ is said to be a minimizing state for φ if

µ(φ) ≤ ν(φ), for all shift-invariant measures ν.

Theorem (Schrader, 1970; Garibaldi-Thieullen, 2014)
Ωmin(Φ) is a subshift (≡ closed, shift-invariant subset ), which we
call the ‘minimizing subshift’ for Φ

One has

µ shift-inv., supp(µ) ⊆ Ωmin(Φ)⇐⇒ µ is a minimizing state for φ.
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A general result on zero temperature

(Let Φ be a shift-invariant, absolutely summable interaction potential, and
φ the corresponding local energy function.)

Folklore Theorem
For each β, let µβ be any equilibrium state for βφ. Then any
accumulation point of (µβ)β>0 (weak topology)

is a minimizing state for φ
has maximal entropy among all the minimizing states for φ.



Basic observations about the existence of the
zero-temperature limit

From the last two theorems, it follows at once that limβ→+∞ µβ
exists

if Ωmin(Φ) is a uniquely ergodic subshift
or, if Ωmin(Φ) has a unique measure of maximal entropy.
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Zero-temperature limit: a positive result

We work with Ω = SN.

Let φ : Ω→ R such that there exists r ∈ N such that

φ(ω) = φ(ω′) whenever ωi = ω′i , i = 0, . . . , r.

Loosely, this means that φ(ω) = φ(ω0, ω1, . . . , ωr).

For each β, the unique Gibbs/equilibrium state µβ is nothing but
the probability distribution of a certain stationary Markov chain
with memory r and state space S.



Theorem (Brémont, 2003/ Leplaideur, 2005/ C., Gambaudo,
Ugalde, 2011)
Let φ be such that there exists r ∈ N such that
φ(ω) = φ(ω0, ω1, . . . , ωr). Then

the limit limβ→∞ µβ exists
the minimizing subshift is a subshift of �nite type (not
necessarily transitive)
there are �nitely many ergodic minimizing states
there is an algorithm to compute the barycentric
decomposition of limβ→∞ µβ over the ergodic minimizing
states for φ (some coe�cients may be equal to 0).

Remark. Generically, limβ→∞ µβ is equidistributed on a periodic
orbit.



Zero-temperature limit: a negative result

Let Ω′ ⊂ Ω = {0, 1}Z be any subshift, and φ the Lipschitz local
energy function

φ(ω) := d(ω,Ω′)

where d(ω, ω′) = 2−max{k:ωi=ω′
i ,∀|i|≤k}.

By construction, the minimizing subshift for φ is Ω′.

We know (see Bowen) that, for each β, there is a unique Gibbs
state µβ which is also the unique equilibrium state for βφ.

We can have ‘chaotic temperature dependence’:

Theorem (C., Hochman, 2010)

One can construct subshifts Ω′ ⊂ {0, 1}Z such that the family
(µβ)β>0 does not converge, as β →∞.

See also a paper by Coronel and Rivera-Letelier (2015).



A generic result

Take Ω = SN.

Theorem (Contreras, 2016)
For an open and dense set of Lipschitz functions on Ω, the
zero-temperature limit exists and is supported on a single
periodic orbit.



Back to our original motivation

So far: we got, as β → ∞, periodic order, sometimes ‘chaotic order’, or
‘chaotic temperature dependence’.

A (nontrivial) minimal uniquely ergodic subshift can be taken as a model
of quasi-crystal:

minimality ≡ any pattern (word) appears again within a bounded
distance
unique ergodicity ≡ the frequency of a pattern in a con�guration ω
converges uniformly wrt ω.

One can also ask for zero (topological) entropy.

One can construct φ with a prescribed minimal uniquely ergodic subshift
as a minimizing subshift, e.g., the Thue-Morse substitution subshift. We
know that limβ→∞ µβ = µTM .
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An example of freezing phase transition

The Thue-Morse substitution 0 7→ 01, 1 7→ 10 has two �xed points

ω(0) = 01101001 . . . and ω(1) = 10010110 . . .

ThenK :=
⋃

n Tn(ω(0)) is a subshift of {0, 1}N (the Thue-Morse subshift).
It has no periodic points and zero topological entropy.
It is uniquely ergodic. Denote by µTM its unique shift-invariant measure.



Theorem (Bruin, Leplaideur, 2013)

Consider φ : {0, 1}N s.t.

φ(ω) =

{
0 if ω ∈ K
φ(ω) = 1

n + o
( 1
n

)
if d(ω,K) = 2−n.

Then, there exists βc ∈ (0,∞) such that:
for β < βc , there is a unique Gibbs/equilibrium state µβ and
supp(µβ) = {0, 1}N

for all β > βc , the unique equilibrium state for βφ is µTM .
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Zero-temperature limit for d ≥ 3: a negative result

Recall that given an interaction potential Φ = (ΦΛ)ΛbZd , there is an as-
sociated local energy function φ : Ω→ R.

Here we take
Ω = {0, 1}Zd

.

Theorem (C., Hochman, 2010)
For d ≥ 3, there exist �nite-range interaction potentials Φ such that for
any family (µβ)β>0 in which µβ is an equilibrium state for βφ,
limβ→∞ µβφ does not exist.

Open question: prove the same result for d = 2.
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Modelling quasicrystals when d ≥ 2

Quasicrystal ≡ minimizing subshift which is minimal and
uniquely ergodic (hence without periodic con�gurations), and
with zero topological entropy.

(Radin, Miȩkisz, van Enter, ...)

For d = 1, substitutions subshifts do the job (they are not
subshifts of �nite type).

What happens when d ≥ 2?



A subshift of �nite type without periodic
con�gurations

S :

The 13 prototiles (= tileset) of Kari-Culik Wang tiling

Wang shift:W ⊂ SZ
2 satisfying the (local) constraint:

‘two tiles of are only allowed to touch along edges of the same colour’.

It is a subshift of �nite type without periodic con�gurations.





Freezing phase transitions in dimension d ≥ 2?

One can trivially de�ne a nearest-neighbor interaction potential
(range one) whose minimizing sushift is the previous Wang shift!

One can construct Wang shifts which are minimal and uniquely
ergodic. They automatically have zero topological entropy.

Openqestion: �nd examples of freezing phase transitions to
a minimal and uniquely ergodic Wang shift.



Warning: trichotomy & undecidability for Wang tilesets

There are three kinds of Wang tilesets:
1 those which cannot tile a n by n square for some n (so they

can’t tile the plane)
2 those which can tile a n by n square for some n with the

same colors on the sides (periodic tiling)
3 those which can tile the plane but not periodically.

There is no algorithm to decide in which case a given tileset falls!

This has dramatic consequences on the structure of the set of
�nite-dimensional marginals of shift-invariant measures... but
this is another story.
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