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Overview.

e Study intermittency exponents (, such that
(|Av[P) ~ (5
where Av is contribution to fluid velocity at small scale /.
[ Claim:
szg—ﬁlnr(g—i-l)

experimentally (Inx)™!' =032 ,ie, w~200r25 |.

e Distribution of radial velocity increment and relation with
Kolmogorov-Obukhov.

e Reynolds number ~ 100 at onset of turbulence.
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1. Obtaining the basic probability distribution.

e Kinetic energy goes down from large spatial scale ¢y to small
scales through a cascade of eddies of increasing order n so that

V:E v,

with viscous cutoff.

Eddy of order n — 1 in ball R,_1); decomposes after time T(,_y);
into eddies of order n contained in balls Ry; C R,_1);-

Balls R; form a partition of 3-space into roughly spherical
polyhedra of linear size /,;, lifetime T,;.



e Assume that the dynamics of each eddy is universal, up to
scaling of space and time, and independent of other eddies.

Conservation of kinetic energy E yields

Z E(an) o E(R(nfl)i)

; Tnj 7—(n—l)i
Universality of dynamics and inviscid scaling give for initial eddy

velocities
Vn T(nfl)i Vn-1

Knj Tnj fn,1

Z/ !Vn| / Vo1]?
Rin—1)i E("*l)i

(implies intermittency).

hence



e For simplicity assume size /,; depends only on n: €(,,_1),-/€,,j = K.

Then
[ P [ P
/R Rin—1)i

e Assume that the distribution of the v, between different R,;
maximizes entropy: microcanonical distribution — canonical
distribution:

~ exp[— BV, dv,

Integrating over angular variables:
1
~ expl=Blval’][val d|va| = 3 exp[~Blva[*] dlv,f?

hence V,, = |v|? has distribution

B exp[—BV,] dV,



e Finally since the average value 871 of V, is Vo_1/k, Vs
distributed according to

&V,
anl

V:il exp {— } dVv,

Starting from a given value of V{ the distribution of V,, is given by

Kk dVp —kVi/ Vo Kk dV), —kVn/Vn_1
7 e an1e (*)

The validity of (x) is limited by dissipation due to the viscosity v:

we must have
an/3€,, > v



2. Calculating (p.

e To compute the mean value of |v,|P = V,f/3 we note that

K KV, p/3 AT B p/3
vn_l/exp[ m}.vn an_<7H > exp[—w].wP’> dw

=PV (S +1)

hence, using induction and ¢,/lp = k"

K KV K kV,
(VPP = VO/exp [—701] dvi - l/exp[ o J Ve av,

— o nP/3 Vp/3|—<3 I 1) V63/3<§0)p/3r<3 N 1>n




e Therefore

In(val?) = In(VE) = n v* 4+ 2 n (io) (ﬁfo)l nr(£+1)

g () [§ - ()] ()

where

szg—ﬁlnr(g-yl)

py — yp3(I\e %
(lval?) = Vg (EO) £

or

as announced.



3. Estimating the probability distribution F(u) of the radial
velocity increment u. Relation with Kolmogorov-Obukhov.

e If r = ¢, we have u = u, = radial component of v,
= rough estimate of the probability distribution of u:

K dVi " 1
Flu) = H/ Vi1 e 1) V1/3X[—vn1/3,vn1/3](“)

T2 Vo W wn> /i”/Vo)\u|3H W:/3

e The distribution G,(y) of y = (k"/Vo)Y/3|u| is given by

“ dwy e Wk
)= [ TI™5
Wi Wp>y k=1 Wk



e This satisfies

with
o) =3ep(3t—¢) . vl =e [ e o)
t
[ = Gp(y) is a decreasing function of y].

e For small u, G, gives a good description of the distribution of v,
with normalized (|u|?) (see Schumacher et al.).

e (%) suggests a lognormal distribution with respect to v in
agreement with Kolmogorov-Obukhov, but this fails because ¢, ¢
tend to 0 only exponentially at —oo.



4. The onset of turbulence.

e We may estimate the Reynolds number Re = |vg|lp/v for the
onset of turbulence by taking

m<\vly\zl> <v /32 1£0>_Rel< 4/3<Hv1>1/3>

[Relation to dissipation is dictated by dimensional arguments] =

Re~w /0 (vo) Vo ©

— A3 /Oo a B dye® = K4/3|—<g)
0 3

Taking 1/Inx = .32 hence x*/3 = 64.5, with I(2/3) ~ 1.354 gives
Re ~ 87 agreeing with Re ~ 100 as found in Schumacher et al.




