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Overview of talk

Goal: study uniqueness of equilibrium states for geodesic flows

Known results:

Curvature < 0: unif hyperbolic,
unique eq state ∀ Hölder ϕ

≤ 0: non-unif hyp, unique MME

New results: (Burns–C.–Fisher–Thompson, arXiv:1703.10878)

Curvature ≤ 0:

1 Unique equilibrium state if P(Sing, ϕ) < P(ϕ)

2 Pressure gap condition is optimal and common

https://arxiv.org/abs/1703.10878
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Thermodynamic formalism in uniform hyperbolicity

Motivation: Anosov systems have many invariant measures

Let M be a compact manifold, ft : M → M a C 1+α Anosov flow

∃ inv. splitting TxM = Eu
x ⊕ E s

x ⊕ E 0
x

with d
dt ft(x) ∈ E 0

x and C , λ > 0 such that
‖Dft |E s

x
‖, ‖Df−t |Eu

x
‖ ≤ Ce−λt for all t ≥ 0

The distributions Eu,s,0
x are Hölder

continuous and integrate to foliations
W u,s,0 with local product structure

Study statistical behaviour: Fix an invariant measure and study
ergodic theory of measure-preserving flow (M, ft , µ)

ft Anosov ⇒Mf = {flow-inv. Borel probability measures on M} is
enormous, so we must identify ‘distinguished’ measures

Measure of maximal entropy (MME) – maximum complexity

Sinai–Ruelle–Bowen (SRB) measure – physically relevant
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Thermodynamic formalism in uniform hyperbolicity

Goal: study uniqueness of equilibrium states

Equilibrium state (ES) for ϕ : M → R
achieves supµ

(
hµ(f1) +

∫
ϕ dµ

)
=: P(ϕ)

ϕ(x) = 0  MME

ϕgeo(x) = − log | detDf |Eu
x
|  SRB

Existence? Uniqueness? Ergodic properties?

Existence free if µ 7→ hµ(f ) upper semicts

We focus on uniqueness

Theorem (Sinai, Ruelle, Bowen 1970s)

Topologically mixing Anosov system ⇒ every Hölder ϕ : M → R
has a unique ES µϕ. For diffeos, µϕ is Bernoulli, has EDC + CLT.

Statistical properties for flows a little more subtle. . .
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Geodesic flow in negative curvature

Example: Geodesic flow, dynamics controlled by curvature

Let M be a smooth compact Riemannian manifold

v ∈ T 1M  unique unit speed geodesic γv (t) with γ̇v (0) = v

Geodesic flow ft : T 1M → T 1M takes v 7→ γ̇v (t)

Preserves smooth Liouville measure: (M-vol) × (Sd−1-vol)

dim 2: Given v ≈ w , let ρ(t) = distance between γv (t), γw (t), and
κ(t) = Gaussian curvature at γv (t); then ρ̈ ≈ −κρ (Jacobi fields)

Positive curvature
concave

Zero curvature
linear

Negative curvature
convex
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Geodesic flow in negative curvature

Negative curvature: hyperbolicity via ∂M̃ , horospheres

If M has negative curvature, then the geodesic flow ft : T 1M →
T 1M is topologically mixing and Anosov. Every Hölder poten-
tial has a unique equilibrium state (+ Bernoulli, EDC, CLT).

1. Go to universal cover M̃ 2. Get E s,u, W s,u from horospheres

F

Fc−1

Fd−1

Fc

Fd

Fa−1

Fb−1

Fa

Fb

a1

b1

a2

b2

c1

d1

c2

d2

v

Hs
v

Hu
v

∂M̃

η

∂M̃ =ideal boundary, then {geodesics on M̃} ↔ (∂M̃)2\diagonal



Negative curvature Nonpositive curvature Classical approaches. . . . . . in nonpositive curvature

Nonpositive curvature: two important examples

Now suppose M has nonpositive curvature;
some sectional curvatures may vanish, but
can never be positive.

Example 1: take surface of negative curvature,
flatten near a periodic orbit

[Picture: Ballmann, Brin, Eberlein]

Dim > 2: Other possibilities

Gromov’s example: 3-dim

Some sectional curvature = 0
at every point

No neg. curved metric
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Partition into singular (non-hyp) and regular (hyp) parts

Still have universal cover, horospheres, E s,u, ...
but now M can have singular geodesics with the
following (equivalent) properties:

1 ∃ non-trivial parallel Jacobi field

2 Horospheres have higher-order tangency

3 E s,u no longer transverse

Sing = {v ∈ T 1M : γv is singular} Reg = T 1M \ Sing

µ ∈Mf is hyperbolic (all Lyapunov exp. 6= 0) iff µ(Reg) = 1

M is rank 1 if Reg 6= ∅; then Reg is open, dense, and invariant

Example 1: Sing is a union of (possibly degenerate) flat strips

Gromov’s example: central strip + all orbits staying in one half
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Unique MME and entropy gap in nonpositive curvature

Geodesic flow in nonpositive curvature is entropy-expansive, so
every continuous ϕ has at least one ES. What about uniqueness?

Theorem (Knieper 1998)

If M has rank 1, then it has a unique MME µ. The MME µ is fully
supported and is the limiting distribution of periodic orbits.

Guarantees entropy gap htop (Sing) < htop (T 1M).

Automatic in dim 2. In higher dimensions gap can be small;
modify Gromov’s example to have arbitrarily long ‘neck’

Theorem (Babillot 2002; Ledrappier, Lima, Sarig 2016)

The Knieper measure is mixing; if dimM = 2 then it is Bernoulli.

Open question: What about decay of correlations?
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New results: unique equilibrium states and pressure gap

Theorem (Burns, C., Fisher, Thompson 2017)

Let M be rank 1, and ϕ : T 1M → R be Hölder or qϕgeo (q ∈ R).

1 If P(Sing, ϕ) < P(ϕ), then ϕ has a unique eq. state; it is fully
supported and the limit distribution of ϕ-weighted per. orbits.

2 The pressure gap holds for the following classes of potentials.

Any dim: ϕ is (almost) locally constant on nbhd of Sing
 dimM = 2, analytic metric: generic ϕ (C 0-open, C 0-dense)
dimM = 2 and ϕ = qϕgeo for any q ∈ (−∞, 1) (?)

Moreover, the unique ES in the theorem is mixing (in preparation)

Gap necessary: if P(Sing, ϕ) = P(ϕ), ∃ singular ES

(−∞, 1) optimal in (?): ∃ singular ES ∀q ≥ 1

P (qϕgeo)

q

1
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Approach I: Markov partitions, Banach spaces, eigendata

– Get ES via eigendata of linear operator –

Anosov diffeos  subshifts of finite type via Markov partitions
(Sinai 1968, Bowen 1972)

Unique MME: Parry measure via eigendata of transition matrix

SFT + Hölder ϕ quasi-compact transfer operator on Cα(Σ+)
(Ruelle’s Perron–Frobenius theorem, 1968)

Unique ES described by eigendata of transfer operator

Anosov flow  suspension flow over SFT

Gets unique ES for Hölder ϕ + strongest statistical properties
Exponential decay of correlations for geodesic flows in negative
curvature: build Banach space directly (Liverani 2004)
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Approach II: Geometric, conditional measures on W s,u
x , ∂M̃

– Get ES via conditional measures with appropriate scaling –

Anosov flows: Margulis measure (1970) is the unique MME
1 Build measures µux on W u

x such that µuftx = ehtop (ft)(Dft)∗µux
2 Similarly on W s

x , then take (local) product of µux , µsx , Leb

µ is K (uses product structure), controls growth of periodic orbits

Negative curvature: {geodesics on M̃} ↔ (∂M̃)2\diagonal

∃ Patterson–Sullivan ν ∈M(∂M̃) s.t. MME ↔ ν × ν
W u,s

x ↔ horospheres ↔ ∂M̃ gives µu,sx ↔ ν

See also Hamenstädt, Hasselblatt, Kaimanovich 1989/90

Eq. states with ϕ 6= 0: see Paulin, Pollicott, Schapira (2015)

C.–Pesin–Zelerowicz (in progress): build conditional measures µuϕ,x
using Pesin–Pitskel’ generalization of Bowen’s ‘noncpt entropy’
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Approach III: Specification property

– Get ES with bare hands via proof of variational principle –

P(ϕ) = lim
ε→0

lim
T→∞

1

T
log sup

E⊂X
(T ,ε)-sep

∑
x∈E

e
∫ T

0 ϕ(ftx) dt

Theorem (Bowen 1972, 1974)

If {ft} is an Anosov flow and µT is equidistributed on periodic
orbits of length ≤ T , then µT → unique MME as T →∞.

Uses specification property: ∀ shadowing scale ε > 0 ∃ gap
size τ > 0 s.t. ∀ list of orbit segments {(xi , ti )}ki=1 ⊂ X×[0,∞)
∃ ε-shadowing τ -connecting orbit: y ∈ X , τi ∈ [0, τ ] s.t. for
Tj =

∑j−1
i=0 ti + τi we get fTj

(y) ∈ BTj
(xj , ε) ∀1 ≤ j ≤ k .

Bt(x , ε) denotes the Bowen ball {y : d(fsy , fsx) < ε ∀0 ≤ s ≤ t}
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Expansivity + specification + regularity ⇒ uniqueness

Anosov flows are expansive: ∃ε > 0 s.t. “bi-infinite Bowen ball”
Γε(x) = {y : d(fty , ftx) ≤ ε ∀t ∈ R} contained in orbit of x .

Every Hölder potential ϕ for an Anosov flow has Bowen property:

supx ,T supy∈BT (x ,ε)

∣∣ ∫ T
0 ϕ(ftx) dt −

∫ T
0 ϕ(fty) dt

∣∣ <∞
Theorem (Bowen 1974/75, Franco 1977)

Let ft be an expansive flow on a compact metric space with the
specification property. Then every ϕ with the Bowen property
has a unique equilibrium state µϕ. Also, µϕ has Gibbs property:

∃Q > 0 s.t. Q−1 ≤ µϕ(BT (x , ε))

e−P(ϕ)T+
∫ T

0 ϕ(ftx) dt
≤ Q ∀x ,T

Get ergodicity, partial mixing; for diffeos get K (Ledrappier 1977).
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Approach I: Markov partitions and Banach spaces

Countable Markov partitions ⇒ Bernoulli. Uniqueness?

Theorem (Ledrappier, Lima, Sarig 2016)

If dimM = 2, curvature ≤ 0, ϕ : T 1M → R is Hölder or qϕgeo, and
µ is an eq. state for ϕ such that µ(Reg) = 1, then µ is Bernoulli.

Code as suspension over ctbl-state Markov shift (Lima, Sarig ’17)

Existence and uniqueness require extra information on the
shift (Gurevich, Sarig), not available from Lima–Sarig result
(but see Buzzi–Crovisier–Sarig for diffeos)

Decay of correlations requires even stronger recurrence
information (i.e. estimate on tail of Young tower)

For geodesic flows in nonpositive curvature, symbolic/Banach
space approach does not (so far) say anything about existence,
uniqueness, or correlation decay.
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Approach II: Geometric, conditional measures, ∂M̃

Unique MME from Patterson–Sullivan measure

The first uniqueness result in nonpositive curvature was. . .

Theorem (Knieper 1998)

There is a Patterson–Sullivan measure ν on the ideal boundary ∂M̃
s.t. the corresponding measure µ on T 1M is the unique MME.
Then µ is fully supported and the limit distribution of per. orbits.
As a corollary, there is an entropy gap: htop (Sing) < htop (T 1M)

Theorem (Babillot 2002)

The product structure of µ leads to the mixing property.

For geodesic flows in nonpositive curvature, geometric Patterson–
Sullivan–Knieper approach gives a unique MME but does not
(yet) say anything about equilibrium states for ϕ 6= 0.



Negative curvature Nonpositive curvature Classical approaches. . . . . . in nonpositive curvature

Approach III: Non-uniform specification

Decompositions of the space of orbit segments

ft a flow on a compact metric space X . A subset G ⊂ X × [0,∞)
represents a collection of finite-length orbit segments.

G has specification if ∀ε > 0 ∃τ s.t. every list of orbit segments
{(xi , ti )}ki=1 ⊂ G has an ε-shadowing τ -connecting orbit.

Same idea as before, but only needed for good orbit segments

Decomposition: P,G,S ⊂ X × [0,∞) and functions
p, g , s : X × [0,∞)→ [0,∞) s.t. (p + g + s)(x , t) = t
and (x , p) ∈ P, (fpx , g) ∈ G, (fp+gx , s) ∈ S.

x

fp(x)

fp+g(x)

ft(x)∈ P ∈ G

∈ S
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Approach III: Non-uniform specification

Obstructions to specification and regularity

Idea: P,S are “obstructions to
specification”; can glue if we first
remove pre-/suffixes from P,S

Need obstructions to be “small”

Pressure of obstructions to specification:

Qn = {x ∈ X : (x , t) ∈ P ∪ S for some t ∈ [n, n + 1]}
En(ε) := {E ⊂ Qn : ∀x 6= y ∈ E we have y /∈ Bn(x , ε)}
Λn(ϕ, ε) := sup{∑x∈E e

∫ n
0 ϕ(ftx) dt : E ∈ En(ε)}

P([P ∪ S], ϕ) = limε→0 limn→∞ 1
n log Λn(ϕ, ε)

Also require Bowen property for ϕ on G (not on all orbit segments)

sup
(x ,T )∈G

sup
y∈BT (x ,ε)

∣∣ ∫ T
0 ϕ(fty) dt −

∫ T
0 ϕ(ftx) dt

∣∣ <∞
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Approach III: Non-uniform specification

Small obstructions implies uniqueness

Pressure of obstructions to expansivity:

Γε(x) = {y ∈ X : d(fty , ftx) ≤ ε ∀t ∈ R}
If flow is expansive, then Γε(x) ⊂ orbit of x for all x

NE(ε) = {x ∈ X : Γε(x) 6⊂ orbit of x}
P⊥exp(ϕ) = limε→0 sup{hµ(f ) +

∫
ϕ dµ : µ(NE(ε)) = 1}

Theorem (C., Thompson 2016)

Suppose (X , ft , ϕ) has P⊥exp(ϕ) < P(ϕ) and ∃ decomp P,G,S s.t.

1 G has specification

2 ϕ has the Bowen property on G
3 P([P ∪ S], ϕ) < P(ϕ)

Then (X , ft , ϕ) has a unique equilibrium state µ. It is ergodic and
has the Gibbs property on G.
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Approach III: Non-uniform specification

Decomposition for geod flow: first attempt, curvature of M

How to produce P,G,S for geodesic flow? Start with dimM = 2.

Idea: negative curvature hyperbolicity, so “obstructions” are

P = S = B(η) := {(v ,T ) :
∫ T

0 |κ(γv (t))| dt < ηT}

where κ(x) is Gaussian curvature and η > 0 is a fixed parameter

Stripping away longest possible bad segments from ends leaves

G = {(v ,T ) :
∫ t

0 |κ(γv (s))| ds,
∫ T
T−t |κ(γv (s))| ds ≥ ηt ∀t ∈ [0,T ]}

v ft(v)

∈ P
∈ Sfp(v)

ft−s(v)

⇓
∈ G

average(|κ|) ≥ η

average(|κ|) < η

Like hyperbolic times (Alves)

What if dimM > 2? Then
curvature is a tensor.

Gromov example never has all
sectional curvatures < 0
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Approach III: Non-uniform specification

Decomposition: general solution, curvature of horospheres

Given v ∈ T 1M, let Hs(v) be stable horosphere, U s(v) its second
fundamental form, and λs(v) ≥ 0 the smallest eigenvalue of U s(v).
Similarly for λu(v) ≥ 0, and then λ = min(λs , λu).

λ : T 1M → [0,∞) is a lower bound for curvature of
horospheres, and thus bounds contraction/expansion rates

Fix η > 0 and let P = S = B be segments with average(λ) < η:

v ft(v)

∈ P
∈ Sfp(v)

ft−s(v)

⇓
∈ G

average(λ) ≥ η

average(λ) < η

B = {(v ,T ) :
∫ T

0 λ(ftv) dt < ηT}

G = {(v ,T ) :
∫ t

0 λ(fsv) ds ≥ ηt,∫ T
T−t λ(fsv) ds ≥ ηt ∀t ∈ [0,T ]}
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Approach III: Non-uniform specification

Applying the general result: Sing controls obstructions

Claim: if P(Sing, ϕ) < P(ϕ) then ∃η > 0 s.t. general result applies.

(1) G has specification

Holds ∀η > 0 by transitivity +
local prod structure on Reg

(2) Bowen property on G

Standard argument if ϕ Hölder.
**Different argument for ϕgeo.

(0) P⊥exp(ϕ) < P(ϕ)

NE(ε) ⊂ Sing, P⊥exp ≤ P(Sing)

(3) P([B(η)], ϕ) < P(ϕ)

M(B(η)) ⊂ Mη = {µ :
∫
λ ≤ η}

∴
⋂
ηM(B) ⊂ ⋂Mη =M(Sing),

so limη→0 P([B], ϕ) = P(Sing, ϕ)

Theorem (Burns, C., Fisher, Thompson 2017)

If ϕ : T 1M → R is continuous and locally constant on a
neighbourhood of Sing, then P(Sing, ϕ) < P(ϕ).
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Approach III: Non-uniform specification

Ergodic properties: Gibbs ⇒ product structure ⇒ mixing

What about mixing, K, Bernoulli, decay of correlations?

Our result only gives ergodicity and G-Gibbs

Ledrappier–Lima–Sarig gives Bernoulli if dimM = 2

No results (yet) on decay of correlations

For Anosov systems, Gibbs mea-
sures have product structure: use
Gibbs property to control Radon–
Nikodym derivative of holonomy
maps between local unstable leaves

Can generalize this to our setting and use Pesin theory to prove
that our measures µϕ have quasi-product structure given in terms
of ∂M̃ as with Patterson–Sullivan–Knieper. Then Babillot’s
machinery shows that µϕ is mixing in any dimension.



Negative curvature Nonpositive curvature Classical approaches. . . . . . in nonpositive curvature

Further directions

A couple open questions

In dim 2, get gap for qϕgeo for all q ∈ (−∞, 1), since µ(Sing) = 1
⇒ hµ(f1) =

∫
ϕgeo dµ = 0, so P(Sing, qϕgeo) = 0 < P(qϕgeo)

What about higher dimensions? May have htop (Sing) > 0. . .

If Sing = finite union of periodic orbits (e.g. analytic metric, dim 2)
then for every Hölder ϕ : T 1M → R there are ϕ1 and ϕ2 such that

1 ϕ and ϕ1 are cohomologous, (ϕ1 = 1
T

∫ T
0 ϕ ◦ ft dt)

2 ϕ1 and ϕ2 are C 0-close,

3 ϕ2 is locally constant on a nbhd of Sing.

Thus pressure gap is a C 0-dense (and open) condition.

Does the same result hold for the Gromov example?
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thank you / merci
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