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Introduction: Abstract

The talk overviews my recent results in energy market modelling,
including:
- option pricing formula for a mean-reversion asset,
- variance and volatility swaps in energy markets,
-applications of weather derivatives in energy markets,
- pricing crude oil options using Levy processes,
-energy contracts modelling with delayed and jumped volatilities.

I will also talk about
-the clean renewable energy prospective.
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A Brief Overview

•Explicit Option Pricing Formula for a Mean-Reverting
Asset in Energy Market
(J. Numer. Appl. Math., V.1(96), 2008, 216-233)

Some commodity prices, like oil and gas, exhibit the mean re-
version, unlike stock price. It means that they tend over time to
return to some long-term mean.



Mean-Reversion

We present explicit option pricing formula for a mean-reverting
asset in energy market.



A Brief Overview

•Variance and Volatility Swaps in Energy Markets
(The J. Energy Markets, V. 6, N.1, Spring 2013, 33-50)

We calculate variance and volatility swaps in energy market

Fig. 1.Hedge Fund+Dealer



Fig. 2. Scenarios: A-volatility increases and B-volatility decreases
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A Brief Overview

•Weather Derivatives in Energy Markets
(The J. Energy Markets, V.8, N.1, March 2015, 59-76)

We use future contracts written on temperature to demonstrate
the hedging strategies for commodities as an application of weather
derivatives.

Our focus will be on the dynamic hedging strategy of energy
futures using temperature futures and constructing the hedge
ratio.



A Brief Overview

•Pricing Crude Oil Options using Lévy Processes
(The J. Energy Markets, V.9, N 1, March 216, 47-64)

Crude oil prices exhibit significant volatility over time and the
distribution of returns on crude oil prices show fat tails and skew-
ness, and they barely follow normal distribution.



Normal and α-stable Tails



Normal and α-stable Densities



A Brief Overview

•Pricing Crude Oil Options using Lévy Processes
(The J. Energy Markets, V.9, N 1, March 216, 47-64)

This is the reason we use Normal Gaussian Process (NIG), Jump
Diffusion Process (JD), and Variance-Gamma Process (VG) as
three Lévy processes that do not have these drawbacks and their
tails carry heavier mass than normal distribution. Our results
indicate that all these three Levy processes have very good out
of sample results for near at the money options than others.







A Brief Overview

•Energy Market Contracts with Delayed and Jumped Volatil-
ities
(Handbook of Energy Finance: Theories, Practices and Simula-
tions, World Scientific, 2019)
In this Part we concentrate on stochastic modelling and pricing
of energy markets’ contracts for stochastic volatilities with de-
lay and jumps. Our model of stochastic volatility exhibits jumps
and also past-dependence: the behaviour of a stock price right
after a given time t not only depends on the situation at t, but
also on the whole past (history) of the process S(t) up to time t.



Figure 3: Simulated σ(t,X(t)) (Courtesy-[Otunuga and Ladde, 2014])



A Brief Overview

•Energy Market Contracts with Delayed and Jumped Volatil-
ities
(Handbook of Energy Finance: Theories, Practices and Simula-
tions, World Scientific, 2019)

The basic products in these markets are spot, futures and forward
contracts and options written on these. We study forwards and
swaps. A numerical examples is presented for stochastic volatility
with delay using the Henry Hub daily natural gas data (1997-
20011).



A Brief Overview

•A Vision to Transition to 100% Wind, Water & Solar
Energy in Canada

A group of U.S. civil engineering has calculated that Canada
could be completely powered by renewable energy, if we just de-
cide to do it.

They say that would save $110.1 billion on health care costs ev-
ery year and prevent 9,884 annual air pollution deaths.

Their research is available at thesolutionsproject.org.
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Explicit Option Pricing Formula for a Mean-Reverting
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(J. Numer. Appl. Math., V.1(96), 2008, 216-233)



Explicit Option Pricing Formula for a Mean-Reverting As-
set in Energy Market
(J. Numer. Appl. Math., V.1(96), 2008, 216-233)

Some commodity prices, like oil and gas, exhibit the mean re-
version, unlike stock price. It means that they tend over time to
return to some long-term mean. In this talk we consider a risky
asset St following the mean-reverting stochastic process given by
the following stochastic differential equation

dSt = a(L− St)dt+ σStdWt,

where W is a standard Wiener process, σ > 0 is the volatility,
the constant L is called the ’long-term mean’ of the process, to
which it reverts over time, and a > 0 measures the ’strength’ of
mean reversion.



Explicit Option Pricing Formula for a Mean-Reverting As-
set in Energy Market
(J. Numer. Appl. Math., V.1(96), 2008, 216-233)

This mean-reverting model is a one-factor version of the two-
factor model made popular in the context of energy modelling
by Pilipovic (1997). We call it continuous-time GARCH or
inhomogeneous geometric Brownian motion model.

Using a change of time method we find an explicit solution of
this equation and using this solution we are able to find the
variance and volatility swaps pricing formula under the physical
measure. Then, using the same argument, we find the option
pricing formula under risk-neutral measure.



Explicit Option Pricing Formula for a Mean-Reverting As-
set in Energy Market
( J. Numer. Appl. Math., V.1(96), 2008, 216-233)

Black’s model (1976) and Schwartz’s model (1997) have be-
come a standard approach to the problem of pricing options on
commodities. These models have the advantage of mathemat-
ical convenience, in that they give rise to closed-form solutions
for some types of options (See Wilmott (2000)).



Explicit Option Pricing Formula for a Mean-Reverting As-
set in Energy Market
(J. Numer. Appl. Math., V.1(96), 2008, 216-233)

CT = e−(r+a)TS(0)N(y+)− e−rTKN(y−)

+ Le−(r+a)T [(eaT − 1)−
∫ y0
0 zFT (dz)],

where

y+ := σ
√
T − y0 and y− := −y0,

N(x) =
1√
2π

∫ x
−∞

e−
y2

2 dy.



Explicit Option Pricing Formula for a Mean-Reverting As-
set in Energy Market
( J. Numer. Appl. Math., V.1(96), 2008, 216-233)

y0 =
ln( K

S(0)) + (σ
2

2 + a)T

σ
√
T

−
ln(1 + aL

S(0)

∫ T
0 ease−σy0

√
s+σ2s

2 ds)

σ
√
T

and FT (dz) is the distribution function of

η(T ) =
4ae−aT

σ2
e
−2B

σ2T
4

∫ σ2T/4

0
e2((2a/σ2+1)+Ws)ds

(Can be estimated and calculated by M. Yor’s (1992) result: On
some exponential functions of Brownian motion, Advances in
Applied Probability, Vol. 24, No. 3, 509-531).



Explicit Option Pricing Formula for a Mean-Reverting
Risk-Neutral Asset in Energy Market
(J. Numer. Appl. Math., V.1(96), 2008, 216-233)

C∗T = e−(r+a∗)TS(0)N(y+)− e−rTKN(y−)

+ L∗e−(r+a∗)T [(ea
∗T − 1)−

∫ y0
0 zF ∗T (dz)],

where

y+ := σ
√
T − y0 and y− := −y0,

a∗ := a+ λσ, L∗ :=
aL

a+ λσ
,



Explicit Option Pricing Formula for a Mean-Reverting
Risk-Neutral Asset in Energy Market
(J. Numer. Appl. Math., V.1(96), 2008, 216-233)

y0 is the solution of the following equation

y0 =
ln( K

S(0)) + (σ
2

2 + a∗)T

σ
√
T

−
ln(1 + a∗L∗

S(0)

∫ T
0 ea

∗se−σy0
√
s+σ2s

2 ds)

σ
√
T

,

and F ∗T (dz) is the probability distribution FT (dz) as above, but
instead of a we have to take a∗ = a+ λσ, λ is a market price of
risk.

Remark: When L∗ = 0 and a∗ = −r, then the explicit option
pricing formula is the well-known Black-Scholes formula!



Explicit Option Pricing Formula for a Mean-Reverting
Risk-Neutral Asset in Energy Market
(J. Numer. Appl. Math., V.1(96), 2008, 216-233)

Numerical Example: AECO Natural GAS Index (1 May 1998-30
April 1999)
We shall calculate the value of a European call option on the
price of a daily natural gas contract. To apply our formula
for calculating this value we need to calibrate the parameters
a, L, σ and λ. These parameters may be obtained from fu-
tures prices for the AECO Natural Gas Index for the period 1
May 1998 to 30 April 1999 (see Bos, Ware and Pavlov (2002),
p.340). The parameters pertaining to the option are the follow-
ing:



Explicit Option Pricing Formula for a Mean-Reverting
Risk-Neutral Asset in Energy Market

(J. Numer. Appl. Math., V.1(96), 2008, 216-233)

Price and Option Process Parameters
T a σ L λ r K
6
months

4.6488 1.5116 2.7264 0.1885 0.05 3

From this table we can calculate the values for a∗ and L∗ :

a∗ = a+ λσ = 4.9337,

and

L∗ =
aL

a+ λσ
= 2.5690.

For the value of S0 we can take S0 ∈ [1,6].



Fig. 1. Dependence of ESt on

T (AECO Natural Gas Index

(1 May 1998-30 April 1999))

Fig. 2. Dependence of ESt on

S0 and T (AECO Natural Gas

Index (1 May 1998-30 April

1999))



Fig. 3. Dependence of

variance of St on S0 and T

(AECO Natural Gas Index (1

May 1998-30 April 1999))

Fig. 4. Dependence of European Call

Option Price on Maturity (months)

(S(0) = 1 and K = 3) (AECO

Natural Gas Index (1 May 1998-30

April 1999))



PART II
Variance and Volatility Swaps in Energy Markets

(The J. Energy Markets, V. 6, N.1, Spring 2013, 33-50)



Variance and Volatility Swaps in Energy Markets
(The J. Energy Markets, V. 6, N.1, Spring 2013, 33-50)

Variance swaps are quite common in commodity, e.g., in energy
market, and they are commonly traded. We consider Ornstein-
Uhlenbeck process for commodity asset with stochastic volatil-
ity following continuous-time GARCH model or Pilipovic (1998)
one-factor model. The classical stochastic process for the spot
dynamics of commodity prices is given by the Schwartz’ model
(1997). It is defined as the exponential of an Ornstein-Uhlenbeck
(OU) process, and has become the standard model for energy
prices possessing mean-reverting features.



Variance and Volatility Swaps in Energy Markets
(The J. Energy Markets, V. 6, N.1, Spring 2013, 33-50)

Our focus on energy commodities derives from two reasons:

1) energy is the most important commodity sector, and crude
oil and natural gas constitute the largest components of the two
most widely tracked commodity indices: the Standard & Poors
Goldman Sachs Commodity Index ( S & P GSCI) and the Dow
Jones-AIG Commodity Index ( DJ-AIGCI);

2) existence of a liquid options market: crude oil and natural
gas indeed have the deepest and most liquid options marketss
among all commodities.

The idea is to use variance (or volatility) swaps on futures con-
tracts.



Variance and Volatility Swaps in Energy Markets
(The J. Energy Markets, V. 6, N.1, Spring 2013, 33-50)

At maturity, a variance swap pays off the difference between
the realized variance of the futures contract over the life of the
swap and the fixed variance swap rate. And since a variance
swap has zero net market value at initiation, absence of arbi-
trage implies that the fixed variance swap rate equals to condi-
tional risk-neutral expectation of the realized variance over the
life of swap. Therefore, e.g., the time-series average of the pay-
off and/or excess return on a variance swap is a measure of the
variance risk premium. Variance risk premia in energy commodi-
ties, crude oil and natural gas, has been considered by A. Trolle
and E. Schwartz (2009). The same methodology as in Trolle &
Schwartz (2009) was used by Carr & Wu (2009) in their study
of equity variance risk premia.



Variance and Volatility Swaps in Energy Markets
(The J. Energy Markets, V. 6, N.1, Spring 2013, 33-50)

The S & P GSCI is comprised of 24 commoditieswith the weight
of each commodity determined by their relative levels of world
production over the past five years. The DJ-AIGCI is comprised
of 19 commodities with the weight of each component deter-
mined by liquidity and world production values, with liquidity
being the dominant factor. Crude oil and natural gas are the
largest components in both indices. In 2007, their weight were
51.30% and 6.71%, respectively, in the S & P GSCI and 13.88%
and 11.03%, respectively, in the DJ-AIGCI.



Variance and Volatility Swaps in Energy Markets
(The J. Energy Markets, V. 6, N.1, Spring 2013, 33-50)

The Chicago Board Options Exchange (CBOE) recently intro-
duced a Crude Oil Volatility Index (ticker symbol OVX). This
index also measures the conditional risk-neutral expectation of
crude oil variance, but is computed from a cross-section of listed
options on the United States Oil Fund (USO), which tracks the
price of WTI as closely as possible.



Variance and Volatility Swaps in Energy Markets
(The J. Energy Markets, V. 6, N.1, Spring 2013, 33-50)

The CBOE Crude Oil ETF Volatility Index (Oil VIX, Ticker
- OVX) measures the market’s expectation of 30-day volatility
of crude oil prices by applying the VIX methodology to United
States Oil Fund, LP (Ticker - USO) options spanning a wide
range of strike prices (see Figures below. Courtesy-CBOE:
http://www.cboe.com/micro/oilvix/introduction.aspx).
We have to notice that crude oil and natural gas trade in units
of 1,000 barrels and 10,000 British thermal units (mmBtu), re-
spectively. Usually, prices are quoted as US dollars and cents per
barrel or mmBtu.



Variance and Volatility Swaps in Energy Markets
(The J. Energy Markets, V. 6, N.1, Spring 2013, 33-50)

In this talk, we consider a risky asset in energy market with
stochastic variance following a mean-reverting stochastic pro-
cess satisfying the following SDE ( continuous-time GARCH(1,1)
model):

dσ2(t) = a(L− σ2(t))dt+ γσ2(t)dWt,

where a is a speed of mean reversion, L is the mean reverting
level (or equilibrium level), γ is the volatility of volatility σ(t), Wt

is a standard Wiener process.



Variance and Volatility Swaps in Energy Markets
(The J. Energy Markets, V. 6, N.1, Spring 2013, 33-50)

Using a change of time method we find an explicit solution of this
equation, and using this solution we are able to find the variance
and volatility swaps pricing formula under the physical measure.
Then, using the same argument, we find the option pricing for-
mula under risk-neutral measure. We applied Brockhaus-Long
(2000) approximation to find the value of volatility swap. A nu-
merical example for the AECO Natural Gas Index for the period
1 May 1998 to 30 April 1999 is presented.



Variance and Volatility Swaps in Energy Markets
(The J. Energy Markets, V. 6, N.1, Spring 2013, 33-50)
How Does the Volatility/Variance Swap Work

Fig. 1.Hedge Fund+Dealer



Variance and Volatility Swaps in Energy Markets
(The J. Energy Markets, V. 6, N.1, Spring 2013, 33-50)
How Does the Volatility/Variance Swap Work
Possible Scenarios



Fig. 2. Scenarios: A-volatility increases and B-volatility decreases



Variance and Volatility Swaps in Energy Markets
(The J. Energy Markets, V. 6, N.1, Spring 2013, 33-50)
Risk-neutral Stochastic Volatility Model (SVM)

dσ2(t) = a∗(L∗ − σ2(t))dt+ γσ2(t)dW ∗t ,

where

a∗ := a+ λγ, L∗ :=
aL

a+ λγ
,

W ∗t := Wt + λt, and λ is the market price of risk.



Variance and Volatility Swaps in Energy Markets
(The J. Energy Markets, V. 6, N.1, Spring 2013, 33-50)
Variance and Volatility Swaps for Risk-Neutral SVM

For the variance swap we have:

E∗σ2
R := EV :=

1

T

∫ T
0
Eσ2(t)dt =

(σ2(0)− L∗)
a∗T

(1− e−a
∗T ) + L∗.

For the volatility swap we obtain:

E∗
√
V ≈

√
E∗V − V ar∗(V )

8(E∗V )3/2.



Variance and Volatility Swaps in Energy Markets:
Numerical Example
(The J. Energy Markets, V. 6, N.1, Spring 2013, 33-50)

Parameters
a γ L λ
4.6488 1.5116 2.7264 0.18



Variance and Volatility Swaps in Energy Markets:
Numerical Example
(The J. Energy Markets, V. 6, N.1, Spring 2013, 33-50)

From this table we can calculate the values for risk adjusted
parameters a∗ and L∗ :

a∗ = a+ λγ = 4.9337,

and

L∗ =
aL

a+ λγ
= 2.5690.

For the value of σ2(0) we can take σ2(0) = 2.25.

For variance swap and for volatility swap with risk adjusted pa-
rameters we use formula obtained above.



Variance and Volatility Swaps in Energy Markets: Figures
(The J. Energy Markets, V. 6, N.1, Spring 2013, 33-50)

Fig. 1: Variance Swap Fig. 2: Volatility Swap



Variance and Volatility Swaps in Energy Markets: Figures
(The J. Energy Markets, V. 6, N.1, Spring 2013, 33-50)

Fig. 3: Variance Swap (Risk

Adjusted Parameters)

Fig. 4: Volatility Swap (Risk

Adjusted Parameters)



Variance and Volatility Swaps in Energy Markets: Figures
(The J. Energy Markets, V. 6, N.1, Spring 2013, 33-50)

Fig. 5: Comparison: Adjusted

and Non-Adjusted Price

Fig. 6: Convexity Adjustment



PART III
Weather Derivatives in Energy Markets

(The J. Energy Markets, V.8, N.1, March 2015, 59-76)



Weather Derivatives in Energy Markets
(The J. Energy Markets, V.8, N.1, March 2015, 59-76)

The weather derivatives market, in which contracts written on
weather indices was firstly appeared over-the-counter (OTC) in
July 1996 between Aquila Energy and Consolidated Edison Co.
from United States. After that, companies accustomed to trad-
ing weather contracts based on electricity and gas prices in order
to hedge their price risks realized by weather during the end of
1990s and the beginning of 2000s. Consequently, the market
grew rapidly and expanded to other industries and to Europe
and Japan.



Weather Derivatives in Energy Markets
(The J. Energy Markets, V.8, N.1, March 2015, 59-76)

Reported fromWeather Risk Management Association (WRMA),
an industry body that represents the weather market, recently,
the total notional value of the global weather risk market has
reached $11.8 billion in last year. With geographic expansion,
the OTC market boosted nearly 30% in last year. In this arti-
cle, we will concentrate on the market of temperature deriva-
tives found at the Chicago Mercantile Exchange (CME), which
is one of the largest weather derivatives trading platforms. Up
to now, the CME has weather futures and options traded based
on a range of weather indices for 47 cities from United States,
Canada, Europe, Australia and Asia.



Weather Derivatives in Energy Markets
(The J. Energy Markets, V.8, N.1, March 2015, 59-76)

As a common sense, weather affects different entities in different
ways. In order to hedge these different types of risks, weather
derivatives are written on different types of weather variables or
weather indices. The most commonly used weather variable is
the temperature. Widely used temperature indices include cumu-
lative average temperature (CAT), heating degree days (HDD)
and cooling degree days (CDD). They are originated from the
energy industry, and designed to correlate well with the local
demands for heating or cooling.



Weather Derivatives in Energy Markets
(The J. Energy Markets, V.8, N.1, March 2015, 59-76)

CAT is defined as the sum of the daily average temperature over
the period [τ1, τ2] of the contract, the index CAT:=

∑τ2
t=τ1

T (t) =∫ τ2
τ1
T (t)dt, where T (t) is the daily average temperature. It is

mainly used in Europe and Canada. In winter, HDD are used to
measure the demand for heating, i.e. they are a measure of how
cold the weather is and usually used in United States, Europe,
Canada and Australia. In contrast, CDD are used in summer to
measure the demand of energy used for cooling and a measure of
how hot the weather is. They are usually used in United States,
Canada and Australia.



Weather Derivatives in Energy Markets
(The J. Energy Markets, V.8, N.1, March 2015, 59-76)

The definitions for HDD and CDD are given by HDD:=max(T (t)−
c,0) and CDD:=max(c − T (t),0), where the constant c denotes
the threshold, say 65◦F (18◦C). Since most air conditioners are
switched on when temperatures are above or below c.



Weather Derivatives in Energy Markets
(The J. Energy Markets, V.8, N.1, March 2015, 59-76)

With respect to our model, consider the weather index T (t),

which is the daily average temperature (DAT). We suppose the
DAT has a generalization of the Ornstein-Uhlenbeck dynamics

dT (t) = ds(t) + k(T (t)− s(t))dt+ σ(t)dL(t),

where L(t) is a Lévy process (jump-diffusion), s(t) is the seasonal
mean level and k is the speed in which the temperature reverts to
s(t). σ(t) is assumed to be a measurable and bounded function
represents the seasonal volatility of temperature.

In the simplest case, L(t) = W (t)-a standard Wiener process.



Weather Derivatives in Energy Markets
(The J. Energy Markets, V.8, N.1, March 2015, 59-76)

This model was firstly introduced by Dornier and Queruel (2000)
with Brownian motion as the random noise. Benth and Saltyte-
Benth (2005) has successfully applied this model with generalized
hyperbolic Lévy process to the Norwegian temperature data. We
applied this model to our Canadian temperature data (Swishchuk
& Cui (2013)).



Weather Derivatives in Energy Markets
(The J. Energy Markets, V.8, N.1, March 2015, 59-76)

We define the temperature futures prices written on CAT, CDD
and HDD, which constitute the three main classes of futures
products at CME market. Consider the price dynamic of future
written on CAT over specific time period [τ1, τ2], with τ1 < τ2.

Firstly, assume the daily average temperature follows stochastic
differential equation with L(t) being Lévy process and a constant
continuously compounding interest rate r.



Weather Derivatives in Energy Markets
(The J. Energy Markets, V.8, N.1, March 2015, 59-76)

The future price FCAT (t, τ1, τ2) at time 0 ≤ t ≤ τ1 based on CAT
under risk-neutral probability measure Q is:

FCAT (t, τ1, τ2) = EQ[
∫ τ2

τ1

T (s)ds|Ft],

where Q is the risk-neutral measure (specified through Esscher
transform) and Ft is σ-algebra generated by L(t).



Weather Derivatives in Energy Markets
(The J. Energy Markets, V.8, N.1, March 2015, 59-76)

Similarly, the risk-neutral CDD and HDD future prices are defined
as:

FCDD(t, τ1, τ2) = EQ[
∫ τ2

τ1

max(T (s)− c,0)ds|Ft],

and

FHDD(t, τ1, τ2) = EQ[
∫ τ2

τ1

max(c− T (t),0)ds|Ft],

The relationship between futures prices of CAT, CDD and HDD
is defined as

FCAT (t, τ1, τ2) + FHDD(t, τ1, τ2) = c(τ2 − τ1)− FCDD(t, τ1, τ2).



newpage Weather Derivatives in Energy Markets
(The J. Energy Markets, V.8, N.1, March 2015, 59-76)

We use future contracts written on temperature to demonstrate
the hedging strategies for commodities as an application of weather
derivative.

Within several forms of weather derivatives, the future contract
does not require cost to enter a position, since when entering a
future contract, the probability of weather event being lower or
higher than the threshold is the same to both side, either side
has the same chance of receiving payoff from the counter party.



Weather Derivatives in Energy Markets
(The J. Energy Markets, V.8, N.1, March 2015, 59-76)

There are two types of hedging strategies using temperature fu-
tures in the following contents. The first strategy is a static
hedging mainly focusing on mitigating the volume risk of com-
modity sales using temperature futures.

The other strategy consider the dynamic hedging strategy of
commodity future using temperature futures. Without loss of
generality, we choose the energy market as the one to hedge
using temperature futures.



Weather Derivatives in Energy Markets
(The J. Energy Markets, V.8, N.1, March 2015, 59-76)

a) In a static hedge, the number of hedging contracts is not
changed over the course of the hedge in response to any move-
ment in the values of the hedging instrument or the hedged
asset.

b) In a dynamic hedge, on the other hand, more hedging con-
tracts are bought or sold to bring back the hedge ratio to the
target hedge ratio.

A hedge ratio is the ratio of exposure to a hedging instrument
to the value of the hedged asset. A ratio of 1 or 100% means
that the position is fully hedged and a ratio of 0 means it is not
hedged at all.



Weather Derivatives in Energy Markets
(The J. Energy Markets, V.8, N.1, March 2015, 59-76)

Our focus will be on the dynamic hedging strategy of energy
futures using temperature futures. In the spirit of Broadie and
Jain (2008), consider a portfolio at time t containing one unit of
energy (e.g. heating oil) future FE and βt (βt is the hedge ratio
for energy future FE) units of weather futures FW , both with
maturity (delivery) at time T. Assume the portfolio has value
Π(t) at time t, a constant risk-free interest rate r, then

Π(t) = e−r(T−t)[FE(t) + βtFW (t)]. (1)



Weather Derivatives in Energy Markets
(The J. Energy Markets, V.8, N.1, March 2015, 59-76)

The portfolio is self-financing, so the change in this portfolio in
a small amount of time dt is given by

dΠ(t) = rΠ(t)dt+ e−r(T−t)[dFE(t) + βtdFW (t)]. (2)

Hence, in order to dynamically hedge the energy future FE with
maturity T , the stochastic component of portfolio vanishes, the
hedge ratio βt could be defined as

βt = −
dFE(t)

dFW (t)
, (3)

with an assumption that dFW (t) 6= 0. Therefore, from the last
equation, to hedge an energy futures, we are required to hold βt
units of temperature future at time t.



Weather Derivatives in Energy Markets
(The J. Energy Markets, V.8, N.1, March 2015, 59-76)

Therefore, we need to specify two models for energy and tem-
perature futures so that we could get the explicit dynamics of
energy and temperature futures, and hence get a closed form of
the hedge ratio βt. For futures pricing purpose, these models
will be built on the underlings of futures, namely the energy spot
price and the daily average temperature.
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Rermark: Note that another this type of hedging ratio is called
the optimal hedge ratio (see for example Hatemi-J and Roca
(2006) and Yeh, Huang and Hsu (2008)), which takes the form:

βt = −
Cov(dFE(t), dFW (t))

Var(dFW (t))
, (4)

where Cov is the covariance and Var is the variance. If we are
clear about the dynamics of the energy and temperature futures,
it is also possible to apply this dynamic hedging strategy.
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Our energy and temperature models under risk-neutral measure
Q are:

dX(t) =

(
θσE + κE

(
µ−

σ2
E

2κE
−X(t)

))
dt+ σEdW

θ
E(t),

and

dT (t) = ds(t) + (θσW (t) + κW (T (t)− s(t)))dt+ σW (t)dW θ
T (t),

where θ is the market price of risk, X(t) = lnS(t), W θ
E(t) and

W θ
T (t) are Brownian motions (with correlation ρ) w.r.t. Q.
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Combined Q dynamics system for energy futures FE and CAT
futures FW is

dFE(t, T ) = σEe
−κE(T−t) exp

(
µX(T ) + 1

2σ
2
X(T )

)
dW θ

E(t);

dFW (t, τ1, τ2) = κ−1
W (eκW (τ2−t) − eκW (τ1−t))σW (t)dW θ

W (t);

dW θ
E(t)dW θ

W (t) = ρdt,

where µX(T ) and σ2
X(T ) are expectation and variance of the

log-spot price X(t).
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βt = −
c1(t)

c2(t)
ρ,

where c1(t) and c2(t) are time-dependent constant defined as:


c1(t) := σEe

−κE(T−t) exp
(
µX(T ) + 1

2σ
2
X(T )

)
;

c2(t) := κ−1
W (eκW (τ2−t) − eκW (τ1−t))σW (t).
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We choose the crude oil (crude oil is the world’s most actively
traded commodity, and the NYMEX (CME) division light, sweet
crude oil futures contract is the world’s most liquid forum for
crude oil trading) futures as the the one that we want to hedge
using CAT futures. Followed by the calibration method described
in Schwarz (1997), the log-future prices lnFE(t, T ) need to be
rewritten as the standard state-space form and then applied to
Kalman filter to get the parameter set ΘE = {κE, µE, σE, θE} and
spot price series S(t).
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The data used to calibrate the energy future consist of daily
generic observations of WTI light, sweet crude oil futures prices
(these data are obtained from Bloomberg financial service) with
delivery periods in the first two front months. The WTI crude
oil futures data used in calibration cover the CME exchange daily
settlement prices ranging from January 2nd, 2001 to December
31st, 2010, resulting in 2508 record for each future contracts set
(this choice of data set is consistent with that in Swishchuk and
Cui (2013), which is 10 years of temperature data from January
1st, 2001 to December 31st, 2010 in Calgary, AB, Canada).
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Since there is no exact delivery date for each contract, instead,
the CME contract specification defines a delivery period ranging
from the first calendar day to the last calendar day of the delivery
month, we simply assume that the delivery date for each contract
is the first calendar day in the delivery month to calculate the
time to maturity value Ti − t.
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Table below presents the estimation results for the energy model
applied to the WTI crude oil future price data. The last two
parameters ξ1 and ξ2 are the diagonal entries of matrix H :=

V ar(εt) with random noise εt.

Parameter µ σE κE θ ξ1 ξ2
Estimation 3.9187 0.0215 0.0025 0.2009 0.0003 0.0123
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For the temperature market, we follow the calibration procedure
described in Swishchuk and Cui (2013) to get the parameter set
ΘW = {κW , σW}. For illustration purpose, we choose the esti-
mated parameters in Calgary as the ones under the temperature
market to calculate the hedge ratio. Recall the calibration re-
sults for Calgary in Swishchuk and Cui (2013), we could get the
parameter set ΘW = {κW , σW} in Calgary as follows:
κW = −0.2411

and annual seasonal volatility
σW = 4.424 + 1.633 cos(0.0167t) + 0.1912 sin(0.0167t).
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To calculate the correlation parameter ρ, we use the correlation
between the filtered log-spot price and daily average temperature
as a natural approximation to ρ. By taking all the daily average
temperature on the dates with future prices available, and cal-
culating the correlation coefficient between log-spot prices and
average temperature of these days over 10 years (from January
2nd, 2001 to December 31st, 2010), we have the correlation
ρ = 0.1058. This correlation indicates a positive correlation
between the log-spot price of crude oil and daily average tem-
perature.
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With the calibrated parameters in energy model and tempera-
ture model, we could then calculate the dynamic hedge ratio βt
explicitly. In the Figure below, we plot the initial hedge ratio
β0 along the crude oil future delivery time (in days) and initial
log-spot price dimensions.
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From this Figure, we could find that if one hold a crude oil
futures, initially he need to short some CAT futures in the port-
folio depending on the spot price of the crude oil and the time
to delivery (trade termination) length. Basically the number of
temperature futures one need to hold will be more with longer
time to delivery and higher spot price of the crude oil. Moreover,
we could conclude that the same effect holds for other energy
commodities, such as heating oil, gas and so on, since they are
usually positively correlated to the crude oil market movement.
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Pricing Crude Oil Options using Lévy Processes
(The J. Energy Markets, V.9, N 1, March 2016, 47-64)

Crude oil prices exhibit significant volatility over time and the
distribution of returns on crude oil prices show fat tails and
skewness, and they barely follow normal distribution. This is
the reason we use Normal Gaussian Process (NIG), Jump Diffu-
sion Process (JD), and Variance-Gamma Process (VG) as three
Levy processes that do not have these drawbacks and their tails
carry heavier mass than normal distribution. We use fractional
fast Fourier transform to calibrate parameters in an optimization
setup, using data on European-style options on crude oil futures
in NYMEX for the settlement date of April 24th, 2015. Our re-
sults indicate that all these three Levy processes have very good
out of sample results for near at the money options than others.
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Merton’s (1976) Jump Diffusion Model:

dSt

St
= µdt+ σdWt + (eα+βε − 1)dNt,

where Brownian motion Wt and Poisson process Nt are indepen-
dent, ε ≈ N(0,1).
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Normal Inverse Gaussian (NIG) Model:

St = S0 exp{µQt+Xt},

where µQ is the drift under Q measure,

Xt = βδ2It + δWIt

is a NIG process, It is the inverse Gaussian process. NIG process
has three parameters, tail-heaviness α, skewness β and scale δ.
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Variance Gamma (VG) Model:

St = S0 exp{µQt+Xt},

where Xt is a VG process such that

Xt = θIt + σWIt,

and It is a gamma process with parameter v.
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The volatility of crude oil prices is very important for policy mak-
ers, crude oil producers and refineries. We used most recent data
through April 2016 from crude oil futures and options markets
to model dynamics of crude oil prices. Our results indicate that
crude oil prices show significant jumps that are very frequent.
Crude oil price returns show skew as well. These findings are
consistent across all three models we used in this research.
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In the case of JDM, the volatility of size of the jumps is bigger
than volatility of the diffusion part. The VG process results
in slightly smaller volatility than JDM. The mean of the jump
component size implied by JDM, and skew parameter of VG
process both indicate existence of right-skew in crude oil price
returns, but the NIG process implies that the density of returns
are skewed to the left.
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Energy Market Contracts with Delayed and Jumped Volatil-
ities
(Handbook of Energy Finance: Theories, Practices and Simula-
tions, 2019)

In this Part we concentrate on stochastic modelling and pricing
of energy markets’ contracts for stochastic volatilities with de-
lay and jumps. Our model of stochastic volatility exhibits jumps
and also past-dependence: the behaviour of a stock price right
after a given time t not only depends on the situation at t, but
also on the whole past (history) of the process S(t) up to time
t. The spot price process S(t) is modelled by the OU process
driven by independent increments process. The basic products
in these markets are spot, futures and forward contracts and
options written on these. We study forwards and swaps. A nu-
merical examples is presented for stochastic volatility with delay
using the Henry Hub daily natural gas data (1997-20011).
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(Handbook of Energy Finance: Theories, Practices and Simula-
tions, 2019)

Definition of IIP (see [Skorokhod, 1991], [Benth et al.,
2008]): An adapted RCLL stochastic process I(t) starting at
zero is an IIP ( Independent Increment process) if it satisfies the
following two conditions:

1) The increments I(t0), I(t1)− I(t0), ..., I(tn)− I(tn−1) are inde-
pendent r.v. for any partition 0 ≤ t0 < t1 < ... < tn, and n ≥ 1.

2) It is continuous in probability, that is, for every t ≥ 0 and
ε > 0, it

lim
s→t

P (|I(s)− I(t)| > ε) = 0.
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If we add the condition that increments are stationary, then I(t)

is called a Lévy process. (See [Sato, 1999], [Schoutens, 2003]).
If the increments of Lévy process are normally distributed then we
have a Brownian motion. Lévy processes which are increasing,
that is, having only positive jumps, are often called subordinators.

Sometimes the IIP are called additive processes. (See [Sato,
1999]).
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Let the stochastic process S(t) be denoted as (er call it Geo-
metric Models with Stochastic Delayed and Jumped Volatility):

lnS(t) = ln Λ(t) +
m∑
i=1

Xi(t) +
n∑

j=1

Yj(t),

where for i = 1, ...,m

dXi(t) = (µi(t)− αi(t)Xi(t))dt+ σi(t,Xi(t+ θ))dB(t),

and for j = 1, ..., n

dYj(t) = (δj(t)− βj(t)Yj(t))dt+ ηj(t, Yj(t+ θ))dIj(t).
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Here, θ ∈ [−τ,0], τ > 0, is the delay, and on the interval [−τ,0],

Xi(t) = φi(t) and Yj(t) = ψj(t), where φi(t) and ψj(t) are deter-
ministic functions, i = 1, ...,m and j = 1, ..., n.

We remark that two factors Xi(t), i = 1, ...,m, and Yj(t), j =

1, ..., n, represent the long- and short-term fluctuations of the
spot dynamics which may be correlated. We suppose that jumps
components Ij are independent, which is an obvious restriction
of generality.
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The deterministic seasonal price level is modelled by the function
Λ(t), ( seasonal function) which is assumed to be continuously
differentiable.

The coefficients µi, αi, δjβj are all continuous functions. We sup-
pose that volatilities σik(t) and ηj(t) are stochastic volatilities
with delay and jumps.



Energy Market Contracts with Delayed and Jumped Volatil-
ities
(Handbook of Energy Finance: Theories, Practices and Simula-
tions, 2019)

We consider two cases in this situation:

dσ2
i (t,Xi(t+θ))

dt = γ1
i Vi + α

τ [
∫ t
t−τ σi(u,Xi(u+ θ)dB(u)

+
∫ t
t−τ σi(u,Xi(u+ θ)dÑ1(t)]2

− (ai + bi)σ
2
i (t,Xi(t+ θ))

and
dη2
j (t,Yj(t+θ))

dt = γ2
jWi + α

τ [
∫ t
t−τ ηj(u,Xj(u+ θ)dB1(u)

+
∫ t
t−τ σi(u,Xi(u+ θ)dÑ2(t)]2

− (cj + dj)η
2
j (t,Xi(t+ θ)
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Here, B(t) and B1(t) are two independent Brownian motions
and Ñ1(t) and Ñ2(t) are two independent compensated Poisson
processes with intensities λ1 and λ2, independent of B(t) and
B1(t).

We note, that in [Benth et al., (2008)] it was considered only
deterministic σi(t) and ηj(t).
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Let the stochastic process S(t) be defined as (we call it Arith-
metic Models with Stochastic Delayed and Jumped Volatility)

S(t) = Λ(t) +
m∑
i=1

Xi(t) +
n∑

j=1

Yj(t),

where Xi(t), i = 1, ...,m, and Yj(t), j = 1, ..., n, are defined for
the geometric models above and the seasonality function Λ(t) is
the same.
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tions, 2019)

We suppose that for this model the volatilities σ2
i (t,Xi(t + θ))

and η2
j (t, Yj(t + θ)) satisfied the same equations as for the case

of Geometric Models.

We study the pricing of forwards and swaps for the above-
mentioned model with delayed and jumped volatilities.
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When entering the forward contract, one agrees on a future
delivery time and the price to be paid for receiving the underlying.
Suppose that the delivery time is T, with 0 ≤ t ≤ T < +∞, and
that the agreed price to pay upon delivery is f(t, T ) :

f(t, T ) = EQ[S(T )|Ft]−

fundamental pricing relation between the spot and forward price.
Since the energy markets are incomplete, the choice of martin-
gale measure Q is open.
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(Handbook of Energy Finance: Theories, Practices and Simula-
tions, 2019)

Let us consider swaps, using the electricity market as the typical
example. The buyer of an electricity futures receives power dur-
ing a settlement period (physically or financially), against paying
a fixed price per MWh. Let F (t, τ1, τ2) be the electricity futures
price at time t for the delivery period [τ1, τ2] with τ1 ≤ τ2.

In general, we can write the link between a swap contract and
the underlying spot as

F (t, τ1, τ2) = EQ[
∫ τ2

τ1

w(u, τ1, τ2)S(u)du|Ft],

where w is a weight function.
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The dynamics of forward price, t → f(t, T ), wrt Qθ in the Geo-
metric Model case is
df(t,T )
f(t,T ) = {

∑m
i=1 σi(t,Xi(t+ θ)) exp(−

∫ T
t αi(u)du)}dBθ(t)

+
∑n
j=1{

∫
R exp(zηj(t, Yj(t+ θ))e−

∫ τ
t βj(u)du)− 1}Ñθ

j (dt, dz).
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The risk-neutral dynamics of the swap price F (t, τ1, τ2) in the
Geometric Models case is given by

dF (t,τ1,τ2)
F (t−,τ1,τ2) =

∑m
i=1 σi(t,Xi(t+ θ))dBθ(t)

+
∑n
j=1

∫
R(eηj(t,Yj(t+θ))z − 1)Ñθ

j (dz, dt).
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The risk-neutral dynamics of the swap price F (t, τ1, τ2) in the
Arithmetic Models case is given by

dF (t, τ1, τ2) =
∑m
i=1 σi(t,Xi(t+ θ))

∫ τ2
τ1)w(u, τ1, τ2)e−

∫ u
v αi(s)dsdudBθ(t)

+
∑n
j=1

∫
R zηj(t, Yj(t+ θ))

×
∫ τ2
τ1
w(u, τ1, τ2)e−

∫ u
v βj(s)dsduÑθ

j (dt, dz).
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Numerical Example: Henry Hub Natural Gas Daily Spot Prices
(1997-2011)

This numerical example and figures are borrowed from [Otunuga
and Ladde, 2014]. In this paper, the authors used the model
for spot price with delayed stochastic volatility from the paper
[Kazmerchuk, Swishchuk and Wu, 2005], and applied it to the
Henry Hub daily natural gas data set for the period 02/01/2001-
09/30/2004. The data was collected from the United State
Energy Information Administration website (www.eia.gov).
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From Figure 1 below we can see the properties of the gas
daily spot prices: randomly driven, non-negative, mean rever-
sion, jumps (spikes), unpredictability of spot price volatility:



Figure 1: Plot of Henry Hub Daily Natural Gas Spot Prices (1997-2011)

(Courtesy-[Otunuga and Ladde, 2014])
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(Handbook of Energy Finance: Theories, Practices and Simula-
tions, 2019)

Table 1 below gives descriptive statistics of Henry Hub Daily
Natural Gas spot prices (1997-2011):



Table 1: Descriptive Statistics of Henry Hub Daily Natural Gas Spot Prices

(1997-2011) (Courtesy-[Otunuga and Ladde, 2014])
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As we can see from the Table 1 above, the logarithmic price is
better than the raw price data because the variance for log is
the smallest.
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tions, 2019)

A simple model for the spot price is considered:

lnS(t) = X(t),

where

dX(t) = γ(k −X(t))dt+ σ(t,X(t))dB(t),

and

σ2(t,X(t))

dt
= [α+ β

∫ t
t−τ

σ(s,X(s))dB(s)]2 + cσ2(t,X(t)).

Here, τ is the delay parameter.
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The model for σ2(t,X(t)) above is the same as the model for
stochastic volatility with delay that we considered in [Kazmer-
chuk, Swishchuk and Wu, 2005].

Discrete scheme is implemented: l = 2 = [ τ∆], where ∆ is the
size of the mesh of the discrete-time grid, [, ] is the floor function.

Estimated Parameters are (Courtesy- [Otunuga and Ladde, 2014]):

γ k τ α β c

1.8943 1.5627 0.008 0.433 − 0.07 − 1.5
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Graphs below, Figure 2, includes Real, Simulated Spot Prices
and Simulated Expected Spot Price ( Henry Hub Daily Natural
Gas Data Set (02/01/2001-09/30/2004)):



Figure 2: Real, Simulated Spot Prices and Simulated Expected Spot Price

(Courtesy-[Otunuga and Ladde, 2014])
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Graph below, Figure 3, shows simulated σ(t,X(t)) from Henry
Hub Daily Natural Gas Data Set (02/01/2001-09/30/2004)).



Figure 3: Simulated σ(t,X(t)) (Courtesy-[Otunuga and Ladde, 2014])
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A Vision to Transition to 100% Wind, Water & Solar En-
ergy in Canada

A group of U.S. civil engineering has calculated that Canada
could be completely powered by renewable energy, if we just de-
cide to do it.

They say that would save $110.1 billion on health care costs ev-
ery year and prevent 9,884 annual air pollution deaths.

Their research is available at thesolutionsproject.org.
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A Vision to Transition to 100% Wind, Water & Solar En-
ergy in Canada:
Health Cost Savings





A Vision to Transition to 100% Wind, Water & Solar En-
ergy in Canada:
Land Usage





A Vision to Transition to 100% Wind, Water & Solar En-
ergy in Canada:
Average Energy Costs in 2050





A Vision to Transition to 100% Wind, Water & Solar En-
ergy in Canada:
Money in Your Pocket





References

Swishchuk, A. (2008): Explicit option pricing formula for a
mean-reverting asset in energy market. J. Numer. Appl. Mathem.,
1(96), 216-233. (Proceed. Intern. School ’Finance, Insur. &
Energy Markets-Sustainable Develop.’, May 5-9, 2008, Västerås,
Sweden).

Swishchuk, A. (2013): Variance and volatility swaps in energy
markets. The J. Energy Markets, 6(1), 33-50.

Swishchuk, A. and Cui, K. (2013): Weather derivatives with
applications to Canadian data. J. Math. Finance, 3(1), 81-95.



References

Cui, K. & Swishchuk, A. (2015): Applications of weather deriva-
tives in energy market. The J. Energy Markets, 8(1), 59-76.

Shahmoradi, A. & Swishchuk, A. (2016): Pricing crude oil op-
tions usinf Lévy processes. The J. Energy Markets, 9(1), 47-64.

Swishchuk, A. (2019): Stochastic modelling and pricing of en-
ergy market contracts with local stochastic delayed and jumped
volatilities. Handbook of Energy Finance: Theories, Practices
and Simulations. World Sci., September 2019.

www.thesolutionsproject.org



Conclusion

In this talk we overviewed my recent results in energy market
modelling, including:

- option pricing formula for a mean-reversion asset,
- variance and volatility swaps in energy markets,
-applications of weather derivatives in energy markets,
- pricing crude oil options using Lévy processes,
-energy contracts modelling with delayed and jumped volatilities.

I also talked about the clean renewable energy prospective, and
a vision to transition to 100% wind, water & solar energy in
Canada.



The End

Thank You!

Q&A time!


