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Li-ion Batteries: Challenges

Predict battery life under diverse operating conditions

New York Times Tesla S model test drive
“Stalled Out on Tesla’s Electric Highway”, NYT Feb 8, 2013

Quote by New York Times Reporter John Broder

As I crossed into New Jersey some 15 miles later, I noticed that the estimated
range was falling faster than miles were accumulating. At 68 miles since
recharging, the range had dropped by 85 miles, and a little mental math told me
that reaching Milford would be a stretch.
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Li-ion Batteries: Challenges

Predict battery life under diverse operating conditions

New York Times Tesla S model test drive
“Stalled Out on Tesla’s Electric Highway”, NYT Feb 8, 2013

Quote by New York Times Reporter John Broder

I discovered on a recent test drive of the company’s high-performance Model S
sedan, theory can be trumped by reality, especially when Northeast temperatures
plunge.
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Li-ion Batteries: Challenges

Ensure safe operation
Danger of explosion at high C rates or at high temperatures

Laptop Boeing dreamliner

Fast charging
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Battery Management System
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contrast, note that an equivalent circuit model has only bulk 
SOC as a state of the model, and not surface SOC. This lack 
of surface SOC information can result in reduced accuracy 
of power and energy prediction compared to an electro-
chemical model. Predicting power and energy and identify-
ing feasible load currents based on demand and state of 
battery can be posed as an optimal control problem. 

Safe Charging and Discharging
In a conventional BMS, safe charging and discharging of 
the battery pack is often realized by applying voltage and 
current limits on the operation of the cell. By imposing con-
stant voltage bounds Vlo and Vhi, a cell can be charged or 
discharged as long as 

 Vlo # V ( t ) # Vhi ,  (19)

for all time t. While these constant bounds might limit elec-
tric potentials within the electrodes from reaching unsafe 
values during operation, they are conservative, especially 
at high currents, where it is possible for the cell voltage to 
reach the voltage bounds in (19) even though the electrodes 
are far from potentially dangerous operation. Thus, the 
constant voltage-bound restriction can unnecessarily limit 
performance of the battery pack [21]. Additionally, these 
bounds may not guarantee safety as the battery ages and its 
characteristics change.

Since overpotentials determine the rate of a reaction, a 
strategy that guarantees safety during charge/discharge 
is to track overpotentials of reactions that can damage the 
cell. In a Li-ion battery, reactions that occur in addition to 
the primary reaction of intercalation of lithium in the 
electrode are called side reactions. One side reaction, which 
is relevant for avoiding damage to the cell during charg-
ing or discharging, is the side reaction that consumes or 
releases lithium and thus changes the capacity of the cell. 
An example of such a side reaction that can create a poten-
tial safety hazard is the side reaction of lithium plating on 
the surface of the electrodes [24]. Though additional con-
straints might have to be satisfied to guarantee safe oper-
ation of the battery pack, we focus on this side-reaction 
overpotential for illustration. 

As described in “Overpotential of a Reaction,” the over-
potential for a side reaction in a Li-ion battery can be 
described as 

 hsr5Fs2Fe2Usr (css) 2Rfsr
jnsr

,  (20)

where sr denotes quantities corresponding to the side reac-
tion. The term Usr denotes the equilibrium potential of the 
side reaction and is assumed to be known. Since jnsr

< 0, the 
term Rfsr

jnsr
 can be assumed negligible. Thus, it usually suf-

fices to know Fs, Fe, and css in order to compute overpoten-
tials of side reactions. For the side reaction of lithium 
plating, Usr is zero [24], and hence the overpotential is 

 hsr(x, t ) 5Fs(x, t ) 2Fe(x, t ) . (21)

Since Fs and Fe are state variables of the electrochemical 
model, we can observe the states at all times during opera-
tion to compute the overpotentials. As long as the overpo-
tentials do not violate certain limits, it is safe to charge or 
discharge the cell. As an example, to minimize the reaction 
rate of lithium plating during charging, we need to con-
strain hsr in the negative electrode such that, for all x and t, 

 hsr(x, t ) . 0. (22)

Similarly, if further side reactions need to be consid-
ered, then additional constraints on hsr arise for each 
side  reaction. 

Figure 6 compares two strategies for charging a fresh 
cell starting from 2.9 V. The plots show the behavior of the 
output voltage and overpotentials for a constant charging 
current at approximately 1.5 C (see “C Rate of a Current”). 
In the first strategy based on (19), charging is stopped 
when the voltage limit of Vhi5 4.2 V is reached, yielding a 
charge capacity of 2.897 ampere-hours (A-h). In the second 
strategy, the same cell is charged as long as hsr satisfies (22) 
everywhere in the cell. As shown in Figure 6, the cell can be 
charged to the higher capacity of 3.09 A-h, yielding 6.7% 
extra charge capacity, while the final voltage is 4.274 V. 
Thus, since charging is stopped even though the overpo-
tential hsr is above 11 mV, the voltage constraint (19) is con-
servative, and hence it is safe to charge further.

On a similar note, as the cell ages, the constraint (19) 
may change from being conservative to being potentially 
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FIGURE 5 Architecture of an advanced battery management system 
(BMS). Unlike a standard BMS, an advanced BMS uses a physics-
based electrochemical model instead of an ad hoc equivalent cir-
cuit model. In addition, the BMS has three blocks corresponding to 
parameter estimation, state estimation, and control algorithms for 
optimal utilization of the battery. The parameter and state estimator 
together guarantee that the electrochemical model is sufficiently 
accurate over its entire operational lifetime. The control algorithms 
block uses the model information to compute the optimal charging 
and discharging profile for the battery based on the desired refer-
ence input from the electronic control unit.

(Source: Chaturvedi et al, IEEE CSM, June 2010)

Good mathematical models needed to meet these challenges
Physical models are complex
Limited data
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solid electrode, the current ie(x, t )  in the electrolyte, the 
electric potential Fs(x, t )  in the solid electrode, the electric 
potential Fe(x, t )  in the electrolyte, the molar flux jn (x, t )  of 
lithium at the surface of the spherical particle, the concen-
tration ce(x, t )  of the electrolyte, and the concentration 
cs(x, r, t )  of lithium in the solid phase at a distance r from 
the center of a spherical particle located at x in the solid 
electrode at time t (see Figure 3).

In the following development, the superscripts “1 ,” “2 ,” 
and “sep” imply that the variables are defined in the positive 
electrode, negative electrode, and separator domain, respec-
tively. Each of these spatial domains spans 301, L1 4, 302, L2 4, 
and 30sep, Lsep 4, respectively, as shown in Figure 2. Thus, 
ce
1 (x, t )  denotes the concentration of lithium in the elec-

trolyte at each x [ 301, L1 4  at time t. When not referring 
to a specific domain or when it is clear from context, we 
remove the superscript for simplicity of notation.

LI-ION BATTERY MODEL
We now present equations that describe the electrochemi-
cal behavior of a Li-ion battery. Before we proceed, we 

note that all currents represent cur-
rent densities normalized by the 
cross-sectional area of the separator. 
The input to the model is the external 
current density I ( t )  applied to the 
battery, and the output of the model 
is the corresponding output voltage 
V ( t )  given by

 V ( t ) 5Fs(01, t ) 2Fs(02, t ) ,  (1)

where 01 and 02 correspond to the 
two ends of the electrode sandwich 
shown in Figure 2.

Relationship Between 
Potential and Currents

Potential in the Solid Electrode
Combining Kirchoff’s law is1 ie5 I 
with Ohm’s law relating is and Fs, we 
obtain 

 
'Fs(x, t )
'x

5
ie(x, t ) 2 I ( t )

s
,  (2)

where s is the effective electronic 
conductivity of the entire electrode. 
Since the electrode is porous, only a 
fraction of the electrode’s volume con-
tributes to its electronic conductivity. 
Equation (2) has no explicit boundary 
conditions. However, at the interface 
between the electrode and current col-
lector, we have ie(01, t ) 5 ie(02, t ) 5 0, 

whereas, at the electrode-separator interface, we have ie5 I. 
As shown in the section “Framework for the Li-Ion Battery 
Model,” we can choose either ie(01, t ) 5 ie(02, t ) 5 0 or 
ie5 I at the separator as the boundary condition for (2). 

Potential in the Electrolyte
The relationship between Fe and ie in the electrolyte is 
given by 

 
'Fe(x, t )
'x

52
ie(x, t )
k

1
2RT

F
(12 t c

0 )

 3 a11
d ln fc/a

d ln ce
(x, t ) b' ln ce(x, t )

'x
,  (3)

where F is Faraday’s constant, R is the universal gas con-
stant, T is the temperature of the cell, and fc/a is the mean 
molar activity coefficient in the electrolyte. The dimension-
less number fc/a, which accounts for deviations of the 
 electrolyte solution from ideal behavior, is a function of the 
electrolyte concentration. Also, k is the ionic conductivity of 
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FIGURE 2 Simple schematic showing the modeling approach for an intercalation cell. In 
the X-dimension (horizontal axis), the cell is divided into three physical domains, namely, 
the positive electrode, the negative electrode, and the separator. Also, each electrode 
and the separator have their own coordinates for spatial definition of their respective 
domains given by 301, L1 4, 302, L2 4, and 30sep, Lsep 4 for the positive and negative elec-
trode, and the separator, respectively. In each electrode domain, lithium can exist either 
in the solid phase in an interstitial site or in the electrolyte phase in a dissolved state. 
Thus, the lattice structure of an electrode in a Li-ion cell can be visualized as small spher-
ical-solid particles that hold lithium ions in the solid phase; these solid spherical particles, 
which denote a collection of interstitial sites, are immersed in the electrolyte. The interca-
lation process can then be visualized as lithium ions moving in and out of these solid 
particles as the battery is charged or discharged. Note that the separator has lithium in 
only the electrolyte phase. Thus is, representing the electronic current in the solid particle, 
is zero in the separator, while the ionic current in the electrolyte, denoted by ie, is equal to 
the applied current I in the separator.

(Source: Chaturvedi et al, IEEE CSM, June
2010)
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the electrolyte, and t c
0 is the transfer-

ence number of the cations with respect 
to the solvent velocity. Both k and t c

0 
are usually functions of electrolyte con-
centration, but t c

0 is typically app-
roximated as a constant. Since we can 
measure only potential differences, 
the boundary condition of Fe is arbi-
trary. We set Fe(01, t ) 5 0 at the 
 positive electrode-current collector 
interface. For the remaining two do -
mains, it follows from continuity 
of Fe that Fe(Lsep, t ) 5Fe(L1, t )  and 
Fe(L2, t ) 5Fe(0sep, t ) .

Relationship Between 
Concentrations and Currents

Transport in the Electrolyte
The lithium concentration in the elec-
trolyte changes due to concentration-
gradient-induced diffusive flow of 
ions and the current ie. Thus, it can be 
shown that

 
'ce(x, t )
't

5
'
'x
aDe

'ce(x, t )
'x

b 

 1
1

Fee

' ( t0
a ie(x, t ))
'x

,  (4)

where De is the effective diffusion 
coefficient, ee is the volume fraction 
of the electrolyte, and t0

a is the trans-
ference number for the anion. The 
first term in (4) reflects the change in 
concentration due to diffusion, while 
the second term reflects the change 
in concentration due to the current ie 
and its gradient. The boundary conditions for (4) cap-
ture the fact that the fluxes of the ions are zero for all 
time at the current collectors. Since the flux is propor-
tional to the concentration gradient at the current 
 collectors, we obtain 

 
'ce

'x
†
x502

5
'ce

'x
†
x501

5 0. (5)

Since the battery has three spatial domains, we need four 
additional boundary conditions at the electrode-separa-
tor interface. These boundary conditions are obtained 
from continuity of the flux and concentration of the elec-
trolyte at the electrode-separator interface (shown in 
Figure 2) as

 e2e aDe
'ce

'x
b †

x5L2

5 ee
sepaDe

'ce

'x
b †

x50sep

,  (6)

 ee
sep aDe

'ce

'x
b †

x5Lsep

5 ee
1 aDe

'ce

'x
b †

x5L1

,  (7)

 ce(L2, t ) 5 ce(0sep, t ) ,  (8)

 ce(Lsep, t ) 5 ce(L1, t ) . (9)

Transport in the Solid Phase
As explained in the section “Modeling Approach,” the 
model in the solid phase associates a spherical particle of 
radius Rp with each spatial location x. The transport of the 
lithium ions in these solid particles can be described in a 
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FIGURE 3 Modeling of molar flux jn(x )  and the concentration of solid-phase lithium in the 
electrode. In this macro-homogeneous model, lithium concentration in the solid phase is 
modeled by using a densely populated distribution of spherical solid particles along the X
-axis, each of which denotes a collection of interstitial sites. For each solid particle at x, the 
function cs (x, r, t )  represents the concentration of lithium in the particle in the radial 
dimension at time t.

(Source: Chaturvedi et al, IEEE CSM,
June 2010)
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the electrolyte, and t c
0 is the transfer-

ence number of the cations with respect 
to the solvent velocity. Both k and t c

0 
are usually functions of electrolyte con-
centration, but t c

0 is typically app-
roximated as a constant. Since we can 
measure only potential differences, 
the boundary condition of Fe is arbi-
trary. We set Fe(01, t ) 5 0 at the 
 positive electrode-current collector 
interface. For the remaining two do -
mains, it follows from continuity 
of Fe that Fe(Lsep, t ) 5Fe(L1, t )  and 
Fe(L2, t ) 5Fe(0sep, t ) .

Relationship Between 
Concentrations and Currents

Transport in the Electrolyte
The lithium concentration in the elec-
trolyte changes due to concentration-
gradient-induced diffusive flow of 
ions and the current ie. Thus, it can be 
shown that
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the second term reflects the change 
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and its gradient. The boundary conditions for (4) cap-
ture the fact that the fluxes of the ions are zero for all 
time at the current collectors. Since the flux is propor-
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the electrolyte, and t c
0 is the transfer-

ence number of the cations with respect 
to the solvent velocity. Both k and t c

0 
are usually functions of electrolyte con-
centration, but t c

0 is typically app-
roximated as a constant. Since we can 
measure only potential differences, 
the boundary condition of Fe is arbi-
trary. We set Fe(01, t ) 5 0 at the 
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interface. For the remaining two do -
mains, it follows from continuity 
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Transport in the Electrolyte
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the electrolyte, and t c
0 is the transfer-

ence number of the cations with respect 
to the solvent velocity. Both k and t c

0 
are usually functions of electrolyte con-
centration, but t c

0 is typically app-
roximated as a constant. Since we can 
measure only potential differences, 
the boundary condition of Fe is arbi-
trary. We set Fe(01, t ) 5 0 at the 
 positive electrode-current collector 
interface. For the remaining two do -
mains, it follows from continuity 
of Fe that Fe(Lsep, t ) 5Fe(L1, t )  and 
Fe(L2, t ) 5Fe(0sep, t ) .

Relationship Between 
Concentrations and Currents

Transport in the Electrolyte
The lithium concentration in the elec-
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ions and the current ie. Thus, it can be 
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first term in (4) reflects the change in 
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and its gradient. The boundary conditions for (4) cap-
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tional to the concentration gradient at the current 
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the electrolyte, and t c
0 is the transfer-

ence number of the cations with respect 
to the solvent velocity. Both k and t c

0 
are usually functions of electrolyte con-
centration, but t c

0 is typically app-
roximated as a constant. Since we can 
measure only potential differences, 
the boundary condition of Fe is arbi-
trary. We set Fe(01, t ) 5 0 at the 
 positive electrode-current collector 
interface. For the remaining two do -
mains, it follows from continuity 
of Fe that Fe(Lsep, t ) 5Fe(L1, t )  and 
Fe(L2, t ) 5Fe(0sep, t ) .

Relationship Between 
Concentrations and Currents

Transport in the Electrolyte
The lithium concentration in the elec-
trolyte changes due to concentration-
gradient-induced diffusive flow of 
ions and the current ie. Thus, it can be 
shown that
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coefficient, ee is the volume fraction 
of the electrolyte, and t0

a is the trans-
ference number for the anion. The 
first term in (4) reflects the change in 
concentration due to diffusion, while 
the second term reflects the change 
in concentration due to the current ie 
and its gradient. The boundary conditions for (4) cap-
ture the fact that the fluxes of the ions are zero for all 
time at the current collectors. Since the flux is propor-
tional to the concentration gradient at the current 
 collectors, we obtain 
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the electrolyte, and t c
0 is the transfer-

ence number of the cations with respect 
to the solvent velocity. Both k and t c

0 
are usually functions of electrolyte con-
centration, but t c

0 is typically app-
roximated as a constant. Since we can 
measure only potential differences, 
the boundary condition of Fe is arbi-
trary. We set Fe(01, t ) 5 0 at the 
 positive electrode-current collector 
interface. For the remaining two do -
mains, it follows from continuity 
of Fe that Fe(Lsep, t ) 5Fe(L1, t )  and 
Fe(L2, t ) 5Fe(0sep, t ) .

Relationship Between 
Concentrations and Currents

Transport in the Electrolyte
The lithium concentration in the elec-
trolyte changes due to concentration-
gradient-induced diffusive flow of 
ions and the current ie. Thus, it can be 
shown that
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where De is the effective diffusion 
coefficient, ee is the volume fraction 
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a is the trans-
ference number for the anion. The 
first term in (4) reflects the change in 
concentration due to diffusion, while 
the second term reflects the change 
in concentration due to the current ie 
and its gradient. The boundary conditions for (4) cap-
ture the fact that the fluxes of the ions are zero for all 
time at the current collectors. Since the flux is propor-
tional to the concentration gradient at the current 
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the electrolyte, and t c
0 is the transfer-

ence number of the cations with respect 
to the solvent velocity. Both k and t c

0 
are usually functions of electrolyte con-
centration, but t c

0 is typically app-
roximated as a constant. Since we can 
measure only potential differences, 
the boundary condition of Fe is arbi-
trary. We set Fe(01, t ) 5 0 at the 
 positive electrode-current collector 
interface. For the remaining two do -
mains, it follows from continuity 
of Fe that Fe(Lsep, t ) 5Fe(L1, t )  and 
Fe(L2, t ) 5Fe(0sep, t ) .

Relationship Between 
Concentrations and Currents

Transport in the Electrolyte
The lithium concentration in the elec-
trolyte changes due to concentration-
gradient-induced diffusive flow of 
ions and the current ie. Thus, it can be 
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first term in (4) reflects the change in 
concentration due to diffusion, while 
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the electrolyte, and t c
0 is the transfer-

ence number of the cations with respect 
to the solvent velocity. Both k and t c

0 
are usually functions of electrolyte con-
centration, but t c

0 is typically app-
roximated as a constant. Since we can 
measure only potential differences, 
the boundary condition of Fe is arbi-
trary. We set Fe(01, t ) 5 0 at the 
 positive electrode-current collector 
interface. For the remaining two do -
mains, it follows from continuity 
of Fe that Fe(Lsep, t ) 5Fe(L1, t )  and 
Fe(L2, t ) 5Fe(0sep, t ) .

Relationship Between 
Concentrations and Currents

Transport in the Electrolyte
The lithium concentration in the elec-
trolyte changes due to concentration-
gradient-induced diffusive flow of 
ions and the current ie. Thus, it can be 
shown that

 
'ce(x, t )
't

5
'
'x
aDe

'ce(x, t )
'x

b 

 1
1

Fee

' ( t0
a ie(x, t ))
'x

,  (4)

where De is the effective diffusion 
coefficient, ee is the volume fraction 
of the electrolyte, and t0

a is the trans-
ference number for the anion. The 
first term in (4) reflects the change in 
concentration due to diffusion, while 
the second term reflects the change 
in concentration due to the current ie 
and its gradient. The boundary conditions for (4) cap-
ture the fact that the fluxes of the ions are zero for all 
time at the current collectors. Since the flux is propor-
tional to the concentration gradient at the current 
 collectors, we obtain 

 
'ce

'x
†
x502

5
'ce

'x
†
x501

5 0. (5)

Since the battery has three spatial domains, we need four 
additional boundary conditions at the electrode-separa-
tor interface. These boundary conditions are obtained 
from continuity of the flux and concentration of the elec-
trolyte at the electrode-separator interface (shown in 
Figure 2) as

 e2e aDe
'ce

'x
b †

x5L2

5 ee
sepaDe

'ce

'x
b †

x50sep

,  (6)

 ee
sep aDe

'ce

'x
b †

x5Lsep

5 ee
1 aDe

'ce

'x
b †

x5L1

,  (7)

 ce(L2, t ) 5 ce(0sep, t ) ,  (8)

 ce(Lsep, t ) 5 ce(L1, t ) . (9)

Transport in the Solid Phase
As explained in the section “Modeling Approach,” the 
model in the solid phase associates a spherical particle of 
radius Rp with each spatial location x. The transport of the 
lithium ions in these solid particles can be described in a 

Negative

Solid Particles in
Electrode

Charging

ie = I

is = 0 is = I

I
I

is

is

ie

e–

e–

Li+ Li+
Li+

Li+

Li+

Li+Li+
ie

is = I

jn (x1)

cs (x1, r, t )

r
X Axis

RpRp

x1
x2

r

cs (x2, r, t )

jn (x2)

Electrolyte

Separator Positive

x x

0+0– L+L–

Lsep0sep x

FIGURE 3 Modeling of molar flux jn(x )  and the concentration of solid-phase lithium in the 
electrode. In this macro-homogeneous model, lithium concentration in the solid phase is 
modeled by using a densely populated distribution of spherical solid particles along the X
-axis, each of which denotes a collection of interstitial sites. For each solid particle at x, the 
function cs (x, r, t )  represents the concentration of lithium in the particle in the radial 
dimension at time t.

(Source: Chaturvedi et al, IEEE CSM,
June 2010)
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Batteries

Pseudo 2D Model

Mass Conservation

(M1) εi
∂ce
∂t

=
∂

∂x

(
Di
∂ce
∂x

)
+ ai(1− t+)ji

(M2)
∂c̄s
∂t

= −3
ji
Ri

(M3) c∗s − c̄s = −Ri

Ds

ji
5

Charge Conservation

(C1) ie = −κi
∂Φe

∂x
+

2κiRT

F
(1− t+)

∂ ln ce
∂x

(C2)
∂ie
∂x

= aiFji

(C3)
∂Φs

∂x
=
ie − I
σi

Boundary Conditions
x = col. x = sep./elec.

⇒ ∂ce
∂x

= 0 −Dp
∂ce
∂x

= −Ds
∂ce
∂x

– –

– –

Boundary Conditions
x = col. x = sep./elec.

⇒ ∂Φe

∂x
= 0 −κp

∂Φe

∂x
= −κs

∂Φe

∂x

⇒ ie = 0 ie = I

– –
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Batteries

Thermal Model

Energy Conservation: BCs - x = col. x = sep./elec.

ρiCp,i
∂T

∂t
=

∂

∂x

(
λi
∂T

∂x

)
+Qi

∂T

∂x
= 0 −λcc

∂T

∂x
= −λp

∂T

∂x

Butler-Volmer Equation

ji = 2ki [cec
∗
s(cmax

i − c∗s)]
0.5

sinh

(
0.5

F
RT (Φs − Φe − Ui)

)

Challenges with the Model

Including the electrodes, separator and collectors there are 19 PDEs.

PDEs are highly coupled.

Diffusion, reaction coefficients and other parameters are temperature
dependent.

The PDEs are stiff.
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Batteries

Thermal Model

Energy Conservation: BCs - x = col. x = sep./elec.

ρiCp,i
∂T

∂t
=

∂

∂x

(
λi
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∂x

)
+Qi

∂T

∂x
= 0 −λcc

∂T

∂x
= −λp

∂T

∂x

Butler-Volmer Equation

ji = 2ki [cec
∗
s(cmax

i − c∗s)]
0.5

sinh

(
0.5

F
RT (Φs − Φe − Ui)

)

Challenges with the Model

Some PDEs don’t have explicit boundary conditions.

Model initialization is difficult.

Stable in a narrow operating region.

The model has to be solved within a few seconds for real time
implementation.
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Batteries

An iterative fast solution

Observations

Model is linear if flux ji is known - Guess it!

The PDE for current in the electrolyte has two boundary conditions

∂ie
∂x

= aiFji

Guess the initial value and iterate using a shooting method.

The PDE for solid potential has no boundary conditions

∂Φs

∂x
=
ie − I
σi

Guess a boundary condition.
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Batteries

An iterative fast solution

The Algorithm

High Dimensional
Sparse System 
of 
Linear Equations

Butler
Volmer
Equation

Update Algorithm

ji flux

�p(+)

�p(�)

ĵi

c. Conc.

�. Potn.
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Batteries

A state-space reformulation

Advantages

The system is expressed as a “standard” state-space model.

Simulating a discharge cycle of 1 hr takes about 2 ∼ 15 sec.

State-Space Model

x`̀̀
m =

[
Ac(θ) 0

0 I

]
x`̀̀

m−1 +

[
Bc(θ)
B̄(θ)

]
⊗ xn

m,

xa1
m = AΦ(θ)xn

m + BΦum,

xa2
m =

[
0 0
0 I

]
x`̀̀

m + B∗(θ)xn
m,

xa3
m = FΦ(x`̀̀

m,x
n
m,θ),

xn
m = Fj(x

`̀̀
m,x

a1
m ,xa2

m ,xa3
m ,θ)

xT
m = AT(θ)xT

m−1 + FT (x`̀̀
m,x

a1
m ,xa2

m ,xa3
m ,xn

m,θ),

v(m) = Φp(m, 0)− Φp(m,Nn). 11 / 24
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Batteries

Uncertainty Characterization

Types of Uncertainty

Parametric uncertainty

pθ(θ) = N (θ;θ,Σθ)

Structural uncertainty

X`̀̀
m|x`̀̀

m(θ) ∼ N (0,Σ`)

Xai
m|xai

m(θ) ∼ N (0,Σi) for i = 1 to 3

Xn
m|xn

m(θ) ∼ N (0,Σn),

XT
m|xT

m(θ) ∼ N (0,ΣT ),

Vm|vm−1 ∼ N (0,Σv)

Not necessary to assume Gaussian uncertainty - any probabilistic
uncertainty fine.
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Batteries

Important Properties of Li-ion Battery

State of Charge (SOC)

A quantitative measure of expendable charge remaining in the battery.

S(t) =
1

lp

∫ lp

0

c̄s(x, t)

cmax
dx

E [S(m)] ≈ ∆x

lpcmax

Np∑
n=1

∫
c̄s(m,n)pc̄s(c̄s(m,n)|v1:m)dcs.

State of Health (SOH)

A quantitative measure of the battery’s ability to store and release energy at
high efficiency. No unique measure.

Challenge

How do we estimate State of Charge in presence of uncertainty?
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Batteries

What is wrong with Standard Particle Filter?

High-Dimensionality and Particle Degeneracy

The desired target density function is very high-dimensional. Defining the
state vector

xm = {x`
m,x

a1
m ,xa2

m ,xa3
m ,xn

m,x
T
m}

Target density function is pxm(xm|v1:m). For N discretization points in
the spatial direction, the dimensionality is 7N .

Computational Complexity

The model equations have to be solved as many times as the number of
particles increasing the computational complexity.

Importance Density

It is difficult to choose a large dimensional importance density function.
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Marginalized and Tethered Particle Filter

Marginalized Particle Filter

For SOC estimation, only the lower dimensional marginal density

pc̄c(c̄s(m,n)|v1:m) is required.

Dimensionality can be reduced by partitioning the states and splitting the
filter density into a series of marginal density functions,

pxm
(xm|v1:m) = px`

m
(x`

m|v1:m,x
n
m)pxa1

m
(xa1

m |v1:m,x
n
m)pxa2

m
(xa2

m |v1:m,x
`
m,x

n
m)

× pxa3
m

(xa3
m |v1:m,x

`
m,x

n
m)pxn

m
(xn

m|v1:m).

Some density functions corresponding to PDEs with spatial derivatives
only can be further marginalized.

Tethered Particle Filter

Kalman filter can be used if xn
m is “known”.

A ‘tether particle’ is created by using the average of xn
m particles in

estimating other marginalized densities.
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Marginalized and Tethered Particle Filter

Optimal Estimators

Density Optimal Marginal Estimator Dimension

Full Marginal

(1) px`
m

(x`
m|v1:m,xn

m) Temporal & Spatial Kalman filter 2N 2

(2) pxa1
m

(xa1
m |v1:m,xn

m) Spatial Kalman filter 2N 2

(3) pxa2
m

(xa2
m |v1:m,x`

m,xn
m) Spatial Kalman filter N 1

(4) pxa3
m

(xa3
m |v1:m,x`

m,xn
m) Spatial Particle Filter N 1

(5) pxn
m

(xn
m|v1:m) Spatial Particle Filter N 1

Some Observations

Kalman filters can be implemented online very fast.

One dimensional particle filters are also very fast.

The marginal filter dimension is independent of fineness of discretization.
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Batteries

State of Charge Estimation - Simulations

Deterministic Model

Model simulated at constant galvanostatic discharge current of
I = −30A/m2.

Initial guesses for the solid potential at the collectors are 4.116 V and
0.074 V .

Initial electrolyte concentration was 1000 mol/L.
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Figure 1: (a) Li-ion flux, (b) electrolyte current at di↵erent times during the simulation along the length x
of the battery: “Pos.” is the positive electrode, “Sep” is the separator, “Neg.” is the negative electrode.
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(a) Deterministic simulation.
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(b) Stochastic simulation. (��) is the noisy
measurement and (�) is the prediction.

Figure 2: Discharge curves.

switched between �35 A/m2 and �25 A/m2 with a Nyquist frequency of 0.01 Hz. Figure 2b
shows the corresponding discharge curve and the predicted voltage from the estimator. The
proposed approach is implemented with P = 2000 particles. Figure 3 shows the estimated
state of charge and the true state of charge obtained from the deterministic model. A common
practice in the Li-ion battery literature is to assume Gaussian states and use an extended
Kalman filter (EKF) for state-of-charge estimation. However, a plot of the time evolution of
the state-of-charge density function clearly shows strong nonGaussian behaviour (see Figure
4). These simulations suggest that, while EKF may work fine at low coulomb rates, at high
coulomb rates the quality of SOC estimates may su↵er unless powerful nonlinear estimators
such as particle filters are used.

5. Conclusions

The complex nonlinear PDEs that define the dynamics of a standard Li-ion battery are
discretized and reformulated as a large dimensional state-space model. The state of charge
and other battery properties that depend on unmeasured state variables such as concentra-
tions and potentials are estimated using a modified particle filtering algorithm. The algorithm
uses a novel technique called ‘tethering’ to reduce computational complexity.

[1] V. Ramadesigan, P. W. C. Northrop, S. De, S. Santhanagopalan, R. D. Braatz, V. R. Subrama-

12
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Batteries

State of Charge Estimation - Simulations

Stochastic Model

Gaussian noise introduced in all the state equations.

Applied current randomly switched between −35A/m2 and −25A/m2

(RBS).

2000 particles used.
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Figure 2: Discharge curves.

switched between �35 A/m2 and �25 A/m2 with a Nyquist frequency of 0.01 Hz. Figure 2b
shows the corresponding discharge curve and the predicted voltage from the estimator. The
proposed approach is implemented with P = 2000 particles. Figure 3 shows the estimated
state of charge and the true state of charge obtained from the deterministic model. A common
practice in the Li-ion battery literature is to assume Gaussian states and use an extended
Kalman filter (EKF) for state-of-charge estimation. However, a plot of the time evolution of
the state-of-charge density function clearly shows strong nonGaussian behaviour (see Figure
4). These simulations suggest that, while EKF may work fine at low coulomb rates, at high
coulomb rates the quality of SOC estimates may su↵er unless powerful nonlinear estimators
such as particle filters are used.

5. Conclusions

The complex nonlinear PDEs that define the dynamics of a standard Li-ion battery are
discretized and reformulated as a large dimensional state-space model. The state of charge
and other battery properties that depend on unmeasured state variables such as concentra-
tions and potentials are estimated using a modified particle filtering algorithm. The algorithm
uses a novel technique called ‘tethering’ to reduce computational complexity.
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State of Charge Estimation - Simulations

Stochastic Model

Gaussian noise introduced in all the state equations.

Applied current randomly switched between −35A/m2 and −25A/m2

(RBS).

2000 particles used.
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Figure 3: The estimated mean of state of charge (�) vs. the true state of charge (- -).
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Single Particle (SPM) Model

Cell Compartments:

Positive Electrode (p)

Separator (s)

Negative Electrode (n)

Phases:

Solid (s)

Electrolyte (e)

State Variables:

Voltage (V )

Current (I)

Li+ Ion Concentration (C)

State Of Charge (SOC)

Coordinate variables:

Time (t)

Radius (r)

Characteristics of SPM:

1 Assume spatial variations
negligible

2 PDEs reduced to ODEs

3 Position coordinates (x),(y),(z)
eliminated

4 State variables change only w.r.t
(r),(t)
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Single-Particle Model (SPM) in Detail

Approximate Potentials

Φs(t) =
2RT

F
sinh−1

(
I(t)

2al
√

(cec∗(t)(cmax − c∗))

)

Fickian Mass Diffusion of Li+

∂

∂t
cs(x, r, t) =

1

r2

∂

∂r
(Dsr

2 ∂

∂r
cs(x, r, t))

Molar Flux of Li+

jp = − I

Faplp
jn = − I

Fanln

Voltage

v = Φp − Φn

Cell Energy Balance

ODE:
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Algorithm for Optimal Charging

Moving Window Approach

Battery Properties:

Cell Temperature: [Tp, Tn]T

Li+ Concentration: [Cp, Cn]T

State of Charge:
[SOCp, SOCn]T

Moving Horizon Approach:

Total charge time = ttotal

Divide ttotal into Windows W

Divide W into N sub-windows:
dW = W

N

Time axis:
[0, dW, 2dW, · · · , NdW ]

Charge current profile:
[I1, I2, · · · , IN ] 21 / 24



Batteries

Results and Analyses

Case 1: Charging with No
Constraints

Charge at Imax = 20 A
cm2

No constraints considered

Full charge reached at 3000s

Temp constraint violated at
1000s

Case 2: Static Optimization

Solve: argmax
I

SOC(x) s.t.

constraints are satisfied

Obtain Iopt = 9.7 A
cm2

Full charge reached at 6000s

Temp constraint respected
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Results and Analyses Cont’d

Case 3: Moving Horizon Approach

Window size: W = 100s and dW = 10s

Iopt = 20 A
cm2 for 1000s, drop to

Iopt = 9.3 A
cm2 and hold.

Total charge time reduced to 5000s.

Reduce window size to W = 20s and
dW = 2s: reduce total charge time to
3600s.
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