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Batteries

Why Batteries?

e Portable
e No moving parts
e High power
e Environmentally friendly
e no exhaust
e quiet
e no vibration
e High efficiency - of the order of
90% are more
e Low operating cost & minimal
maintenance
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Batteries

Why Li-ion Batteries?

High energy density
Can provide high current

e useful in high power tools
e race cars

e Low maintenance
o Minimal memory effect
e Minimal self-discharge
e Environmentally friendly
e no poisonous metals
e little harm when disposed

e Aging

Temperature has to be controlled

e Expensive to manufacture

S THIS ANOTHER
ry EXPENSIVE
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Batteries

Li-ion Batteries: Challenges

e Predict battery life under diverse operating conditions
High C rate Low C Rate

g VEHICE

!iﬂ iN.

SMITH | 150 miles Sﬂmph Class 5,6 &

o S
TithElectricVehictgs, com

4/24



Batteries

Li-ion Batteries: Challenges

e Predict battery life under diverse operating conditions

New York Times Tesla S model test drive
“Stalled Out on Tesla’s Electric Highway”, NYT Feb 8, 2013

T 73’ ~ Lo

Quote by New York Times Reporter John Broder

As I crossed into New Jersey some 15 miles later, I noticed that the estimated
range was falling faster than miles were accumulating. At 68 miles since
recharging, the range had dropped by 85 miles, and a little mental math told me
that reaching Milford would be a stretch.




Batteries

Li-ion Batteries: Challenges

e Predict battery life under diverse operating conditions

New York Times Tesla S model test drive
“Stalled Out on Tesla’s Electric Highway”, NYT Feb 8, 2013

SIS

Quote by New York Times Reporter John Broder

I discovered on a recent test drive of the company’s high-performance Model S
sedan, theory can be trumped by reality, especially when Northeast temperatures
plunge.




Batteries

Li-ion Batteries: Challenges

e Ensure safe operation
e Danger of explosion at high C rates or at high temperatures

Laptop Boeing dreamliner

™e cost eneroY

10:01 $11.68 974 kwh

o

295 - ® 1

NEMA 14-50 SINGLE CHARGER



Batteries

Battery Management System

Control Action ECQ Mts

. Battery (Supervisory o
> Control) =l )t
= BMS =
5 |
%) ; alo
*GC-; Electrochemical-Based Battery Model 3|
§ || Resistance, SOC, Potentials, s
2 | Diffusion, Concentrations @
s | OCP )
s Control Algorithms &
IIDEartgmetter - Es?iﬁtaetor — (Calculate Optimal | —"=

stimator Utilization Strategy)

(Source: Chaturvedi et al, IEEE CSM, June 2010)

e Good mathematical models needed to meet these challenges

o Physical models are complex

o Limited data



Batteries

Li-on Battery Models

Electrical Circuit Models

e Single Particle Model

e Porous Electrode Pseudo Two
Dimensional Model (P2D)

e 3D Thermal Model

e P2D Stress-Strain Model

Population Balance Model

e Molecular Dynamics
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Li-on Battery Models

Electrical Circuit Models
Single Particle Model

Porous Electrode Pseudo Two
Dimensional Model (P2D)

3D Thermal Model
P2D Stress-Strain Model
Population Balance Model

Molecular Dynamics

Negative Electrode
Domain
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Separator
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Electrolyte
Phase

| Electrolyte _ |
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Solid Particles in
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(Source: Chaturvedi et al, IEEE CSM, June

2010)
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Batteries

Li-on Battery Models

Negative Electrode Separator Positive Electrode

omain Domain Domain
o Electrical Circuit Models I : :isep - Lsi - »
e Single Particle Model o g
o Porous Electrode Pseudo Two / S
Dimensional Model (P2D) ‘ S
e 3D Thermal Model f ::”:/
e P2D Stress-Strain Model Sk e G ,;0 -
e Population Balance Model Sy
e Molecular Dynamics (Sou;‘ce: Chaturvedi et al, IEEE CSM, June
2010
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Li-on Battery Models

e Electrical Circuit Models
e Single Particle Model

e Porous Electrode Pseudo Two
Dimensional Model (P2D)

o 3D Thermal Model
e P2D Stress-Strain Model
e Population Balance Model

e Molecular Dynamics

Increasing Accuracy

Decreasing Complexity
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Li-on Battery Models

e Electrical Circuit Models
e Single Particle Model

Porous Electrode Pseudo Two Increasing Accuracy
Dimensional Model (P2D)

@ 3D Thermal Model
P2D Stress-Strain Model Decreasing Complexity

Population Balance Model

e Molecular Dynamics
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Batteries

Pseudo 2D Model
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(03) Oz = po= (Source: Chaturvedi et al, IEEE CSM,

J June 2010)
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Pseudo 2D Model
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Pseudo 2D Model
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Batteries

Pseudo 2D Model

Mass Conservation
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Batteries

Thermal Model

Energy Conservation: BCs - x = col. x = sep./elec.
or o or or orT or

iCpim = 7 | Mine i e —Aceis = Ao

PiChi gy 8:1:( 633)+Q 5z 0 T

Butler-Volmer Equation

S K2 S

0.5
i = 2k; [eec” (¢ — ¢)]°® sinh (FRT(<I>5 —®, — Ui)>

Challenges with the Model
e Including the electrodes, separator and collectors there are 19 PDEs.
e PDEs are highly coupled.

e Diffusion, reaction coefficients and other parameters are temperature
dependent.

o The PDEs are stiff.
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Thermal Model

Energy Conservation: BCs - x = col. x = sep./elec.
oT 0 oT oT oT oT
piCp,iE ~ 9z ()\zax) + Q; e 0 —Acca = _)\p%

Butler-Volmer Equation

S 3

0.5
i = 2k; [cect (" — ¢)]%P sinh (FRT(tbs —®, — Ui)>

Challenges with the Model
e Some PDEs don’t have explicit boundary conditions.
e Model initialization is difficult.
e Stable in a narrow operating region.

e The model has to be solved within a few seconds for real time
implementation.




An iterative fast solution

Observations
e Model is linear if flux j; is known - Guess it!

e The PDE for current in the electrolyte has two boundary conditions

= a;F'j;

Ox

Guess the initial value and iterate using a shooting method.

e The PDE for solid potential has no boundary conditions
0P, i.—1
ox B ag;

Guess a boundary condition.
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An iterative fast solution

The Algorithm

j@‘ flux

High Dimensional
Sparse System

of

Linear Equations

c. Conc.

®. Potn.

Butler Ji
Volmer
Equation

Update Algorithm
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Batteries

A state-space reformulation

Advantages
e The system is expressed as a “standard” state-space model.

e Simulating a discharge cycle of 1 hr takes about 2 ~ 15 sec.

State-Space Model

<& — [Ac(e) 0] <L 4 |:Bc(9):| 2 X

m 0 I B(6)
x21 = Ag(0)x5, + Baunm,

a _ |0 Of 4 N n
Xn? - |:0 I:| Xm + B (O)va

X?rsls _]:‘1’( lrrjlme)v

Xnm —]:_7( ;iriaxaz 53 9)
Xa ZAT(B) e 1+]:T( s Xm s Xna s Xn s X 0)

U(m) = <I>p(m, 0) — Qp(m, Nn) 11/ 24



A state-space reformulation

Advantages

“

e The system is expressed as a “standard” state-space model.

e Simulating a discharge cycle of 1 hr takes about 2 ~ 15 sec.

State-Space Model
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0 I
xa3 —]:@(

= Fj(xhy

v(m) = ®,(m,0) —

Xy = Ar(0)xpy_; + Fr(xb,




A state-space reformulation

«,

Advantages

e The system is expressed as a “standard” state-space model.

e Simulating a discharge cycle of 1 hr takes about 2 ~ 15 sec.
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Batteries

A state-space reformulation

Advantages

e The system is expressed as a “standard” state-space model.

e Simulating a discharge cycle of 1 hr takes about 2 ~ 15 sec.

State-Space Model

Ac(0) 0 Bc(0)

e _ £ 2 n
=[5 S [5] o
x21 = Ag(0)x5, + Batnm,

a2 {g ‘I)} X LB (O)xR,

X?Izl,’ _F‘I’( nma0)7
xR, = F(Xh,, x%,x52,x33,6)
X; :AT(G) Xm— 1+J:T( xvngaxxax?me)?

v(m) = ®,(m,0) — ®,(m, N,).

Linear States
Linear Alg. States

Linear Alg. States

Nonlinear Alg. States

Nonlinear Alg. States

Nonlinear States

Measurements
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Uncertainty Characterization

Types of Uncertainty

e Parametric uncertainty
pe(0) =N (6:6,%0)

e Structural uncertainty
X X0 (8) ~ N
X2&i|x2(0) ~ N
X2 xR (0) ~ N
XX (8) ~ N

2

m
aj
m
n

m

e Not necessary to assume Gaussian uncertainty - any probabilistic
uncertainty fine.
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Batteries

Important Properties of Li-ion Battery

State of Charge (SOC)

A quantitative measure of expendable charge remaining in the battery.

S(t) = l /Olp Mdm

lp Cmaz
Np

A Z /Es(man)pis (Es(mvn”vl:m)dcs'

C
lp maz T

E[S(m)] ~

State of Health (SOH)

A quantitative measure of the battery’s ability to store and release energy at
high efficiency. No unique measure.

Challenge

How do we estimate State of Charge in presence of uncertainty?
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State Estimator!




What is wrong with Standard Particle Filter?

High-Dimensionality and Particle Degeneracy

o The desired target density function is very high-dimensional. Defining the
state vector
Xm = {ana anri 9 annzv Xi;;7xnm7 X’I:'[K‘l}
Target density function is p,. (Xm|v1.m). For N discretization points in
the spatial direction, the dimensionality is 7TN.

Computational Complexity

e The model equations have to be solved as many times as the number of
particles increasing the computational complexity.

Importance Density

e It is difficult to choose a large dimensional importance density function.




Marginalized and Tethered Particle Filter

Marginalized Particle Filter
e For SOC estimation, only the lower dimensional marginal density
pe, (€s(m, n)|v1.m) is required.

e Dimensionality can be reduced by partitioning the states and splitting the

filter density into a series of marginal density functions,
pwm(xm|vlzm) = p:cfn(xfnh}l:m; X?n)prnl(xzrir} ‘Ul:m; Xnm)pzfn? (X?g |U1:ma ana X
X Pyos(X8 [V1:ms X1 Xit )P (Xit [01:m) -

e Some density functions corresponding to PDEs with spatial derivatives
only can be further marginalized.

m)

Tethered Particle Filter
o Kalman filter can be used if x3, is “known”.

e A ‘tether particle’ is created by using the average of x3, particles in
estimating other marginalized densities.
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Marginalized and Tethered Particle Filter

Optimal Estimators

Density Optimal Marginal Estimator Dimension
Full Marginal

(1) pre (Xo|viim, Xm) Temporal & Spatial Kalman filter 2N 2

(2) pm;:l (%52 |v1:m, Xm) Spatial Kalman filter 2N 2

(3) Doz (%22 |v1:m, X, Xm) Spatial Kalman filter N 1

(4) R (%23 |v1.m, X5, x%)  Spatial Particle Filter N 1

(5) Pon (Xm|v1:m) Spatial Particle Filter N 1

Some Observations
e Kalman filters can be implemented online very fast.

e One dimensional particle filters are also very fast.

e The marginal filter dimension is independent of fineness of discretization.
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State of Charge Estimation - Simulations

Deterministic Model
e Model simulated at constant galvanostatic discharge current of

I=-30A/m>.
o Initial guesses for the solid potential at the collectors are 4.116 V' and
0.074 V.
o Initial electrolyte concentration was 1000 mol/L.
10-5
(] ! \ Sep.
% L : —10
g Pos. | Sep. &
qui 0 | —20
B ; WY
-0 100 150

0 50 100 150
(a) Flux (b) Electrolyte current




State of Charge Estimation - Simulations

Deterministic Model
e Model simulated at constant galvanostatic discharge current of
I =—-30A/m>.
o Initial guesses for the solid potential at the collectors are 4.116 V' and

0.074 V.
o Initial electrolyte concentration was 1000 mol/L.

Voltage (V)

| | |
0 1,000 2,000 3,000
Time (s)

(a) Deterministic simulation.
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State of Charge Estimation - Simulations

Stochastic Model

e Gaussian noise introduced in all the state equations.

o Applied current randomly switched between —354/m? and —25A4/m?

(RBS).
e 2000 particles used.

Voltage (V)

i i i !
0 100 200 300 400
Time (s)




State of Charge Estimation - Simulations

Stochastic Model

o Gaussian noise introduced in all the state equations.

o Applied current randomly switched between —354/m? and —25A4/m?
(RBS).

e 2000 particles used.

0.8 / o
0.6 :
0.4

0.2

State of Charge (SOC)

1 1 1 ~
0 100 200 300 400
Time (s)
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Single Particle (SPM) Model

State Variables:

e Voltage (V)

o Current (I)

o Li* Ion Concentration (C)
o State Of Charge (SOC)

Coordinate variables:

— o Time (t)

Cell Compartments: o Radius (r)
o Positive Electrode (p) Characteristics of SPM:

e Separator (s) o ﬁsgﬁgslzpatial variations
@ PDEs reduced to ODEs

@ Position coordinates (z),(y),(2)
eliminated

o Negative Electrode (n)
Phases:
e Solid (s)

o Electrolyte (c) @ State variables change only w.r.t

(r),(t)
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Single-Particle Model (SPM) in Detail

Approximate Potentials

= ——sinh™ )
q)s(t) - Ia h L <2al\/(ce¢2*(t)(0max _ C*)))

Fickian Mass Diffusion of Lit

10 5 0
acs(a:,r, t) = r_QE(DST Ecs(m,n t)) J
Molar Flux of Lit
S I B I
T = Faply &= Fanly,

Voltage

v==0,—-o,
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Algorithm for Optimal Charging

Moving Window Approach

Moving Horizon Approach:

o Total charge time = t;o1a;

Battenpbiopentics o Divide ttptq; into Windows W
o Cell Temperature: [T, T,]" o Divide W into N sub-windows:
o Li™ Concentration: [C,, C,,]T aw =%
e State of Charge: e Time axis:
[SOC,, SOC,|T [0, dW, 2dW, - - -, NdW]

o Charge current profile:
[IlaI27"'aIN] 21 /R4
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Results and Analyses

Case 1: Charging with No
S te}

Constraints

f
/_/_/ 2
s3 S
£, 2
H H
81 ]
3
S T 0 200z 3 S0 Tl 0 200 20 000
Time )
o /
503 P
s
3 02 -
o Zm
B I T ) S0 Tl 0 200 20 3000

Time (5)

—

00 2000 3000 4000 5000 60!
Time (s)

000 2000 3000 4000 5000 6000

1000 2000 3000 4000 5000 6000 000 2000 3000 4000 5000 6000
me (s) Time (5)

o Charge at I, = 20 A

cm?2
e No constraints considered
e Full charge reached at 3000s

e Temp constraint violated at
1000s

e Solve: argmaxSOC(z) s.t.
constrainté are satisfied

o Obtain Loy = 9.7-2;

o Full charge reached at 6000s

e Temp constraint respected
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Results and Analyses Cont’d

1 —| S ——
0 1000 2000 3000 4000 5000 0w @ wmm @ s
Time (5) ime (s

04 e

0 1000 2000 3000 4000 5000 0 1000 2000 3000 400 5000
Time (5)

e Window size: W = 100s and dW = 10s
Topt = QOCmi2 for 1000s, drop to

Topt = 9.30:22 and hold.

Total charge time reduced to 5000s.
Reduce window size to W = 20s and
dW = 2s: reduce total charge time to
3600s.
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