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Arithmetic Topology

factorization statistics of Whn ~ H*(Xy; C)
Yn(q) = Vn(Fq)™™

factorization statistics of cohomology of
polynomials over Fq hyperplane complements
‘factorization’ statistics of Fry-stable cohomology of
maximal tori in algebraic groups flag varieties
asypmitotic stability representation/multiplicity

of polynomial factorization statistics stability




Hyperplane complements of type W,

Type Symmetric group Permutation
An_1 Sh~A{1,...,n} matrices n x n

Type | Hyperocthahedral group | Signed permutation
B,/Cp By~ {£1,...,£n} matrices n x n

Wn ~ R™ by (signed) permutation matrices
Xn = Mw,(C) := (C”\complexified reflection hyperplanes

W ~ My, (C) freely



Hyperplane complements and polynomials

Wn Sn Bn
M, (C) C"\{z; — z; =0} C"™\{z; £ 2 =0,z =0}
Ms, (C) = PConf(C) Mg, (C)
(Mwa/Wa)(C) | {{z1,....20} : z7€C} | {{£2z1,...,+25} : 21 € C*}
Ywa(C) Vs, (C) = Confy(C) Vs,(C)
Space of {x=—z1)(x—z):z# 2z} | {(x=20)-(x=28):2F # 2},
polynomials z#0}




Hyperplane complements and polynomials

Vs, and Vg, are algebraic varieties defined over Z

Polys(K) := {f € K[x]: f is monic of degree n} for a field K

IYw,(K) = the K-points of )y,

Vs, (K) = {f € Polys(K) with no repeated roots }
Vg,(K) = {f € Polys(K) with no repeated roots and f(0) # 0}

Yn(Q) = yWn(]FQ)



Factorization type

f € Polyp(Fq) ~ factorization type of f

Ar F n degrees of irreducible factors of f(x)
x3(x? +1) € Polys(F3) ~ (132") k-5
(x+1)(x = 1)(x3 - x+1) € Polys(F3) ~ (123" F5
Remarks:

® Frg ~ Yw,(Fq) and Y, (Fq) = (M, (Fq)) ™

@ factorization types given are given by Frg-orbits:
Type A: Frg ~ {x € Fq : f(X) = 0} ~~ Xy
Type B/C: Frg n {x € Fq : f(x3) =0} ~ (A\],A})

(x2=1)=(x—-1)(x+1) € Vs,(F3) ~ (132
(x2—1)=(x —1)(x+1) € Vg,(F3) ~ (1',1") double partition of 2



Factorization statistics for Poly,(Fq) and Vy,(Fq)
A factorization statistic
P : Polys(Fq) — Q s.t. P(f) only depends on \¢

@ R(f) = # roots of fin Fy
@ Xi(f) = nk(\r) = # degree-k irreducible factors of f over Fq

@ For f € Yg,(Fq)
X! (f) = nk(\}) = # degree-k QR irred factors of f over Fq
X, (f) = nk(A\;) = # degree-k NQR irred factors of f over Fy

We focus on polynomial factorization statistics:
PeQ[Xi,Xo,...] or PeQIX;H X7, X, Xy .. ]

P:| | Wn— Q character polynomial

n>1



Factorization statistics and hyperplane complements

Theorem (Twisted Grothendieck—Lefschetz trace formula)
Let P be a factorization statistic defined over Ys(q)

P.uf
A DURD A

feYn(q) k>0

Topology: Wp ~ H* (M, (C); C)

Yk is the Wy-character of H( My, (C); C)
(-, )w, the standard inner product of
Wh-class functions

Arithmetic: P : Ya(q) — Q
factorization statistic for
Vn(q) = Y, (Fq)™ C Polyn(Fq)

@ Follows from results of Grothendieck, Artin, Lehrer and Kim
Type A: Church—Ellenberg—Farb (2014)
Type B/C: J.R.—Wilson, Casto, Matei (2017)



Factorization statistics and hyperplane complements

Example: counting polynomials
P(o) =1forall o € Wy
1 ! .
— > 1=> (-1)*g Fdime H*(w,(C); C)

n
q9 fEWn(Fq) k=0

YW (F)l = G"Py,,, (-G ")

Arithmetic: Topology:
Q k=0
H¥(Confp(C)) =4 Q k=1
|Confn(Fg)| = q" — g™ 0 k>2
Q k=0
2
K ) Q° 0<k<n
Vo (Fo) =" —2q"" +2q2—..  HOEOI=y g kon
0 k>2



Unrestricted factorization statistics

Theorem (Hyde 2017)

Let P be a factorization statistic defined over Poly,(Fq)

1 P, ¢5
7 X An-x s
fePolyn(Fq) k>0
Arithmetic: P is a factorization Topology: ¢ is the Sp-character of
statistics for Polya(IFq) H2%(PConfn(R%); C)

@ His proof uses a splitting measure interpretation.

@ Same approach recovers type A formula for Vs, (Fgq). Bonus: gives an
efficient, direct way to compute the characters X and ¢*.

Questions:
- Can this approach be used to recover the type B/C formula for Vg, (Fq)?

- (Hyde) Is there a geometric interpretation of the connection between
factorization statistics on Poly,(F4) and the cohomology of PConf,(R?)?



Statistics for Fry-stable maximal tori and flag varieties

Theorem (Lehrer)
Let P be a factorization statistic defined over Y,(q)

k
Lﬂ Z P(T) = Z( 1)k< ¢n>wn

\Yn(q @

TeYn(q) k>0

Topology: Wh ~ H*(FGp; C)
Ar|thmet|c P is a ‘factorization’ statistic for %‘ is the Wy-character of H2k(]-‘Gn; (c)
Yn(q) = {Frg-stable maximal tori in Gn(Fq)} (-, )y, the standard inner product of
Wh-class functions

@ (Steinberg): |Vn(q)| = " " if G, = GL,
Vn(q)] = G2 if G = Spy, (or Gp = SO2n41)
@ Can be obtain from a Twisted Grothendieck—Lefschetz trace formula
(CEF 2014)
Type A: Church—Ellenberg—Farb (2014)
Type B/C: J.R.—Wilson, Casto, Matei (2017)



Families of algebraic groups

Algebraic groups G, Weyl group W, Type

general linear groups GL, S;, (symmetric group) A

special orthogonal groups | SO2p,11 | By (hyperoctahedral group) B

symplectic groups Spzn B, (hyperoctahedral group) C

G, is defined over a field K = Fg, Fq, C

G, (K) = K-points of the algebraic group



Frq-stable maximal tori in Gp(Fq)

T torus in G,(K): subgroup K-isom. to a product of GL{(K)
T maximal torus: if T"isatorusand T C T/, then T = T’
WhenK = Fq

T Fry-stable: T is stable under the Frobenius action:

Frq . Gn(ﬁq) — GH(FQ) given by (Xivj) = (X’?j)

Examples:

To = {diag{\,..., \n} : \i € F;} C GLn(Fq)

To = {diag{1, \1..... An. A7, A0} - A € Fy } € SO2nsa (F)
To = {dl.ag{)\h...,)\n,)\1_17"")‘r_71} DA GF;} < sz,,(ﬁq)

In(q) :== {T < Gn(Fq) : Tis a Frq-stable maximal torus}



‘Factorization’ statistics for Fry-stable maximal tori

T €Vn(q) ~

wr € W, ~~ ’factorization type’ of T:
ArEn oor (AF,A7)

‘Factorization’ statistic: P : Vn(q) — Q

Type A X:(T) = n.(\r) = # of r-dimensional Fry-stable subtori
of T irreducible over Fq
Type B/C X:(T) = n,(\7) = # of r-dimensional Fr,-stable subtori

of T irreducible over Fq that split over Fyr

Y:(T) = n/(\7) = # of r-dimensional Fry-stable subtori of

T irreducible over F, that do not split over Fr

A split Fry-stable maximal torus: cTF

(a0
T“’HO A‘

For ¢ € F; not a square in Fq a non-split torus
==X —
} A1%‘7;9} T(f{ x.yer.xz—ey271}
(
)

0 Xi(T.




Flag varieties

GC) Generalized flag variety X, = 7G,

H?*(FGn; C) = R;; (Borel)

GLs(C) Complete flags in C"
{0Ccv,C...CV,=C":dimV, =m}

Sn ~Clxq, ..., xa]/ls,
ls, = (Sp-invariant polynomials)

SO2,41(C) Complete flags in C2™' equal to
their orthogonal complements

By ~ (C[X1,. .. ,Xn]/an
Is, = (Bp-invariant polynomials)

Sp2n(C) Complete flags in C2" equal to
their symplectic complements

By ~ (C[X1,. .. ,Xn]/IB,,
Is, = (Bp-invariant polynomials)



Multiplicity stability: n — oo

Sequence of Wy-representations satisfies multiplicity stability:

the decomposition into irreducibles “stabilizes” for n large

H'(Ms,(C);C) = V(T e VH D) e VD)

H'(Ms,(C);C) =V((TTTT) e V(H ) e V)

H'(Ms,(C);C) = V(T T ) e V(1 e v
H'(Ms,(©):€) =V T--D) eV(H I - Hev({]- orn=4

(Mo, (0 ©) = VLTI L0 0 V(- 0) 2 o V(Lo
=17 o o Y ) forn > 4



Fl,y-modules

Category Fhy: Obj: n = {1,1,...,n,n}; Morph: Endg,,, (n) = Wy & l:n—n+1

Fl,,-module (over R): functor from Flyy, to R-modules

Wi

©

0 = k [:1,‘1](
[

;o

i

2)

Wa
> k[:rl,:rg]m
I

P, .
(x], x5, x129)

Wi
k21,29, 28](9) >

fmp2 g2 m2 o m . NP
WET, X5, Iy, Tpdie, T1dg, T3lay

—>

€.

2
Generators xy

Figure borrowed from Jenny Wilson

n— H' (Mw,(C);C) D {aj : aj = i, i # j,i,j € [n]} AW,

generated by a2 € H' (M, (C); C) (Flyy-deg 2)
Fl,y-algebras:

n — H*(My,(C);C)

generated (as Flyy-algebra) by H'(My,(C); C) (Flyy-deg 2)
n— K[x1, X2, ..., Xa] ~ Whp

generated (as Flyy-algebra) by K[xi](1) (Fl,v-deg 1)



Representation stability and Fl,,-modules

[CEF, Wilson] Repstability = f.g. Fl),-module = multiplicity stability

Theorem (Church—Farb—Ellenberg, Wilson)

The sequences of Wp-representations
° {H"(MWH(C); (C)}n
° {H"(IG,,((C); C)}n

are finitely generated Fhy-modules.

Key consequences: Let ¢X = W,-character of H*(My, (C); C) or
H?K(FG,(CT); C)

@ Then X are given by a unique character polynomial for n >> k.
@ For every character polynomial P

(P,}),y, s constant for n>> k



Representation stability = asymptotic stability

Theorem
Let P a polynomial factorization statistic, then

n

C(n,q) > P(f)=Y (-1)fq"*(P,vk),,

feyn(q) k=0

Theorem (Church—Ellenberg—Farb, J. R.—Wilson, Casto x )

Let P a polynomial factorization statistic, then

i =S :2_:( 1)kg~* lim (P, k),

and the series converges.




Convergence: Fly,-degree of generators

Question (J. R.— Wilson) What'’s the underlying structure of
{AK .~ Wy} such that for every character polynomial P the formula
> keo(=1) g7 limns o (P, x 4t ), cOnverges?

e If AKX ¢ HX, where H* is a Flyy-algebra f.g. in Flyy-deg < 1 = v/

Ex. Co-invariant algebras = asymptotic for Fr,-stable maximal tori

@ Generators in Flyy-degree two or more # convergence:

Theorem (J.R.—Wilson) Let A* be a graded Flyy-algebra containing the
free symmetric algebra on {«;; : i # j}. Then the series
Srco(=1) a¥limy, oo (1, xa)w, does NOT converge.

@ Hyperplane arrangements have generators in Flyy-degree two:

to get convergence we consider relations



Computing asymptotics using topology

Table 1
Some statistics for Frobenius-stable maximal tori of Sp,,, (Fy) and SO2.+1(Fq).
Fr,-stable maximal tori statistic Hyperoctahedral Formula in terms of n Limit as
for Spy, (Fq) and SOzn+1(Fy) character n — oo
Total number of Fr,-stable 1 qz"‘2 (Steinberg)
maximal tori
Expected number of X, +Y 1+ q% + ﬁ + .- q—ﬁf @q:—l)
1-dimensional Fr,-stable subtori
Expected number of split X, : (1 + % +a+ g },,) ﬁ
1-dimensional Frg-stable subtori
) . X, +Y, (a*— 23 )(1— =) .
! ') = £} v i
.Expectfad value of reducible minus ( 2 ) (X2 +Y2) ‘9—";('; TR j—q;(q 1=
irreducible Fr,-stable
2-dimensional subtori
oo _ @ (1- 3 ) (1~ ) g
Expected value of split minus X2—-Y; 3qi=1) 3(gi—1)

non-split Fr,-stable 2-dimensional
irreducible subtori




Computing asymptotics using other techniques

Theorem (Fulman — J. R.— Wilson)

(i) (Type A). Let \ be a fixed partition. Let V,(q) denote the set of
Fry-stable maximal tori of GL,(Fg4). Then

Al

1 X 1 g \"W
nll_)mooan n Z)(/\)(T)—Z)\H(qr_1> .

Teyn(q

(i) (Type B/C). Fix partitions ;1 and \. Let Y»(q) denote the set of Fry-stable
maximal tori of SOop11(Fg) or Span(Fq). Then

lp () 1Al r ne(A)
1 X\ /Y 1 q q
nlqu"z > <M)<>\>(T)VVAH<Q’—1> H(Q’+1> '

TeYn(q) oA =1 r=1

B (Al

(f) (0) = rl} (::EZD forallo € S, 2, = Hnr R



Asymptotic statistics = compute stable multiplicities

Corollary (Chen, Fulman - J. R.- Wilson)
Given P a polynomial factorization statistics

Bi = lim (P, Vi, = lim_dimc H'(Vn(C); V)

The generating function >";°, ;' is a rational function.

Example 3.9. (Example: C").
Character polynomial:

P =X, -V,
-(5)-()
T\ )

gﬂizt BCEDIES)

b B P 2T 42 e 2
Recurrence: Ba = Ba—2 for d > 3.

Betti numbers:



Asymptotic statistics = multiplicity stability

Corollary (Chen, Fulman - J. R.- Wilson)
@ Obtain a generating function for the characters 1%

@ ¢k are eventually given by character polynomials Qy

@ Recover multiplicity stability:
(P, wg)wn is constant for n >> k if P is any character polynomial

@ Obtain a generating function for those character polynomials Qy

@ Have another proof of Theorem %

Question: Identify other families where asymptotic stability of
statistics could be used to compute stable multiplicities or stable
characters



