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1 Introduction

In these notes, we describe methods for computing abelian surfaces with everywhere good
reduction. There are two essential ingredients to our approach: the Eichler-Shimura conjecture
for totally real number fields and explicit equations for Hilbert modular surfaces. This requires
that we start with a review of the necessary background. For the most part, we follow our joint
paper with A. Kumar [12].

2 Hilbert modular forms

Let F be a totally real field of narrow class number one and degree d > 1. We let OF be the
ring of integers of F , dF the different of F . For each i = 1, . . . , d, let a 7→ a(i) denote the i-th
embedding of F into R, so that we have an identification F ⊗R ' Rd. We let F+ be the set
of totally positive elements in F , i.e. the inverse image of (R+)d, and OF,+ = F+ ∩ OF . We
fix a totally positive generator δ of dF . (Note that every ideal has such a generator since F has
narrow class number one.)

2.1 Basic definitions and properties

Let H be the Poincaré upper half plane. The Hilbert modular group SL2(OF ) acts on Hd by
fractional linear transformations:(

a b
c d

)
· (z1, . . . , zd) =

(
a(i)zi + b(i)

c(i)zi + d(i)

)
i=1,...,d

.

Let k ≥ 2 be an even integer. The action above induces an action of the Hilbert modular group
on the set of functions f : Hd → C by

(f |kγ)(z) =
( d∏
i=1

(c(i)zi + d(i))
)−k

f(γz), γ =

(
a b
c d

)
∈ SL2(OF ).

Let N be an integral ideal, and set

Γ0(N) =

{(
a b
c d

)
∈ SL2(OF ) : c ∈ N

}
.
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Definition 2.1. A Hilbert modular form of weight k and level N is a holomorphic function
f : Hd → C such that

f |kγ = f for all γ ∈ Γ0(N).

Equivalently, this means that

f(γz) =
( d∏
i=1

(c(i)zi + d(i))
)k
f(z) for all γ =

(
a b
c d

)
∈ Γ0(N).

We denote by Mk(N) the space of all Hilbert modular forms of weight k and level N.

Let f ∈ Mk(N). Then f is invariant under the matrices

(
1 µ
0 1

)
for µ ∈ OF , which act as

z 7→ z + µ. So it admits a q-expansion

f(z) =
∑
µ∈OF

aµe
2πiTr(µz

δ
),

where Tr(νz) = ν(1)z1 + · · ·+ ν(d)zd, for ν ∈ F . The following result is essentially a consequence
of the Dirichlet unit theorem.

Lemma 2.2 (Goetzky-Koecher’s principle). Let f be a Hilbert modular form of weight k and
level N. Then f admits a q-expansion of the form

f(z) = a0 +
∑

µ∈OF,+

aµe
2πiTr(µz

δ
).

In particular, f is holomorphic (at the cusps).

Proof. See Bruinier [3] or Goren [23].

Let f ∈ Mk(N) be a Hilbert modular form. Since f is invariant under the action of the

matrices

(
ε 0
0 ε−1

)
for ε ∈ O×F in SL2(OF ), which act as z 7→ ε2z, we have

aε2µ = aµ for all µ ∈ OF,+ and ε ∈ O×F .

So, for every ideal m ⊆ OF , the quantity am(f) = aµ, where µ is a totally positive generator of
m, is well-defined and depends only on m.

Definition 2.3. Let f be a Hilbert modular form of weight k and level N, and write its q-
expansion

f(z) =
∑

µ∈OF,+

aµe
2πiTr(µz

δ
).

For every integral ideal m, we define the Fourier coefficient of f at m by

am(f) := aµ,

where m = (µ).

Let f be a Hilbert modular form of weight k and level N. For every γ ∈ SL2(F ), we can write
the q-expansion

(f |kγ)(z) = a0(f |kγ) +
∑

µ∈OF,+

aµ(f |kγ)e2πiTr(µz
δ

).

This allows us to make the following definition.
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Definition 2.4. Let f be a Hilbert modular form of weight k and level N. We say that f is a
cusp form if a0(f |kγ) = 0 for all γ ∈ SL2(F ).

We denote by Sk(N) the space of all cusp forms of weight k and level N. Clearly Sk(N) ⊆Mk(N).

Theorem 2.5. The spaces Sk(N) and Mk(N) are finite dimensional complex vector spaces.

Proof. See [18].

Let dµ := dx1dy1
y21
· · · dxddyd

y2d
on Hd. We recall that SL2(R)d acts transitively on Hd, with the

stabilizer of i = (
√
−1, . . . ,

√
−1) being SO(2)d. The measure dµ is the pushforward of the Haar

measure dg on SL2(R)d via the bijection SL2(R)d/ SO(2)d ' Hd. So it is SL2(R)d-invariant.
For f ∈Mk(N) and g ∈ Sk(N), one can show the following integral∫

Γ0(N)\Hd
f(z)g(z)(y1 · · · yd)kdµ.

converges. For a proof of this, we refer to [3, 18].

Definition 2.6. Let f, g ∈ Sk(N). We define the Petersson inner product of f and g by

〈f, g〉 :=

∫
Γ0(N)\Hd

f(z)g(z)(y1 · · · yd)kdµ.

This means that Sk(N) is a finite dimensional vector space equipped with an inner product,
namely the Petersson inner product. This fact is very useful both theoretically and algorithmically.

2.2 Hecke operators

Let f be a Hilbert modular form of weight k and level N. For every prime p - N, we define the
function Tpf : Hd → C as follows. First, write p = (π) where π is a totally positive, and then set

(Tpf)(z) := (f |kγ∞)(z) +
∑

a∈OF /p

(f |kγa)(z),

where

γ∞ :=

(
π 0
0 1

)
, γa :=

(
1 a
0 π

)
for a ∈ OF /p.

Lemma 2.7. Let p - N be a prime. Then, the map

Tp : Mk(N)→Mk(N)

f 7→ Tpf

is a linear operator which preserves Sk(N). We call Tp the Hecke operator at p.

Proof. Exercise.

The definition of Hecke operators can be extended (multiplicatively) to all integral ideals
including those dividing the level N. For an adelic treatment of this, we refer the reader to
Shimura [40]. From now on, if m is an integral ideal, we let Tm be the Hecke operator at m.
The Hecke operators enjoy many beautiful and striking properties. Among others, we have the
following result.
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Theorem 2.8. Let f, g ∈ Sk(N) be cusp forms and m - N. Then, we have

〈Tmf, g〉 = 〈f, Tmg〉.

Proof. There is a proof of this result in the general setting in Shimura [40, §2].

Theorem 2.8 means that the Hecke operators Tm for m - N are self-adjoint. Since the space
Sk(N) is finite dimensional, it follows that such a Tm is diagonalizable. In fact, more is true.

Definition 2.9. The Hecke algebra of weight k and level N acting on Sk(N) is the Z-subalgebra
of EndC(Sk(N)) generated by the Tm for all integral ideals m - N. We denote it by Tk(N).

Theorem 2.10 (Shimura). The Hecke algebra Tk(N) is a commutative finitely generated
Z-algebra which admits a basis of common eigenvectors for the action of Tk(N) on Sk(N).

Proof. We refer to Shimura [40, §2].

Definition 2.11. Let f be a cups form of weight k and level N. We say that f is an eigenform
if f is a common eigenvector for the action of Tk(N) on Sk(N). If in addition a(1)(f) = 1, then
we say that f is normalized.

One of the most striking features of Hilbert modular forms is the deep connection between
the eigenvalues of Hecke operators and the Fourier coefficients of eigenforms.

Theorem 2.12 (Shimura). Let f ∈ Sk(N) be a normalized eigenform. Then the followings hold.

(a) For every integral ideal m - N, am(f) is an algebraic integer such that

Tmf = am(f)f.

(b) The field Kf := Q(am(f) : m ⊆ OF ) is a number field, i.e. is a finite extension of Q,
which is totally real. We let Of := Z[am(f) : m ⊆ OF ]. (This is a suborder of the ring of
integers of Kf ).

Remark 2.13. We observe that Theorem 2.12 (b) is true because F has narrow class number
one, and we only consider forms with trivial characters. In general, Kf will be a CM field. See
Shimura [40, §2] for more details on this.

2.3 Old and new subspaces

For every integral ideal M such that M | N, and for every divisor D of NM−1, let u be a totally
positive generator of D. Then, it is not hard to see that the map

ιD : Sk(M)→ Sk(N)

f 7→ fu,

where fu(z) := f(uz), is independent of the choice of u and is an injection. We let

Sk(N)old :=
∑
M|N

D|NM−1

ιD(Sk(M));

Sk(N)new :=
(
Sk(N)old

)⊥
.

We call Sk(N)old (resp. Sk(N)new) the old subspace (resp. new subspace) of Sk(N). It can be
showed that Sk(N)old and Sk(N)new are both stable under the Hecke action.
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Definition 2.14. Let f ∈ Sk(N) be a normalized eigenform. We say that f is a newform if
f ∈ Sk(N)new.

Definition 2.15. Let f be a cusp form. We define the L-series of f by

L(f, s) :=
∑

m⊆OF

am(f)

Nms
.

Theorem 2.16 (Shimura). Let f be a cusp form. Then L(f, s) is an entire function, i.e. is
holomorphic on the whole complex plane. If f is a newform, then L(f, s) admits an Euler
product.

Proof. The proof of this is essentially an adaption of what is known for F = Q. So we refer
to [37, 40].

Theorem 2.17 (Multipicity one). Let f, g be two normalized eigenforms such that

am(f) = am(g) for all m - N.

Then, we have f = g.

Proof. This follows from the relation between Hecke eigenvalues and Fourier coefficients, and
the fact that f is determined by its q-expansion.

We mentioned earlier that the definition of the Hecke operators can be extended to all integral
ideals. With this in mind, we have the following result due to Miyake.

Theorem 2.18 (Strong multipicity one). Let f be a newform. Then, we have

Tmf = am(f)f for all m ⊆ OF .

Proof. See [31].

Theorem 2.17 and Theorem 2.18 are both very powerful and extremely useful as they imply
that every newform is uniquely determined by its Hecke eigenvalues or Fourier coefficients. Here
is an immediate indication of their usefulness.

Theorem 2.19. Let f ∈ Sk(N)new be a newform, and let Kf be its field of Fourier coefficients.
For each embedding τ : Kf ↪→ Q, there exists a newform f τ ∈ Sk(N) defined by

am(f τ ) := τ(am(f)), for all m ⊆ OF .

The set {f τ : τ ∈ Hom(Kf ,Q)} is called the Hecke orbit of f . We denote it by [f ].

Proof. See Shimura [40, §2].

For more background on Hilbert modular forms, see [3, 13, 18, 23, 40]. Here, we wish to
point out some new techniques in the computation of Hilbert modular forms, which arise from
the Eichler-Jacquet-Langlands-Shimizu correspondence between Hilbert modular forms and
quaternionic modular forms. We will not go into details here, but instead refer the reader to
[13] for a detailed description of these methods. The upshot is that it is possible to efficiently
compute systems of Hecke eigenvalues for Hilbert modular cusp forms by instead computing
modular forms on finite spaces or on Shimura curves. This will be crucial to the methods in
these notes. The corresponding algorithms have been implemented in the Hilbert Modular Forms
Package in Magma [2]).
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3 Eichler-Shimura and GL2-type Modularity Conjectures

3.1 The Eichler-Shimura conjecture

The following conjecture is instrumental for the method we develop in these notes. Before stating
it, we need some definition.

Definition 3.1. Let A be an abelian variety defined over F . We say that A is of GL2-type if
there exists a number field K such that dim(A) = [K : Q] and EndF (A)⊗Q ' K.

If A/F is an abelian variety of GL2-type with EndF (A)⊗Q ' K and g = [K : Q], then there
exists an integral ideal N such that the conductor of A is of the form

cond(A) = Ng.

The following statement relates Hilbert modular forms to abelian varieties of GL2-type.

Conjecture 3.2 (Eichler-Shimura). Let F be a totally real number field of narrow class number
one and N an integral ideal of F . Let f ∈ S2(N) be a newform. Then, there exists an abelian
variety Af/F of dimension [Kf : Q] with good reduction outside of N and with Of ↪→ EndF (Af ),
such that

L(Af , s) =
∏

τ∈Hom(Kf ,Q)

L(f τ , s) =
∏
g∈[f ]

L(g, s).

When F = Q, this conjecture is a theorem, due to Eichler for prime level and Shimura in the
general case. The Eichler-Shimura construction can be summarized as follows. Let N > 1 be
an integer, and let X1(N) be the modular curve of level Γ1(N). This curve and its Jacobian
J1(N) are defined over Q. We recall that the space S2(Γ1(N)) of cusp forms of weight 2 and
level Γ1(N) is a T-module, where T is the Hecke algebra. Let f ∈ S2(Γ1(N)) be a newform,
and let If = AnnT(f). Shimura [39] showed that the quotient

Af := J1(N)/IfJ1(N)

is an abelian variety Af of dimension [Kf : Q] defined over Q with endomorphisms by the order
Of = Z[an(f) : n ≥ 1] and that

L(Af , s) =
∏
g∈[f ]

L(g, s),

where [f ] denotes the Galois orbit of f .
One of the main consequences of the proof of the Serre conjecture [35] by Khare-Wintenberger [27]

is that the converse to Conjecture 3.2 is true when F = Q. That is, an abelian variety of
GL2-type is isogenous to a Q-simple factor of J1(N) for some N [28]. And so, this provides a
theoretical construction of all abelian varieties of GL2-type over Q with a prescribed conductor.
In fact, one can make this explicit in many cases (see [8] for elliptic curves, and [22, 24] for
abelian surfaces).

For [F : Q] > 1, the known cases of Conjecture 3.2 exploit the cohomology of Shimura curves.
For instance, the conjecture is known when [F : Q] is odd, or when N is exactly divisible by
a prime p of OF [46]. The simplest case in which Conjecture 3.2 is still unknown is when f
is a newform of level (1) and weight 2 over a real quadratic field. In that case, the conjecture
predicts that the associated abelian variety Af has everywhere good reduction.
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Table 1: Modularity of abelian varieties of GL2-type

Hilbert newforms f/F
with Hecke eigenvalues

Z[am(f) : m ⊆ OF ] ⊆ OK
(weight 2, level N)

(Isogeny classes of)
Abelian varieties A/F

dim(A) = g, cond(A) =Ng

EndF (A) ⊗ Q = K

- - - - Eichler-Shimura conjecture
- - - - GL2-type Modularity conjecture

3.2 The GL2-type modularity conjecture

The following is the converse statement to Conjecture 3.2.

Conjecture 3.3 (GL2-type Modularity). Let F be a totally real number field of narrow class
number one, and A an abelian variety of GL2-type over F . Let K := EndF (A)⊗Q and write
cond(A) = Ng, with g = [K : Q]. Then, there exists a newform f ∈ S2(N)new such that

L(A, s) =
∏

τ∈Hom(Kf ,Q)

L(f τ , s).

Here are two of my favourite examples.

Example 3.4. Let F = Q(
√

5), w = 1+
√

5
2 and N = (5 + 2w). Then, N is a prime of norm 31.

This is the smallest norm for which S2(N) 6= 0. In that case, we have dimS2(N) = 1. So, there
is a newform f ∈ S2(N) with Fourier coefficients in Z. In [10], we proved that f corresponds to
the elliptic curve

E : y2 + xy + wy = x3 − (1 + w)x2,

In other words, we proved that E is modular and that

L(E, s) = L(f, s).

An alternate description of E. Let D be the quaternion algebra over F which is ramified at
N and exactly one of the two real places. Let OD be a maximal order in D, and consider the
Shimura curve XD

0 (N) obtained from (OD)1, the units of norm 1 in OD. Then XD
0 (N) is a curve

of genus 1. Hence Jac(XD
0 (N)) is an elliptic curve. By the Jacquet-Langlands correspondence,

Jac(XD
0 (N)) and E are isogenous.

Example 3.5. Again, we let F = Q(
√

5), w = 1+
√

5
2 , and set N = (7 + 3w). Here N is a prime

of norm 61. This is the smallest norm such that dimS2(N) = 2. There is a newform f ∈ S2(N)

such that Of = Z[am(f) : m ⊆ OF ] = Z[1+
√

5
2 ]. In [13], we show that f corresponds to the

Jacobian of the hyperelliptic curve C : y2 +Q(x)y = P (x) given by

P (x) := −wx4 + (w − 1)x3 + (5w + 4)x2 + (6w + 4)x+ 2w + 1;

Q(x) := x3 + (w − 1)x2 + wx+ 1.
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(We have N2 = (disc(C).) The curve C comes from the Brumer family described in [4]. So, its

Jacobian Jac(C) has real multiplication by Z[1+
√

5
2 ].

Alternatively, let D be the quaternion algebra over F which is ramified at N and exactly one
of the two real places. Let OD be a maximal order in D, and consider the Shimura curve XD

0 (N)
obtained from (OD)1, the units of norm 1 in OD. Then XD

0 (N) is a curve of genus 2. Hence
Jac(XD

0 (N)) is an abelian surface. By the Jacquet-Langlands correspondence, Jac(XD
0 (N)) has

RM by Z[1+
√

5
2 ] and is isogenous to Jac(C). However, we do not know whether the curves

XD
0 (N) and C themselves are isogenous.

In Table 1, we summarize the connection between the Eichler-Shimura and GL2-type modularity
conjectures. Although many cases of these conjectures are known, they still remain largely open.
We conclude this section with one of the most up-to-date results in this area.

Theorem 3.6 (Freitas-Le Hung-Siksek). Let F be a real quadratic field, and E an elliptic curve
defined over F . Then E is modular.

Proof. See Freitas-Le Hung-Siksek [19].

4 Elliptic curves with everywhere good reduction

4.1 Historical note

To the best of our knowledge, the first example of an elliptic curve with everywhere good
reduction was discovered by Tate. Namely, he showed that the curve E defined by

E : y2 + xy + ε2y = x3,

where ε = 5+
√

29
2 is the fundamental unit in F = Q(

√
29), has discriminant ∆ = −ε10. This curve

is extensively studied by Serre in [34]. In [38], Shimura discusses similar examples, and proposes
a general strategy for constructing higher dimension analogues. From the early 70s to the late
90s, a great deal of work went into finding more examples of elliptic curves with everywhere
good reduction defined over quadratic fields. Here is a non exhaustive list of references on the
subject [36, 44, 9, 7, 32, 25].

4.2 Elkies-Donnelly search method

Let F be a real quadratic field of narrow class number one, and let ε be the fundamental unit of
OF . Let E be an elliptic curve with everywhere good reduction defined over F . Suppose that E
is given by the extended Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

with coefficients ai ∈ OF and discriminant ∆. Without loss of generality, we can assume that
∆ = ±εm with 0 ≤ m < 12. A refinement of an argument of Stroeker [44] by Elkies [15] shows
that we can in fact assume that m ∈ {1, 2, 3, 4, 5}. Recall that the pair (c4, c6) satisfies the
equation

x3 − y2 = 1728∆. (1)

Elkies heuristics assert that if E is an elliptic curve of discriminant ∆, then for each archmedian
place v the quantities |v(c3

4)|, |v(c2
6)| and 1728|v(∆)| are roughly of the same size. Otherwise,

there must be a large amount of cancellation in (1). One expects this not to happen very often.
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Given m (and hence ∆), set

H(x) =
(v0(x)|v0(∆)|−1/3)2 + (v1(x)|v1(∆)|−1/3)2

√
D

=

(
v0(x)|v1(∆)|1/3

)2
+
(
v1(x)|v0(∆)|1/3

)2
√
D

,

where v0, v1 : F ↪→ R are the real embeddings of F . Then, H becomes a positive definite quadratic

form in x over OF . The normalizing factor
√
D
−1

ensures that this form has discriminant 1.
One searches for points on (1) by running over small values of x ∈ OF . (The search can be
further refined by weighing the form H depending of the height of ∆.)

The method has been refined by Steve Donnelly to remove the restriction that ∆ is a unit,
and extended to all totally real number fields (of narrow class number one). This is currently the
algorithm used in Magma [2] to search for elliptic curves with prescribed conductor on such fields.

Example 4.1. Let F = Q(
√

1997), and w := 1+
√

1997
2 . A search in Magma [2] using the algorithm

described above returns six elliptic curves with trivial conductor over F . They are pairwise
non-isogenous and determine three Gal(F/Q)-conjugacy classes represented by

E1 : y2 + wxy = x3 + (w + 1)x2 + (111w + 5401)x+ (2406w + 81112);

E2 : y2 + wxy + (w + 1)y = x3 − x2 + (9370w − 208733)x+ (2697263w − 61535794);

E3 : y2 + (w + 1)xy + (w + 1)y = x3 − wx2 + (19636w + 434383)x+ (5730650w + 125261893).

By Theorem 3.6 these curves are modular. By a Magma [2] computation, we check that there are
exactly 6 Hilbert newforms of level (1) and weight 2 over F with integer Hecke eigenvalues. So,
these are the only elliptic curves with everywhere good reduction over F .

Exercise 4.2. Show that there are no elliptic curves with everywhere good reduction over
F = Q(

√
2017).

5 Abelian surfaces with everywhere good reduction

5.1 Historical note

In contrast to the case of elliptic curves, which we described in Section 4, the only examples
of abelian surfaces with everywhere good reduction in the literature before [12] were of the
following kinds: surfaces with complex multiplication [11], or Q-surfaces [5, 37] or products of
elliptic curves). Furthermore, except for the latter, none of these examples is given by an explicit
equation. This could possibly be explained by the fact that it is not easy to embed such surfaces
into projective spaces. Another additional complication is that it can happen that a curve has
bad reduction at a given prime when its Jacobian still has good reduction at the same prime.

5.2 Hilbert modular surfaces

Let K be a real quadratic field of discriminant D′. The Hilbert modular surface Y−(D′) is a
compactification of the coarse moduli space which parametrizes principally polarized abelian
surfaces with real multiplication by the ring of integers OK of K, i.e. pairs (A, ι), where
ι : OK → EndQ(A) is a homomorphism. The surfaces Y−(D′) have models over the integers,
with good reduction away from primes dividing D′.

9



Recently, Elkies and Kumar [16] computed explicit birational models over Q for these Hilbert
modular surfaces for all the fundamental discriminants D′ less than 100. They describe such a
Y−(D′) as a double cover of P2, with equation z2 = f(r, s), where r, s are parameters on P2.
They also give the map to A2, which is birational to M2, the moduli space of genus 2 curves. It
is given by expressing the Igusa-Clebsch invariants of the image point as rational functions of r
and s.

5.3 Our approach

Our strategy for producing abelian surfaces with everywhere good reduction combines the
Eichler-Shimura conjecture with the explicit equations in [16]. To produce such a surface A, we
proceed as follows:

(a) Find a Hilbert modular form of level (1) and weight 2 for a real quadratic field F , with
coefficients in a real quadratic field Kf of discriminant D′.

(b) Find an F -rational point on the Hilbert modular surface Y−(D′), for which the L-function
of the associated abelian surface matches that of f at several Euler factors, up to twist.

(c) Compute the correct quadratic twist of the abelian surface, or the genus 2 curve.

(d) Check that the abelian surface has good reduction everywhere.

(e) Prove that the L-functions indeed match up, i.e. that A is modular.

5.4 Method 1: Point search on Hilbert modular surfaces

We illustrate this with the following example. The smallest discriminant for which we obtain a
surface with everywhere good reduction is D = 53. The abelian surface Af has real multiplication
by (an order in) the field Q(

√
2). In fact, we will see that it has real multiplication by the full

ring of integers.
An equation for the Hilbert modular surface Y−(8) is given in [16]. As a double-cover of P2

r,s,
it is given by

z2 = 2(16rs2 + 32r2s− 40rs− s+ 16r3 + 24r2 + 12r + 2).

It is a rational surface (over Q) and therefore the rational points are dense. In particular, there
is an abundance of rational points of small height. The Igusa-Clebsch invariants (I2 : I4 : I6 :
I10) ∈ P2

(1:2:3:5) are given by(
−24B1

A1
,−12A,

96AB1 − 36A1B

A1
,−4A1B2

)
,

where

A1 = 2rs2,

A = −(9rs+ 4r2 + 4r + 1)/3,

B1 = (rs2(3s+ 8r − 2))/3,

B = −(54r2s+ 81rs− 16r3 − 24r2 − 12r − 2)/27,

B2 = r2.
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Table 2: The first few Hecke eigenvalues of a base change newform of level (1) and weight 2 over
Q(
√

53). Here e =
√

2.

Np p ap(f) sp(f) tp(f)

4 2 e+ 1 2 7
7 −w − 2 −e− 2 −4 16
7 −w + 3 −e− 2 −4 16
9 3 −3e+ 1 2 1
11 w − 2 3e 0 4
11 w + 1 3e 0 4
13 w − 1 −2e+ 1 2 19
13 −w −2e+ 1 2 19
17 −w − 5 −3 −6 43
17 w − 6 −3 −6 43
25 5 2e+ 4 8 58
29 −w − 6 3e− 3 −6 49
29 w − 7 3e− 3 −6 49

Recall that we expect to find a point of Y−(8) over F = Q(
√

53), corresponding to the principally
polarized abelian surface A which should match the Hilbert modular form f . The L-series of a
surface A arising from our search is obtained by counting points on the residue fields Fp = OF /p
as p runs over the set of primes. On the other hand, the L-series of the conjectural surface Af
attached to f can be written as

L(Af , s) = L(f, s)L(f τ , s) =
∏
p

1

Qp(N(p)−s)
,

where

Qp(T ) := (T 2 − ap(f)T + N(p))(T 2 − ap(f)τT + N(p))

= T 4 − sp(f)T 3 + tp(f)T 2 −N(p)sp(f)T + N(p)2.

We would like the local factors of these two L-series to match.
We first make a list of all F -rational points of height up to a given bound B on the Hilbert

modular surface. Next, for each of these rational points, we try to construct the corresponding
genus 2 curve C over F , whose Jacobian corresponds to the moduli point (r, s) we have chosen,
and check whether the characteristic polynomial of Frobenius on its first étale cohomology group
matches up the polynomial Qp(T ) giving the corresponding Euler factor of surface Af attached
to the Hilbert modular form. If a candidate point (r, s) passes this test for say the first 50
primes (ordered by norm) of F of good reduction for f and A = Jac(C), we can be reasonably
convinced that it is the correct curve, and then try to prove that A is associated to f . (There
are several subtleties in this process, and we refer the reader to [12] for details.)

In this particular example, a search of Y−(8) for all points of height ≤ 200 using [14]
(implemented in Sage) gives the parameters

r = −24 + 10w

112
, s =

136− 24w

112
,
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and the Igusa-Clebsch invariants

I2 = 208 + 88w,

I4 = −1660− 588w,

I6 = −428792− 135456w,

I10 = 643072 + 204800w.

By using Mestre’s algorithm [30] which is implemented in Magma, we obtain a curve with the
above invariants. We reduce this curve using the algorithm in [1] implemented in Sage [33] to
get the curve

C ′ : y2 = (−6w + 25)x6 + (−60w + 246)x5 + (−242w + 1017)x4

+ (−534w + 2160)x3 + (−626w + 2688)x2

+ (−440w + 1724)x− 127w + 567.

By further reducing the curve C ′ we get the following.

Theorem 5.1. Let C : y2 +Q(x)y = P (x) be the curve over F = Q(
√

53), where

P := −4x6 + (w − 17)x5 + (12w − 27)x4 + (5w − 122)x3 + (45w − 25)x2

+ (−9w − 137)x+ 14w + 9,

Q := wx3 + wx2 + w + 1.

Then

(a) The discriminant of this curve is ∆C = −ε7. Thus C has everywhere good reduction.

(b) The surface A := Jac(C) has real multiplication by Z[
√

2]. It is modular and corresponds
to the unique Hecke constituent [f ] in S2(1).

Proof. The surface A has a 7-torsion point defined over F , hence the mod 7 Galois representation
is reducible. To prove that A is modular, we use Skinner-Wiles [42]. See [12] for details.

5.5 Method 2: Splitting abelian varieties

We can use this method when the Hilbert newform f is a base change, i.e. when the Hecke
eigenvalues of f satisfy

ap(f) = aσ(p)(f) for all p,

where Gal(F/Q) = 〈σ〉. In this case f arises from a newform g ∈ S2(Γ1(D)). Since the level of
f is (1), the form g ∈ S2(Γ1(D), χD)new by [29, Prop. 2, p.263], where χD is the fundamental
character of the quadratic field F = Q(

√
D). The coefficient field Lg of g is a quartic CM field

which contains Kf . The non-trivial element of Gal(Lg/Kf ), which we denote by (x 7→ x̄, x ∈ Lg),
extends to complex conjugation. The abelian variety Bg attached to the form g is a fourfold
such that EndQ(Bg)⊗Q ' Lg.

Let wD be the Atkin-Lehner involution on S2(Γ1(D), χD)new. This induces an involution on
Bg, which we still denote by wD. Shimura [37, § 7.7] shows the followings:

(a) wD is defined over F , and wσD = −wD;

(b) wD · [x] = [x̄] · wD, where [x] denotes the endomorphism induced on Bg by x ∈ Lg.

12



(c) The abelian surface Af := (1 + wD)Bg is defined over F , and is isogenous to its Galois
conjugate given by Aσf := (1− wD)Bg. Moreover, we have

Bg ⊗Q F ∼ Af ×Aσf .

This algebraic splitting is not very useful for our purpose. Instead, we produce an explicit
equation for the surface Af by writing down an analytic splitting of the fourfold Bg. For this,
we assume that Af and Aσf are principally polarizable.

To describe the method, we recall that by [6, Theorems 6.2.4 and 6.2.6], there exist newforms
g1, g2 ∈ S2(Γ1(D), χD)new such that {g1, g1, g2, g2} is a basis of the Hecke constituent of g and

wD(g1) = λ̄D(g1)ḡ1, wD(g2) = λ̄D(g2)ḡ2,

where aD(g) is the Hecke eigenvalue of g at D and λD(g) = aD(g)√
D

, the pseudo-eigenvalue of wD.

The matrix of wD in the basis {g1, ḡ1, g2, ḡ2} is given by

WD :=


0 λD(g1) 0 0

λ̄D(g1) 0 0 0
0 0 0 λD(g2)
0 0 λ̄D(g2) 0


From this, we see that W σ

D = −WD. The following lemma is a simple adaptation of Cremona’s [7,
Lemma 5.6.2].

Lemma 5.2. The set of forms h±i := 1
2(gi±wD(gi)), i = 1, 2, are bases for the ±-eigenspaces of

WD, acting on the Hecke constituent of g, which give a decomposition of the space of differential
1-forms H0(Bg ⊗Q F,Ω1

Bg⊗QF/F
) according to the action of Gal(F/Q).

We recall that H1(Bg,Z) is a Hecke module of rank 4 over Z. So, the ±-eigenspaces of wD
H1(Bg,Z)± are free Hecke submodules of Z-rank 2 each.

Lemma 5.3. Let Λ±g be the period lattices obtained by integrating the forms in Lemma 5.2
against H1(Bg,Z)±, and set Λg = Λ+

g ⊕ Λ−g . Then, there exist an abelian fourfold B′g defined
over Q, and an isogeny φ : B′g → Bg whose degree is a power of 2, such that B′g(C) = C4/Λg.
Moreover, B′g = ResF/Q(Af ) where Af is an abelian surface defined over F .

Proof. We first note that the complex tori C2/Λ±g and C4/Λg have canonical Riemann forms
obtained by restriction of the intersection pairing 〈·, ·〉 on Bg. Therefore, they are the complex
points of some abelian varieties. Since h+

1 , h
+
2 , h

−
1 , h

−
2 is a basis of the Hecke constituent of g,

[37, Theorem 7.14 and Proposition 7.19] imply that there exist a fourfold B′g defined over Q,
and an isogeny φ : B′g → Bg, such that B′g(C) = C4/Λg.

Next, let x ∈ H1(Bg,Z), then we have

2x = (x+ wDx) + (x− wDx) = y+ + y− ∈ H1(Bg,Z)+ ⊕H1(Bg,Z)−.

Hence the exponent of H1(Bg,Z)+ ⊕H1(Bg,Z)− inside H1(Bg,Z) divides 2. This implies that
the degree of φ is a power of 2.

Since wD is defined over F and wσD = −wD, the bases {h+
1 , h

+
2 } and {h−1 , h

−
2 } are Gal(F/Q)-

conjugate. Therefore C2/Λ+
g and C2/Λ−g are the complex points of some abelian surfaces defined

over F that are Galois conjugate. Let Af be the surface such that Af (C) = C2/Λ+
g . Then, we

see that B′g = ResF/QAf by construction.
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In practice, we can replace Bg by B′g, and hence assume that

H1(Bg,Z) = H1(Bg,Z)+ ⊕H1(Bg,Z)− = H1(Af ,Z)⊕H1(Aσf ,Z).

The above integration then gives the period lattice decomposition

ΩBg = ΩAf ×ΩAσf = (Ω1 |Ω2)× (Ωσ
1 |Ωσ

2 ).

Provided that the intersection pairing restricted to H1(Af ,Z) and H1(Aσf ,Z) induces principal
polarizations, we can compute the surfaces Af and Aσf as Jacobians of curves Cf and Cσf (defined
over F ).

We illustrate this with an example at the discriminant D = 73. The abelian surface Af has

real multiplication by Z[1+
√

5
2 ]).

A symplectic basis for H1(Bg,Z) is given by the modular symbols [43]

γ1 := 2{−1/57, 0} − {−1/62, 0} − {−1/52, 0}+ 2{−1/29, 0}+ {−1/18, 0},
γ2 = −{−1/62, 0}+ 2{−1/41, 0} − {−1/52, 0}+ 2{−1/12, 0}+ 2{−1/29, 0}

+ {−1/18, 0} − {−1/36, 0},
γ3 := {−1/57, 0} − {−1/41, 0} − {−1/18, 0}+ {−1/36, 0},
γ4 := −{−1/57, 0}+ {−1/62, 0} − {−1/41, 0}+ {−1/52, 0} − {−1/12, 0}

− 2{−1/29, 0} − {−1/18, 0}+ {−1/24, 0},
γ′1 := {−1/57, 0}+ {−1/41, 0}+ {−1/18, 0} − {−1/36, 0},
γ′2 := {−1/57, 0}+ {−1/62, 0}+ {−1/41, 0} − {−1/52, 0} − {−1/12, 0}

− {−1/18, 0}+ {−1/24, 0},
γ′3 := −{−1/62, 0}+ {−1/52, 0}+ {−1/18, 0},
γ′4 := {−1/62, 0} − {−1/52, 0} − {−1/18, 0}+ {−1/36, 0}.

We chose that basis so that {γ1, γ2, γ3, γ4} and {γ′1, γ′2, γ′3, γ′4} are integral bases for H1(Bg,Z)+

and H1(Bg,Z)−. Computing the matrix G of the intersection pairing in that basis, we see
that Bg is principally polarized. We also see that H1(Bg,Z)+ and H1(Bg,Z)− have the same
polarization of type (2, 2), meaning that Af and Aσf are principally polarized. By integrating the

bases of differential forms {h+
1 , h

+
2 } and {h−1 , h

−
2 } from Lemma 5.2 against the Darboux bases

{γ1, γ2, γ3, γ4} and {γ′1, γ′2, γ′3, γ′4}, we obtain the Riemann period matrices ΩAf and ΩAσf , where

ΩBg = ΩAf ×ΩAσf = (Ω1 |Ω2)× (Ωσ
1 |Ωσ

2 ),

with

Ω1 :=

(
101.34000...− 7.5977...i −2.6423...− 2.6129...i
23.92200...− 47.37900...i 11.19300...− 4.6090...i

)
Ω2 :=

(
38.70800...− 12.29300...i −6.9177...+ 1.6149...i
−62.63000...+ 19.89100...i −4.275400...+ 0.99804...i

)
Ωσ

1 :=

(
0.53699...− 3.7425...i 3.6304...− 3.4371...i
0.86887...− 6.0555...i −2.2437...+ 2.1243...i

)
Ωσ

2 :=

(
−1.4059...+ 2.3130...i −1.3867...− 5.5613...i
−1.4059...− 2.3130...i −1.3867...+ 5.5613...i

)
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This yields the normalized period matrices

Z :=

(
−0.50106...+ 0.29103...i 0.43700...− 0.012594...i
0.43700...− 0.012594...i 0.41383...+ 0.18028...i

)
Zσ :=

(
−0.22570...+ 0.80024...i 0.54639...− 0.32080...i
0.54639...− 0.32080...i −0.67931...+ 0.47944...i

)
We compute the Igusa-Clebsch invariants I2, I4, I6 and I10 to 200 decimal digits of precision
using Z and Zσ, and identify them as elements in F (using to Lemma 5.3). In the weighted
projective space P2

(1:2:3:5), this gives the point

(I2 : I4 : I6 : I10) =(
1,
−3080592b+ 36303121

3750827536
,
−72429788520b+ 811909152327

229715681614784
,
680871365928b− 5817295179641

6731436750404224780408

)
,

where b =
√

73. By using Mestre’s algorithm [30] which is implemented in Magma, we obtain a
curve with the above invariants. We reduce this curve using the algorithm in [1] implemented in
Sage [33] to get the curve

C ′ : y2 = (4w − 19)x6 + (12w − 56)x5 + (12w − 74)x4 + (16w − 10)x3 + (−12w − 63)x2

+ (12w + 46)x− 4w − 15.

This yields a global minimal model, and we have the following theorem.

Theorem 5.4. Let C : y2 +Q(x)y = P (x) be the curve over F = Q(
√

73), where

P := (w − 5)x6 + (3w − 14)x5 + (3w − 19)x4 + (4w − 3)x3 + (−3w − 16)x2 + (3w + 11)x

+ (−w − 4);

Q := x3 + x+ 1.

Then

(a) The discriminant of this curve is ∆C = −ε2. Thus C has everywhere good reduction.

(b) The surface A := Jac(C) has real multiplication by Z[1+
√

5
2 ]. It is modular and corresponds

to the unique Hecke constituent [f ] in S2(1).

Proof. Only the proof of modularity is different from what we did in the previous example. Here

the prime 3 is inert in Of = Z[1+
√

5
2 ]. So we prove that the surface A is modular by combining

arguments in [17] and [20, 21].

In contrast to the examples in Theorems 5.1 and 5.4, there are curves whose Jacobians have
everywhere good reduction while the curves themselves do not. We now discuss one such example,
for the field F = Q(

√
929), with Hecke eigenvalues in Q(

√
13).

Theorem 5.5. Let C : y2 +Q(x)y = P (x) be the curve over F , where

P (x) := 23x6 + (90w − 45)x5 + 33601x4 + (28707w − 14354)x3 + 3192149x2

+ (811953w − 405977)x+ 19904990,

Q(x) := x3 + x+ 1.

Then
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Table 3: The first few Hecke eigenvalues of a non-base change newform of level (1) and weight 2
over Q(

√
929). Here e = (1 +

√
13)/2.

Np p ap(f) sp(f) tp(f)

2 561w − 8830 −e+ 1 1 1
2 561w + 8269 e 1 1
5 −4w − 59 −e+ 1 1 7
5 4w − 63 e 1 7
9 3 3 6 27
11 −8342w + 131301 2e− 3 −4 13
11 8342w + 122959 −2e− 1 −4 13
19 −50w − 737 e− 2 −3 37
19 50w − 787 −e− 1 −3 37
23 −42832w + 674165 4e− 4 −4 −2
23 42832w + 631333 −4e −4 −2
29 −2w + 31 −2e+ 6 10 70
29 2w + 29 2e+ 4 10 70

(a) The discriminant ∆C = 322, hence C has bad reduction at (3).

(b) The surface A := Jac(C) has everywhere good reduction. It is modular and corresponds to
the form f listed in Table 3.

Proof. To prove modularity, we use [20, 21, Theorem 1.1 in Erratum]. We refer to [12] for
details.
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