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The physical setting
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Hydropower, dams and rivers @
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The marketer’s goal of maximizing revenue must be balanced with the hydro
scheduler’s imperative to operate within the constraints.

Hydropower revenue

» Long-term contracts, 'spot’ power markets,
ancillary power

» Forward/futures contracts for (imperfect) hedging W.“‘u_ .u,n.uHN\l,‘y..vu.

Physical factors

» Inflow uncertainty

» Minimum/maximum flow requirements
(downstream usage/risk tolerance)

» Turbine performance
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Bighorn

On the North Saskatchewan River
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Twenty seven years of daily inflows at Abraham Lake
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Historical daily inflows (Bighorn, Kcfs-day)
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This means that we enlarge our description of the state to include not only the
volume of water in the reservoir, but also the ice state (i = 1,2, 3), and our
transition equation involves the Markov switching rates p;’ from state j to
state ¢, which vary through time (resulting in the unconditional probabilities
shown above).
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SDP for reliability .9
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Evolution of the (simple) system state

» In our simplest setting, the system state consists of the volume of water
in the reservoir (V;), which must be in the interval [Vinin, Vimax]-

» At each time ¢ our control variable u; is the volume of water to flow in
between t and ¢t + 1. We will have (possibly time- and state-dependent)
constraints on u: u; € Us.

» If the reservoir receives a random inflow volume I, in the interval [¢, ¢ + 1],
then the state evolves according to

Viger = Vi + Iy — uy.
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If we define R(T, V) := g(V), we can determine the functions R(t, -)
recursively using the DPP.
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If the density of I; is given by the function f (¢, -), then we have

R(t,V) = n‘lg%x/R(t—i- 1L,V+z—u)f(tz)de.
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Computation
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Results

Percentage risk of failure at BigHorn
Probability-weighted ice state
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Safety-first daily flow amounts (cfs-day) at BigHorn
Probability-weighted ice state
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Revenue @
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Here we use a simplified revenue model, in which all power generated is sold
on spot markets, with daily average flows determined a day ahead.

Reliability-constrained revenue optimization

» We set an minimum reliability level (i.e. a maximum acceptable
probability that constraints will be violated even if a 'safety-first’ flow
strategy is adopted from that point on).

» We use a standard stochastic optimal control problem to maximize
revenue, and to determine the corresponding flow strategy, in regions
where the reliability constraint is satisfied.

» The optimal strategy is the one that maximizes revenue until the reliability
falls below the minimum level. At this point, the optimal strategy is the
safety-first one, until the reliability measure recovers.

Note that this approach differs to some extent from chance-constrained
optimization.
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Revenue @
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Alberta daily average forecast power prices with simulations

Simulated and Actual Prices ($/MWh)
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Optimal flow strategies
No Ice: Jan 01
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Results

Optimal
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Optimal flow strategies
No Ice: Jul 01
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Optimal flow strategies
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Simulated reservoir operation
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The cost of certainty
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Thank you for your attention!

aware@ucalgary.ca
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