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The physical setting
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Hydropower facility
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Things can sometimes go wrong

Calgary,
June 2013
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Hydropower, dams and rivers

The marketer’s goal of maximizing revenue must be balanced with the hydro
scheduler’s imperative to operate within the constraints.

Hydropower revenue

▶ Long-term contracts, ’spot’ power markets,
ancillary power

▶ Forward/futures contracts for (imperfect) hedging

Physical factors

▶ Inflow uncertainty
▶ Minimum/maximum flow requirements

(downstream usage/risk tolerance)
▶ Turbine performance
▶ Ice!
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Bighorn
On the North Saskatchewan River

Shaded relief from DEMIS Mapserver: commons.wikimedia.org/w/index.php?curid=15133700

▶ Feeds from Abraham Lake
▶ Runs through Edmonton, eventually reaches

Hudson Bay
▶ Inflows dominated by spring runoff
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Bighorn
Twenty seven years of daily inflows at Abraham Lake
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Reliability
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Inflow model
▶ Our initial inflow model is very simple (i.e. naive): log It ∼ N

(
α(t), β2(t)

)
.

▶ We model the functions α and β using finite Fourier series, and calibrate
using MLE.
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Outflow restrictions

The main sources of constraints in our model relate to
outflows.

▶ Year-round, a minimum flow rate must be
maintained in order to supply sufficient water
downstream.

▶ A maximum flow rate needs to be observed so
that the river does not burst its banks.

▶ When ice is forming, flows need to be kept very
steady.

▶ When ice is fully formed, flow may be increased
up to a (lower) maximum rate.

▶ Other restrictions may also apply….
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Ice states

The state of ice formation is
modelled by a Markov chain,
switching between three
possible states:
1. ’clear’
2. ’forming’
3. ’solid’.

This means that we enlarge our description of the state to include not only the
volume of water in the reservoir, but also the ice state (i = 1, 2, 3), and our
transition equation involves the Markov switching rates pijt from state j to
state i, which vary through time (resulting in the unconditional probabilities
shown above).
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SDP for reliability

Evolution of the (simple) system state
▶ In our simplest setting, the system state consists of the volume of water

in the reservoir (Vt), which must be in the interval [Vmin, Vmax].
▶ At each time t our control variable ut is the volume of water to flow in

between t and t+ 1. We will have (possibly time- and state-dependent)
constraints on ut: ut ∈ Ut.

▶ If the reservoir receives a random inflow volume It in the interval [t, t+ 1],
then the state evolves according to

Vt+1 = Vt + It − ut.
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SDP for reliability

We define the reservoir reliability, for a given time horizon T , as:

R(t, V ) = sup
uT
t ∈UT

t

P
[
Vt+1, . . . , VT ∈ [Vmin, Vmax]

∣∣Vt = V
]

= sup
uT
t ∈UT

t

E

[
T∏

k=t+1

g(Vk)
∣∣Vt = V,

]

where g = χ[Vmin,Vmax], and UT
t is the set of admissible feedback controls

uT
t =

(
ut(·), . . . , uT−1(·)

)
.

If we define R(T, V ) := g(V ), we can determine the functions R(t, ·)
recursively using the DPP.
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SDP for reliability

DPP
For each t, we define the intermediate function

S(t, w) := E
[
R(t+ 1, w + I)

]
, w ∈ R.

Then we have, for t = T − 1, T − 2, . . . ,

R(t, V ) = sup
u∈Ut

S(t, V − u).

If the density of It is given by the function f(t, ·), then we have

R(t, V ) = max
u∈Ut

∫
R(t+ 1, V + x− u)f(t, x)dx.
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SDP for reliability
Computation

▶ In order to compute the functions Ri(t, V ), we have to discretize, and to
this end we create a discrete set of reservoir levels
Vmin = V0, . . . , VM = Vmax, and assume Ri to be linear between them.

▶ We also define the intermediate function

Si(t, w) :=

∫ ∞

0

Ri(t, w + x)f(t, x)dx.

Note that Ri(t, V ) = maxu∈Ut

∑
j p

ij
t Sj(t, V − u).

▶ We create an extended grid for w, and approximate R and S by creating
linear interpolants Rh

i and Sh
i on their respective grids.

▶ Then we have
Sh
i (t,Wk) :=

∫ ∞

0

Rh
i (t,Wk + x)ft−1(x)dx,

(computed using discrete convolution) and

Rh
i (t, Vk) := max

u∈Ut

∑
j

pijt S
h
j (t, Vk − u).
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Results
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Results
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Revenue



Tony Ware, May, 2019 Hydropower Revenue 19

Revenue

Here we use a simplified revenue model, in which all power generated is sold
on spot markets, with daily average flows determined a day ahead.

Reliability-constrained revenue optimization
▶ We set an minimum reliability level (i.e. a maximum acceptable

probability that constraints will be violated even if a ’safety-first’ flow
strategy is adopted from that point on).

▶ We use a standard stochastic optimal control problem to maximize
revenue, and to determine the corresponding flow strategy, in regions
where the reliability constraint is satisfied.

▶ The optimal strategy is the one that maximizes revenue until the reliability
falls below the minimum level. At this point, the optimal strategy is the
safety-first one, until the reliability measure recovers.

Note that this approach differs to some extent from chance-constrained
optimization.
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Revenue

▶ Alberta prices are constrained to be between $0 and $1000/MWh.
▶ We create an empirical CDF F from historical (forecast) prices, and use

this to create ‘standardized’ prices:

pt = Φ−1
(
F (Pt)

)
,

where Φ is the CDF of a standard normal r.v.
▶ The dynamics of pt are then modelled using a seasonally-varying AR(1)

process:
pt+1 = αpt + β(t) + σ(t)Zt,

where β and σ are trigonometric polynomials, and Zt ∼ N(0, 1).
▶ The optimal hydropower value function H is a function of time, p and V

(the level of water in the reservoir), i (the ice state) and time.
▶ Expectations with respect to the dynamics of p are computed using

Fourier (cosine) expansions and the FFT.
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Revenue
Alberta daily average forecast power prices with simulations
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Results
Optimal flow strategies
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Results
Optimal flow strategies
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Results
Optimal flow strategies
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Results
Optimal flow strategies
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Results
Simulated reservoir operation
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Results
Simulated reservoir operation
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Results
The cost of certainty
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Conclusion
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Conclusions

The model can (needs to) be refined and extended in several directions.
▶ Improve the inflow model: enlarge the system state to include

information on which future inflows can be conditioned (e.g. previous
day’s flows, hydrological forecasts).

▶ Improve the inflow model: capture the possibility of extreme inflows.
▶ Improve the calibration: take account of measurement error.
▶ Include constraints on the rate of change in outflows.
▶ Apply the model to systems of linked reservoirs.
▶ Incorporate alternative reliability measures, perhaps in a true

chance-constrained framework.
▶ Incorporate the possibility of hedging using forward contracts of various

tenors.
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Thank you for your attention!

aware@ucalgary.ca
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