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2 The Mission of PRIMED  

   It is the mission of PRIMED to accelerate the development and 
adoption of marine renewable energy technologies, including wind, 
wave, and tidal solutions. This is achieved by working with both 
communities and the private sector in order to identify the 
resources, assess the technology, and weigh the economics. 
 



3 Overview  

• Assessing Wave Energy Resources 

• Modelling Wave Energy Converters 

• Modelling Community Integration 

• Example Case Study 



4 Assessing Wave Energy Resources 

   Consider a planar wave traversing a flat, infinite sea. 

The sea surface elevation, 𝜂 𝑥, 𝑦, 𝑡 , above some 

reference plane, can be described by 

 

 

 

 

 

Planar wave 

𝜂 𝑥, 𝑦, 𝑡 = 𝑎 cos 2𝜋𝑓𝑡 − 𝑘 𝑥 cos 𝜃 + 𝑦 sin 𝜃 + 𝜙  



5 Assessing Wave Energy Resources 

   However, common experience tells us that a single, 

planar wave is generally not a suitable model for a 

realistic sea surface. Therefore, one might better 

model a realistic sea surface by way of a superposition 

of planar waves 

 

 

 

 

Superposition of planar waves 

𝜂 𝑥, 𝑦, 𝑡 = 𝑎𝑖 cos 2𝜋𝑓𝑖𝑡 − 𝑘𝑖 𝑥 cos 𝜃𝑖 + 𝑦 sin 𝜃𝑖 + 𝜙𝑖

∞

𝑖=1

 



6 Assessing Wave Energy Resources 

   With respect to the potential wave power transport 

along a given sea surface, one might introduce a 

directional variance density spectrum, 𝐸 𝑓, 𝜃 , defined 

at a point 𝑥, 𝑦  and for a time interval 𝑡 ∈ 0, 𝑇 , such 

that 

 

 

 

with 𝐸 𝑓, 𝜃  generally being given by 𝐸 𝑓 𝐷 𝜃 . From 

this, the potential wave power transport (power per unit 

capture width) for deep water waves can be computed 

by way of 

 

 

 

where 𝑐𝑔 𝑓, 𝜃  is wave group velocity. 

 

 

 

 

 

Example directional variance density spectrum [rad, Hz] 

var 𝜂 =   𝐸 𝑓, 𝜃
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7 Assessing Wave Energy Resources 

Deployment of Watchmate buoy 

   In practice, the directional variance density spectrum 

for a given point and time interval is measured by way 

of a buoy deployment. In extension, the data collected 

from buoy deployments can be used as boundary 

conditions for sea surface modelling in the nearshore, 

where a simple superposition of planar waves in a flat, 

infinite sea ceases to be a suitable model. Perhaps the 

most commonly applied nearshore modelling 

technique is the Simulating Waves Nearshore (SWAN) 

model. 



8 Assessing Wave Energy Resources 

𝜕𝑁

𝜕𝑡
+ 𝛻𝑥𝑦 ∙ 𝑐 𝑔 + 𝑈 𝑁 +

𝜕

𝜕𝜎
𝑐𝜎𝑁 +

𝜕

𝜕𝜃
𝑐𝜃𝑁 =

𝑆tot
𝜎

 

where  𝑁 =
𝐸

𝜎
  and  𝜎 = 2𝜋𝑓 − 𝑘 ∙ 𝑈 

   The SWAN model is essentially a convection-

diffusion problem posed within and between variance 

density spectra over a discretization of an area of sea. 

The governing equations for this model are  

SWAN model, four node example 



9 Assessing Wave Energy Resources 

SWAN model, wave power transport (annual average) off Vancouver Island 

W/m 



10 Modelling Wave Energy Converters 

Example WEC design 

   Modelling a wave energy converter (WEC) consists 

of, essentially, two things 

 

1. Generating a suitably representative sea surface; 

and, 

 

2. Modelling the motion of the WEC due to the motion 

of the sea surface. 



11 Modelling Wave Energy Converters 

   Generating a suitably representative sea surface can 

be achieved by way of constructing appropriate wave 

modes given a directional variance density spectrum. 

For instance, it can be shown that, for a superposition 

of cosine waves, 

 

 

 

 

Therefore, one might choose 

 

 

 

 

together with random phases 𝜙𝑖,𝑗, over an appropriate 

discretization of the 𝑓, 𝜃  domain. 

 

 

var 𝜂 =   𝐸 𝑓 𝐷 𝜃
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  𝑎𝑖,𝑗
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𝑎𝑖,𝑗 = 2𝐸 𝑓𝑖 𝐷 𝜃𝑗 ∆𝑓 𝑖 ∆𝜃 𝑗 

Superposition of planar waves from variance density 



12 Modelling Wave Energy Converters 

   Given a generated sea surface, one can model the 

resulting WEC motion by way of applying Newton II 

 

 

 

 

It is the reaction force from the power take-off (PTO) 

which is indicative of the rate at which a WEC can 

extract energy from the sea. 

   The Froude-Krylov force (𝐹FK) is the force upon the 

WEC due to the dynamic pressure in the undisturbed 

wave modes. The scattering force (𝐹𝑠) is the force due 

to the WEC body scattering the encountered wave 

modes. The radiation damping force (𝐹𝑟) is the force 

due to the WEC motion generating new waves in the 

absence of any incoming wave modes. 

 

Example WEC (scale model) in motion 

𝐌𝑥 = 𝐹FK + 𝐹s + 𝐹r
hydrodynamics

+ 𝐹hs + 𝐹m + 𝐹PTO 



13 Modelling Wave Energy Converters 

   In practice, determining the motion of a WEC due to 

the motion of the sea surface is achieved by way of a 

finite element approach. The WEC geometry is 

discretized into a finite number of panel elements, and 

then the force of the sea upon each panel is integrated 

over the wetted surface of the WEC geometry in order 

to determine the net motion. 

   The sea and WEC modelling tool currently used at 

PRIMED is 

Modelled WEC motion 



14 Modelling Wave Energy Converters 

   Given the ability to both generate sea surface motion 

and model the resulting WEC motion, one can begin to 

assess the expected performance of a particulate 

WEC design deployed in a particular sea. This 

expected performance is generally expressed by way 

of a performance matrix. 

   Significant wave height, 𝐻𝑠, and peak period, 𝑇𝑝, are 

parameters of the non-directional variance density 

spectrum 𝐸 𝑓 . 

Example WEC performance matrix [m, s, W] 



15 Modelling Community Integration 

   In order to integrate a WEC into a community as an 

effective source of energy, one must first asses the 

local wave energy resource along with the 

corresponding WEC performance. This alone, 

however, is not sufficient, as the interaction of the 

WEC with the existing sources and loads of the 

community must be considered. Successful adoption 

of this technology will occur only if it is economical to 

do so. 

Hot Springs Cove 



16 Modelling Community Integration 

   In essence, the community integration problem is a constrained optimization problem whereby one seeks to 

satisfy the load of a given community, using an available set of sources, in a manner which minimizes the cost 

of satisfying the load. As such, the community integration problem can be summarized as follows 

Minimize:  𝐶NPV =  𝑒 𝑡𝑖 𝑐𝑗 𝑡𝑖 𝑠𝑗 𝑡𝑖 ∆𝑡 𝑖

𝑚

𝑗=1

𝑛

𝑖=1

 

Subject to:   𝑠𝑗 𝑡𝑖

𝑚

𝑗=1

− 𝐿 𝑡𝑖 = 0  ∀𝑖 ∈ 1, 2,⋯ , 𝑛  



17 Modelling Community Integration 

   In practice, the community integration problem is 

handled using a comprehensive integration modelling 

tool which simultaneously captures grid dynamics, 

resource dynamics, economic considerations, etc. 

Such a tool allows the engineer to rapidly explore 

different community integration schemes in order to 

determine which is cost optimal. 

   The community integration modelling tools currently 

used at PRIMED are 

Example HOMER Pro grid 

RCOM 



18 Example Case Study 

   Suppose we wish to establish a remote community of 

30 – 50 people on Spring Island (50° 00’ 18” N  127° 

25’ 03” W), a small island off the north-west coast of 

Vancouver Island. 

   Assume local solar and wind resources of, on 

average, 0.125 kW/m2 and 0.092 kW/m2, respectively 

(derived from NASA data). From a SWAN model of the 

waters around Spring Island, one might also assume 

wave resources of, on average, 25 kW/m. Of course, 

these resources have seasonal variance. 

Spring Island, BC 



19 Example Case Study 

As one might logically expect, the solar resource is summer dominated, whereas the wind and wave resources 

are winter dominated. 

Solar Wind 

Wave 



20 Example Case Study 

   Given the chosen location, one might also assume a winter dominated (space heating) load on the order of 

100 kW average (say, about 2.5 kW per capita) with up to 200 kW peaks. 



21 Example Case Study 

   Since Spring Island is isolated, the price of diesel 

(both cost per volume and delivery cost) will strongly 

influence the cost optimal integration scheme. Fuel 

prices are quite volatile, however, so one might 

assume fuel + delivery prices anywhere in the interval 

 

 

and perform a sensitivity analysis on this basis. 

   Additionally, the capital, operating, maintenance, and 

replacement costs of WEC technology is not well 

known at this time. Therefore, one might assume zero 

WEC costs and proceed by way of a break-even 

analysis in comparison to other, better understood 

technologies. 
Spring Island, BC 

1.50,2.50   $/L 



22 Example Case Study 

   A HOMER Pro grid model was constructed for Spring 

Island which was comprised of a diesel generator, a 

set of 3 kW wind turbines, a 30 m WEC, an AC/DC 

converter, a set of 1 kW solar PV panels, and a set of 

48 V, 8 kWh Li-ion battery packs. All technology costs 

were taken to be the HOMER Pro default values. 

   Finally, the HOMER Pro default economic 

parameters of 2.00% p.a. inflation, 8.00% p.a. discount 

rate, and a 25 year project life were used.  

Spring Island grid model 



23 Example Case Study 

NPC = net present cost 

Solar Wind Wave 𝑪𝐍𝐏𝐕 [$M] Fuel Use [L/yr] 

0 0 0 6.98 268,145 

0 0 1 1.33 39,940 

0 1 0 7.05 271,890 

0 1 1 1.34 39,565 

1 0 0 6.65 231,805 

1 0 1 1.27 28,590 

1 1 0 7.03 271,740 

1 1 1 2.95 98,530 

Minimum NPC, 
diesel 

consumption 

   Results for cost-optimal systems with diesel generation and battery storage 

Base case 
for  

break-even 



24 Example Case Study 

Break-even analysis, no WEC vs WEC (rel. to diesel-solar base case) 

   Diesel-solar base case 

Component Size / Count 

Diesel 230 kW 

Solar 80 kW 

Li-ion Pack  
(48 V, 8 kWh) 

30 

AC/DC 140 kW 

[CELLRANGE] 
[CELLRANGE] 

[CELLRANGE] 
[CELLRANGE] 

[CELLRANGE] 
[CELLRANGE] 

[CELLRANGE] 
[CELLRANGE] 

[CELLRANGE] 
[CELLRANGE] 

[CELLRANGE] 
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No WEC
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25 Funding From 



Questions? 

Anthony Truelove:   wtruelove@uvic.ca 



27 Constraints on Variance Density Spectra 

   Any valid 𝐸 𝑓, 𝜃 , or 𝐸 𝑓 𝐷 𝜃 , should exhibit the following properties 

 

 

 

 

 

 

 

 

 

 

 

 

 

Together, 𝐻𝑠, 𝑇𝑝, and 𝜃𝑝 give a condensed description of the sea surface at a point and over some time 

interval. 

var 𝜂 =   𝐸 𝑓 𝐷 𝜃
∞

0

𝑑𝑓𝑑𝜃
2𝜋

0

 

𝐻𝑠 = 4 var 𝜂  

𝑇𝑝 =
1

𝑓𝑝
  where  𝐸 𝑓𝑝 = max

𝑓
𝐸 𝑓  

𝐷 𝜃𝑝 = max
𝜃

𝐷 𝜃  

𝐸 𝑓 ≥ 0  and  𝐷 𝜃 ≥ 0 



28 Energy Period 

   Another characteristic period is the energy period, 𝑇𝑒, defined by 

 

 

 

 

Under a Pierson-Moskowitz expression for 𝐸 𝑓 , it can be shown that 

 

 

 

 

 

𝑇𝑒 =
1

var 𝜂
  

𝐸 𝑓

𝑓
𝐷 𝜃

∞

0

𝑑𝑓𝑑𝜃
2𝜋

0

 

𝑇𝑒 =
53/4𝜋𝑇𝑝

10Γ
3
4

≅ 0.85722𝑇𝑝 



29 Example Variance Density Spectrum 

   For a fully developed sea, the Pierson-Moskowitz spectrum (non-directional) is a common choice 

 

 

 

 

For more dynamic, or developing, seas, the spectrum due to the Joint North Sea Wave Project (JONSWAP) 

tends to be more representative. 

   As for the spreading function, one might choose a cosine squared expression, or a Gaussian expression, or 

any other appropriate expression. 

 

 

𝐸 𝑓 =
5
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𝐻𝑠
2
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4𝑓5
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5

4
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𝑇𝑝𝑓
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𝜋
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𝜃 − 𝛽
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1
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30 Significant Wave Height 

   Given a probability distribution of wave heights at a 

given point, the significant wave height, 𝐻𝑠 , is the 

mean height of the highest 1/3rd of waves. 

Example wave height probability distribution 



31 Peak and Energy Periods 

   Given a variance density spectrum, the peak period, 

𝑇𝑝 , is the inverse of the frequency at which the 

variance density spectrum peaks. The energy period, 

𝑇𝑒, is then defined by the moment ratio 

 

 

 

where 

 

 

 

 

As such, energy period gives the energy-weighted 

average period of the wave modes at a given point. 

𝑇𝑒 =
𝑚−1

𝑚0
 

𝑚𝑛 =  𝑓𝑛𝐸 𝑓
∞

0

𝑑𝑓 

Example variance density spectrum 



32 Potential Wave Power Transport in Deep Water Waves 

   Consider a uni-directional (or nearly so) 

superposition of planar waves traversing a flat, infinite 

sea. For a single wave mode propagating over a 

surface element, the potential wave power transport is 

 

 

 

 

Taking the group velocity and energy per unit area 

expressions for deep water waves then yields  

 

 

Sea surface element 

𝐽 =
𝑃

∆𝑦
=

𝐸

∆𝑡∆𝑦
=
∆𝑥

∆𝑡

𝐸
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33 

Therefore, the potential wave power transport from each wave mode is given by 

 

 

 

Taking 𝑎𝑖 to be given by 

 

 

 

then yields 

𝐽𝑖 =
𝜌𝑔2𝑎𝑖

2

16𝜋𝑓𝑖
 

𝐽𝑖 =
𝜌𝑔2𝐸 𝑓𝑖 ∆𝑓 𝑖

8𝜋𝑓𝑖
=
1

2
𝜌𝑔

𝑔

4𝜋𝑓𝑖
𝐸 𝑓𝑖 ∆𝑓 𝑖 =

1

2
𝜌𝑔𝑐𝑔 𝑓𝑖 𝐸 𝑓𝑖 ∆𝑓 𝑖 

𝑎𝑖 = 2𝐸 𝑓𝑖 ∆𝑓 𝑖 

  Potential Wave Power Transport in Deep Water Waves 



34 

Finally, by letting ∆𝑓 → 𝑑𝑓 and integrating over all wave modes, the desired result is obtained 

 

 

 

 

By a similar argument, this can be extended to directional spectra as well 
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  Potential Wave Power Transport in Deep Water Waves 



35 Variance from Wave Mode Amplitudes 

   Consider a superposition of planar waves over some time interval 𝑡 ∈ 0, 𝑇 . This may be expressed by 

 

 

 

 

By definition, the variance in 𝜂 is given by 

 

 

 

Assuming E 𝜂 = 0, it follows that 

 

 

𝜂 𝑥, 𝑦, 𝑡 = 𝑎𝑖 cos
2𝜋𝑖𝑡

𝑇
− 𝑘𝑖 𝑥 cos 𝜃𝑖 + 𝑦 sin 𝜃𝑖 + 𝜙𝑖

∞

𝑖=1

 

var 𝜂 = E 𝜂2 − E2 𝜂  
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36 Variance from Wave Mode Amplitudes 

Expanding and re-arranging then leads to1 

 

 

 

 

 

 

where 𝑞𝑖 = −𝑘𝑖 𝑥 cos 𝜃𝑖 + 𝑦 sin 𝜃𝑖 + 𝜙𝑖. However, by way of orthogonality, this immediately collapses to 

 

 

 

 

which then evaluates as 
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∎ 

1 I’m admittedly glossing over some details here, namely that the Fourier series is Hölder continuous and thus converges 
uniformly to the sea-surface elevation. This allows for swapping the integral and infinite sum. 


