Problem sheet on canonical heights on Jacobians of hyperelliptic curves

PIMS Summer School on Explicit methods for Abelian Varieties

Problem 1. (Descent lemma and generators)

- (a) Prove the descent lemma as stated in the lecture.
- (b) Suppose that K is a number field, A/K is an abelian variety and $n \geq 2$ such that A(K)/nA(K) is finite. Find an algorithm that computes generators of A(K) given representatives $Q_1, \ldots, Q_s \in A(K)$ of A(K)/nA(K).

Problem 2. (Local decomposition of the height difference on elliptic curves)

Let E/\mathbb{Q} : $y^2 = x^3 + \alpha x + \beta$ be an elliptic curve, where $\alpha, \beta \in \mathbb{Z}$. If $P = (x_P, y_P) \in E(\mathbb{Q})$ is not 2-torsion, then 2P is an affine point with x-coordinate g(P)/f(P), where

$$g(P) = x_P^4 - 2\alpha x_P^2 - 8\beta x_P(P) + \alpha^2,$$

 $f(P) = 4x_P^3 + 4\alpha x_P + 4\beta.$

For a place v of \mathbb{Q} (i.e. v is a prime number or $v = \infty$) and $P \in E(\mathbb{Q}_v) \setminus \{O\}$, define

$$\rho_v(P) := \frac{\max\{|f(P)|_v, |g(P)|_v\}}{\max\{|x_P|_v^4, 1\}} \in \mathbb{R},$$

where the absolute values $|\cdot|_v$ are normalized to satisfy the product formula. We also define $\rho_v(O) := 1$. Show that the following functions are v-adically continuous and bounded on $E(\mathbb{Q}_v)$,

- (a) the function ρ_v ,
- (b) the function $\varphi_v := \frac{1}{2} \log \rho_v$,
- (c) the function Ψ_v defined by $\Psi_v(Q) := -\sum_{n=0}^{\infty} 4^{-n-1} \varphi_v(2^n Q)$.

Now let $P \in E(\mathbb{Q})$. Show that we have

- (d) $\varphi_v(P) \neq 0$ only for finitely many v;
- (e) $h(2P) 4h(P) = \sum_{v} \varphi_{v}(P);$
- (f) $h(P) \hat{h}(P) = \sum_{v} \Psi_{v}(P)$.

Note that one can also define the canonical height by $h - \sum_{v} \Psi_{v}$. Its properties are then simple consequences of the properties of h and Ψ_{v} .

In Problems 3 and 4 we denote by R be a discrete valuation ring with discrete valuation v, fraction field K of characteristic 0 and perfect residue field.

Let $\mathcal{C} \to \operatorname{Spec} R$ be a regular model of a nice curve C/K.

Problem 3. (Intersection matrix)

Show that the intersection matrix $M=(m_{ij})_{i,j}\in\mathbb{Q}^{n\times n}$ of \mathcal{C}_v has the following properties:

- (a) $m_{ij} = m_{ji} \ge 0$ for all $i \ne j$.
- (b) $\sum_{i=1}^{n} m_{ij} = 0$ for all $i \in \{1, ..., n\}$.
- (c) M is negative semidefinite.
- (d) $^{t}(1 \dots 1)$ generates $\ker(M)$.

Problem 4. (Correction divisor on an *n*-gon)

Suppose that the special fiber C_v is of the form $C_v = \sum_{i=1}^n \Gamma_i$ and has the configurations of an *n*-gon (with transversal intersections). Let $i, j \in \{1, \ldots, n\}$ and let $D \in \text{Div}^0(C/K)$ be a divisor such that

- $(D_{\mathcal{C}} \cdot \Gamma_i) = 1$,
- $(D_{\mathcal{C}} \cdot \Gamma_i) = -1$,
- $(D_{\mathcal{C}} \cdot \Gamma_k) = 0 \text{ for } k \notin \{i, j\}.$

Compute $\Phi(D) \in \mathbb{Q} \operatorname{Div}_v(\mathcal{C}/R)/\mathbb{Q} \mathcal{C}_v$ and $\Phi(D)^2 \in \mathbb{Q}$.

Problem 5. (Automorphy factor of the Riemann theta function)

Let $\tau \in \mathbb{H}_g$ be a complex $g \times g$ matrix with positive definite imaginary part. Consider $\theta = \theta_{0,0}$, the Riemann theta function (with trivial characteristic) associated to τ :

$$\theta(z) = \theta_{0,0}(z) = \sum_{m \in \mathbb{Z}^g} \exp\left(\pi i^t m \tau m + 2\pi i^t m z\right).$$

Show that θ satisfies the following functional equation with respect to the lattice $\mathbb{Z}^g + \tau \mathbb{Z}^g$:

$$\theta(z + \ell + \tau n) = \exp(-2\pi i^t n z - \pi i^t n \tau n) \theta(z)$$

for all $z \in \mathbb{C}^g$ and $\ell, n \in \mathbb{Z}^g$.

In Problems 6 and 7, let p be an odd prime and let

$$C/\mathbb{Q}_p: Y^2 = F(X,Z)$$

be a hyperelliptic curve, where $F \in \mathbb{Z}_p[X,Y]$ is a binary form of degree $2g+2 \geq 4$ such that $\operatorname{disc}(F) \neq 0$ and such that f(x) := F(x,1) has degree 2g+1 and is monic.

Let \bar{C} be the Zariski closure of C in the weighted projective plane $\mathbb{P}_{\mathbb{Z}_p}(1, g+1, 1)$.

Problem 6. (The valuation of the discriminant)

- (a) Show that \bar{C} is smooth if $\operatorname{ord}_{p}(\operatorname{disc}(F)) = 0$.
- (b) Show that \bar{C} is regular if $\operatorname{ord}_p(\operatorname{disc}(F)) \leq 1$.

Problem 7. (Computing a regular model)

Suppose that F(X,Z) factors as $F(X,Z) = G(X,Z)(X^2 + p^n Z^2)$, where $n \ge 1$ and $G \in \mathbb{Z}_p[X,Z]$ satisfies $\operatorname{ord}_p(\operatorname{disc}(G)) = 0$.

- (a) Show that there is a unique singular point on \bar{C}_p .
- (b) Using explicit blow-ups, show that there is a regular model \mathcal{C} of C over \mathbb{Z}_p such that the special fiber \mathcal{C}_p is an n-gon.

Problem 8. (Intersection of sections)

Suppose that \bar{C} is regular and let $P=(x_p,y_p)$ and $Q=(x_Q,y_Q)$ be distinct points in $C(\mathbb{Q}_p)$ such that $x_P,y_P,x_Q,y_Q\in\mathbb{Z}_p$. Show that

$$(P_{\bar{C}}, Q_{\bar{C}}) = \min \{ \operatorname{ord}_p(x_P - x_Q), \operatorname{ord}_p(y_P - y_Q) \}.$$