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p-adic heights

OXFORD

Let
» Kbe a number field

» J/K be the Jacobian of a smooth projective curve X (e.g., an
elliptic curve)

» p be a prime of good reduction for X and ordinary
reduction for J.

In these lectures, we’ll discuss global p-adic height pairings

h:J(K) x J(K) = Q.

» While there are many parallels with the theory of the
canonical height (presented in Miiller’s lectures), one key
difference is that there may be many canonical p-adic
valued pairings! (More later.)
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Canonical and p-adic heights: differences and
similarities
Here are a few interesting differences and similarities between
canonical and p-adic heights:

» When K = Q, there is just one p-adic height (up to
nontrivial scalar multiple), the cyclotomic p-adic height. To
make our lives easier, we will spend most of our time
working over K = Q.

» his a bilinear pairing. It is symmetric iff certain (very
reasonable) choices are made. (More later.) When we need
to, let’s go ahead and make these reasonable choices.

» For P torsion, h(P) = 0. Does h(P) = 0 imply P torsion?
Not necessarily. Also, nondegeneracy of the cyclotomic
p-adic height for elliptic curves over Q is already rather
mysterious. (More later.)

There are quite a few things that are different in the p-adic
world; nevertheless p-adic heights are also useful for explicit
methods. We will highlight several applications.
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Outline

» Motivation
» Cyclotomic p-adic height on elliptic curves over Q

» Anticyclotomic p-adic height on elliptic curves over
quadratic imaginary number fields
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Motivation
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Why compute p-adic heights?

p-adic Birch and Swinnerton-Dyer conjecture

>

Jennifer Balakrishna

Mazur-Tate-Teitelbaum '86: stated the conjecture for
elliptic curves and gave numerical evidence
Mazur-Tate '91: p-adic heights in terms of p-adic sigma
function

Wathrich '04: variation of p-adic height in a family of
elliptic curves

Mazur-Stein-Tate ‘06 (and Harvey "08): fast method for
computing cyclotomic p-adic height for elliptic curves
Stein-Wuthrich "13: fast method for computing p-primary
part of Shafarevich-Tate group for elliptic curves when
p-descents are impractical and also where no other
methods are known (e.g., Mordell-Weil rank at least 2)

B.-Miiller-Stein "15: stated conjecture for modular abelian
varieties, with data for modular abelian surfaces
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Why compute p-adic heights?

Examples of Kim’s nonabelian Chabauty method to find
integral or rational points on curves, in the spirit of explicit
Mordell
» Kim, B.-Kedlaya-Kim "10: integral points on elliptic curves
of rank 1
» B.-Besser-Miiller "13: integral points on genus g
hyperelliptic curves whose Jacobians have Mordell-Weil
rank g

» B.-Dogra "16: rational points on genus 2 bielliptic curves
whose Jacobians have Mordell-Weil rank 2
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p-adic heights on elliptic curves

Let p be an odd prime and let E be an elliptic curve over a
number field K with good ordinary reduction at p.

» A p-adic height pairing is a symmetric bilinear pairing
( , ):E(K) xE(K)— Q,.

» p-adic height pairings were

» First defined for abelian varieties by Schneider ('82),
Mazur-Tate ('83),

» extended to motives by Nekovéf ('93),

» also defined, in the case of Jacobians of curves, by Coleman
and Gross ('89).

» This third definition is known to be equivalent to the
previous ones (Besser, '04).
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Birch and Swinnerton-Dyer conjecture

Conjecture (Birch-Swinnerton-Dyer)

Let E be an elliptic curve over Q. Then we have
r:=rk(E/Q) = ords—1 L(E,s)
and
Reg(E/Q) - Q- [II(E/Q)|- ], co(E)
|E(Q)tors|2 ’

where L*(E, 1) is the leading coefficient of L(E,s) and Reg(E/Q) is
the regulator, defined using the real-valued Néron-Tate height pairing.

L*(E,1) =

Jennifer Balakrishnan, University of Oxford p-adic heights on Jacobians of hyperelliptic curves I 8



p-adic Birch and Swinnerton-Dyer conjecture

Conjecture (Mazur-Tate-Teitelbaum)

Let E be an elliptic curve over Q with good, ordinary reduction at p.
Then we have

r:=rk(E/Q) = ordr_o(L,(E, T))
and
Reg, (E/Q) - [LI(E/Q)I - T, co(E)
|E(Q)tors|2 ’

where £ (E, 0) is the leading coefficient of the p-adic L-function
L,(E,T) and

L; (E,0) = ¢p

Reg, (E/Q) = Reg,(E/Q)/log, (V)

with Reg,(E/Q) the p-adic regulator, defined using the cyclotomic
p-adic height pairing, a p-adic analogue of the real-valued Néron-Tate
height pairing.
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Inventiones
mathematicae

© Springer-Verlag 1986

Invent math. 84, 1-48 (1986)

On p-adic analogues of the conjectures
of Birch and Swinnerton-Dyer

B. Mazur, J. Tate, and J. Teitelbaum
Harvard University, Dept. of Mathematics, 1 Oxford Street. Cambridge, MA 02138, USA

The conjectures of Birch and Swinnerton-Dyer connect arithmetic invariants of
an elliptic curve E over Q (or more generally of an abelian variely over a
global field) with the order of zero and the leading coefficient of the Taylor
expansion of its Hasse-Weil zeta function at the “central point™. One of the
arithmetic invariants entering into this conjecture is the “regulator of E”, ie.
the discriminant of the quadratic form on E{Q) defined by the “canonical
height pairing”.

If I is an elliptic curve over Q patametrized by modular functions (a Weil
curve, ¢f, Chap. 11, §7 below) then the p-adic analogue of its Hasse-Weil [-
function has been defined, and recently p-adic theorics analogous to the theory
of canonical height have been developed. Tt seemed to us, then, to be an
appropriate time to embark on the project of formulating a p-adic analogue of
the conjecture of Birch and Swinnerton-Dyer, and gathering numerical data in
its support. It also seemed, at the outset, that this would be a relatively routine
project.

The project has proved to be anything but routine, and this article is an
attempt to report on our findings so far.

Data in Mazur-Tate-Teitelbaum

On p-adie analogues of the conjectures of Birch and Swinnerton-Dyer

following two caveats. First, we assumed throughout that |HI(E¥/Q)
ond. where a height regulator was involved we computed it with res
ve height listed in Table 12.2. In view of the conjec-

set of points of small ne

tures, we take the data as evidence that our points are generators and the IIl's

involved are trivial

Some of our calculations were done on X,(11), some on X (11} as in-
this is because points of small height were more

dicated in the tables

Table 121, Accuracy levels

Prime Conductor (] " Case Accuracy level
1" 5. 37, 53. 56, 0 exceptional 2

60, 69, 89, 97.

104
3510 [ exceptional if p=11 p=lii2

—39, ~40, —43, —52 non-excepuional if p=3.5  p=3:3;p=5:2

—68. 79, —95. —127

non-cxeeptional 2

s 47, ~103

non-exceptional

Table 12.2¢. Height data

Curve E=X,(11); 7,

. See 122a for further information

R:(<P‘P>‘ (F.Q),)
(P@); Q.20
Conductor  Points P, Q - - -1
of on E¥ (accuracy =3) (accuracy =2) (accuracy =2)
X(P): —1 1513 4 2
o Q) -2 R’(n 15] ’{2 \2)
det R=20 det R=14
*(P)= -3 [ o8 17 15
- R=
103 Q)= —36 (i3 (15 |,)
det R=—11/9 detR=14
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p-adic heights: p-adic BSD and III

In fact, more is known about p-adic BSD than classical BSD.

» By work of Kato, the computation of an approximation of
the p-adic L-series of E for an odd prime p of good
reduction produces an upper bound on the rank r of the
Mordell-Weil group E(Q) !

Moreover, explicitly computing p-adic heights and regulators
plays an important role in the following;:

Theorem (Stein-Wuthrich)
Let E/Q be the rank 2 elliptic curve 389al. Then for 2 and all 5005
good ordinary primes p < 48859 except p = 16231 we have

II(E/Q)[p] = 0.
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p-adic heights and K-rational points

Theorem (B.-Dogra-Miiller '16)
Consider Xo(37) with affine model

y? = —x® —9x* —11x% +37.

Then Xo(37)(Q(i)) = {(£2i,%1), (£1, £4), cot}.

Remarks:
» The proof of this result involves

» studying relationships between p-adic heights on elliptic
curves over number fields, as well as
» explicit computation of p-adic heights!

» Note that we have that rk J((37)(Q(i)) = 2, so this is not
amenable to the Chabauty-Coleman method.
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Cyclotomic
p-adic height on E/Q
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Computing cyclotomic p-adic height on E/Q
Let
» E be an elliptic curve over Q,

» p a good, ordinary prime for E.

In this scenario, there is (up to scalar multiple) only one p-adic
height, the cyclotomic p-adic height.

Suppose P € E(Q) is a non-torsion point
» that reduces to O € E(F,)

» and to a nonsingular point of E(F) for all primes { at
which E has bad reduction.

Mazur-Stein-Tate ('06) gave a fast way to compute the
cyclotomic p-adic height h:

1 op(P)
)= 1o, (7 )
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op(P),d(P)

Suppose E is given by a model y? = x> + Ax + B, with A, B € Z.
We define the p-adic sigma function and the denominator
function:

» p-adic o function o,: the unique odd function
op(t) =t +--- € tZy[[t]] satisfying

d
x(t) +c= 4 <1Up>
w\op, w
(with w the invariant differential g—; and ¢ € Z,, which can
be computed by Kedlaya’s algorithm)

» denominator function d(P): if P = (xp,yp) = (Z—E, Z%) , then
P P
d(P) =dp
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The height pairing

We use h(nP) = n?h(P) to extend the height to the full
Mordell-Weil group.

The symmetric, bilinear pairing is defined by

E(Q) x E(Q) = Qp
( P, Q )—h(P)+h(Q)—h(P+Q)
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Example: computing a cyclotomic p-adic height
Let E be the rank 1 curve > 4+ y = x> — x of conductor 37. The &

point P = (0, 0) is a generator for E(Q). We compute the p-adic
height of P for the good ordinary prime p = 5.

» The component group of g, is trivial. The reduction of P
to E(F5) has order 8, so we let

Q:8P:<21 69>

25" 125
We will compute i(Q) = h(8P) and then use
h(P) = 4h(8P).
» Denominator: We have d(P) = 5.

» 05: solve the differential equation defining the 5-adic
sigma function os:

x(t) +c= 2 (10@3) ,

w \ o5 w
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Computing a p-adic height
» This gives

13,14 (1, 5\5 3 5
H=t+-cP+ (= )P+ et
o5(t) toe 4ot <8C 12) +gt

where

1
E132(5 w)=1+45+4-5>+5+5*+544.57 4+ O(5%).

> Recall Q =8P = (3, — %) .Sot = —3

o5(t) =4-5+5*+53+5%42. 56+3
» So

% 23 5 and

8+ 0(5).

1 4.54+524+5% 4544+ 2.5043.55 4+ 0(5)
h(Q):glog5 5

=3+4+5+2.-54+3.52+3.5°4+2.5° 1 O(5%),

» Finally,

64h(Q) = 2+4-5+52+2-53+2-54+3~55+2-56+O(57).
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p-adic heights on elliptic

curves over quadratic
imaginary number fields



From Q to more general number fields

OXFORD

Unlike the R-valued canonical height, there may be many
canonical p-adic valued heights associated to E/K for a given
number field K.

» Up to nontrivial scalar multiple:

{canonical p-adic height pairings} &L {Z,-extensions L/K}

» Next interesting case is K quadratic imaginary: here we
have two Z, extensions, and we study cyclotomic and
anticyclotomic p-adic heights
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Anticyclotomic p-adic height on E(K)

» Setup:
» K a quadratic imaginary number field
» p = nn‘ a prime split in K
» E/Khas good ordinary reduction at the primes above p.
» Suppose P € E(K) is a non-torsion point that reduces to
» 0in E(F,) and E(F,<) and to
» the connected component of all special fibers of the Néron
model of E

» The anticyclotomic p-adic height k% := h, is given by

hanti(p) — pn(O'n(P)) o pn(Gn(Pc)) + Z pw(dw(P))/
wip

where p is the anticyclotomic idele class character
(p o c = —p for ¢ complex conjugation).
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A key difference between cyclotomic and
anticyclotomic

Conjecture (Schneider)

The cyclotomic height pairing is nondegenerate; equivalently the
associated p-adic regulator is nonzero.

» However, other p-adic height pairings need not be
nondegenerate!

» For E/Q with good ordinary reduction at p and K
quadratic imaginary over which E(K) has odd rank, the
anticyclotomic p-adic height pairing for E/K is not
nondegenerate!
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Anticyclotomic heights: computational issues

The anticyclotomic p-adic height can be expressed as

anti _ Uﬂ(P) d}\(P)
W (P) = py ((Yn(PC)) + K_ZM\C PA (d}\c(P)C> .
U#p

Computing the anticyclotomic p-adic height poses two new
challenges:

» We begin by computing n such that nP and nP‘ to reduce to
0 € E(F,). How do we deal with the (typically, very large)
multiple of P that results? In particular:

» How do we determine the finite set of split primes which
contribute to said point’s denominator?
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Example (yikes!)

OXFORD

L s LT 1)
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Anticyclotomic height: some packaging
Main challenge: contributions from primes not dividing p.

» Consider the ideal (xp)Og and let §(P) C Ok be its
denominator ideal.

> Fix dh(P) € Ok as follows:
d,(P)Og = H oftorda(8(P))/2
q

where £ is the class number of K, and the product is over
all prime ideals q in Ok.
» Fix an identification ¢ : K; ~ Q,. We have:

Proposition
The anticyclotomic p-adic height of P € E(K) is

1 o (P) 1 d,(P)*
i ((250) s 4 (35))
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Example
Let E be the elliptic curve “389.al1” given by

2ty =x>+x%—2x

» analytic rank of E/Q is 2; algebraic rank of E(Q) is 2

» Let K = Q(+/—11); we see E(K) has rank 3.

» 5is a good ordinary split prime in K.

» Consider Ay = (—& v—-11+ 2, — & /-11+ &) € E(K).
We compute h3"(A7).

» Let (5) = it in Ok, where T = (% V—11+ %). This allows
us to fix an identification

V: Ky — Qs
that sends

1 3
5 \/f11+5 > 2.5+5243-5°+4-5*+4.5°43.57 458457+ O(5'9).
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Example, continued

» Note the Tamagawa number at 389 is trivial, i.e., c3gg = 1; 5
n = 9 is the smallest multiple of A; and A{ such that both
points reduce to 0 in E(F). Set T = 9A;.

» Note that the class number of Kis h = 1. We find
dy(Ar) =3 vV—11-3.

» Let fo denote the 9th division polynomial associated to E.
We compute

dy(T) = d,(941)
= fo(A1)d(Ar)”
— 24227041862247516754088925710922259344570 /—11
— 147355399895912034115896942557395263175125
» We compute
on(t) 1 = 05(t)
—t+ (4+5+3-52+53+2.54+3-55+O(56)) B
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Example, continued

» We compute

17T = g log (“’(Gﬂm» et (v (3 (( )))>
. ( ) s (o (am))

:3+5+52+4-54+3'55+4-57+3-58+59+O(510)

» From this, we obtain the anticyclotomic 5-adic height of A;:

. 1 .
hantl(Al) — &hanh(T)

=3+3.543-524+2-5*14.5°+4.5°4+0(5%).
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The p-adic sigma function

Note the important role played by the p-adic sigma function
in the definition of these p-adic heights. Recall o), satisfies

d
x(t)+c:—£ <1Gp>, w—dx

w\0op, w T2y

What if we were to try to solve this (p-adic) differential
equation?

Yy
J( dx dx> (1 d0'p>
Xo— 47— | =— —
2y 2 oy W
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Nonabelian Chabauty

OXFORD

Our second look at p-adic heights is motivated by Kim’s
nonabelian Chabauty program:

Theorem (Kim, B.-Kedlaya-Kim, "10.)

Let E/Q be an elliptic curve with rank 1 such that the given model is
minimal and all Tamagawa numbers are 1. Then the ratio given by
Coleman integrals

Jb 2y 2y 2y
J‘P dx
b 2y

is constant on non-torsion integral points P.

J‘P dx xdx
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Reinterpreted: nonabelian Chabauty, g =r =1 at
Illevel 2// OXFORD

The previous theorem could be thought of as giving us a
function which helps cut out integral points:

» For the elliptic curve y? = x® + ax + b, (with rank 1 and
squarefree discriminant), consider

Z Z
log(z) := J )= J dx xdx
b2y b2y 2y
» By writing log(z) and D;(z) as p-adic power series and
tixing one integral point P, one can consider
H(z) := Dy(z) log?(P) — D1(P) log*(z).
» B-Kedlaya Kim: integral points on an elliptic curve are
contained in the set of zeros of {z : H(z) = 0}.

How do we extend this to higher genus curves?
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