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Choices

We’ve seen the following: p-adic heights on elliptic curves over
number fields beyond Q require a choice of idele class character.

However, going from elliptic curves to Jacobians of higher
genus curves requires an additional choice: in particular, if our
p-adic height is to be symmetric, we must choose a certain
direct sum decomposition of

H;R(X) = HO(XI Ql) S W/

i.e., a choice of W such that W is isotropic with respect to the
cup product pairing.

Since we have chosen p to be an ordinary prime, there is a

canonical choice of W: the unit root subspace for the action of
Frobenius.
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Coleman-Gross p-adic height pairing

Then the Coleman-Gross p-adic height pairing is a symmetric .
bilinear pairing

h:Div’(X) x Div’(X) = Q,,  where

» h can be decomposed into a sum of local height pairings
h =) _h, over all finite places v of Q.

> I,(D, E) is defined for D, E € Div’(X x Q,) with disjoint
support.

» We have h(D,div(B)) =0 for f € k(X)*,so his
well-defined on | x J.

» The local pairings h, can be extended (non-uniquely) such
that h(D) := h(D,D) = 5, hy(D, D) for all D € Div’(X).

» We fix a certain extension and write h,(D) := h,(D, D).
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Local height pairings

We consider the global height pairing / as a sum of (finitely
many) local height pairings i = }_ h,; Coleman-Gross achieve a
description of these local heights solely in terms of the curve.

Construction of 1, depends on whether v = p or v # p.
» v # p: arithmetic intersection theory, as in Miiller’s lectures

» v = p: logarithms, Coleman integration of normalized
differentials of the third kind (p-adic Green’s functions); in
particular,

hy(D,E) = J wp
E

for wp a certain differential of the third kind with
Res(wp) = D. This is a Coleman integral.
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Coleman integration
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p-adic line integrals

A Coleman integral is a p-adic line integral.

p-adic line integration is difficult — how do we construct the
correct path?
» We can construct local (“tiny”) integrals easily, but
extending them to the entire space is challenging.
» Coleman’s solution: analytic continuation along Frobenius,
giving rise to a theory of p-adic line integration satisfying
the usual nice properties
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Notation and setup

OXFORD

» X: genus g hyperelliptic curve (of the form y? = f(x), f
monic of degree 2¢ + 1) over K = Q,

» X: special fibre of X

> Xg generic fibre of X (as a rigid analytic space)
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Notation and setup, in pictures

» There is a natural reduction map
from X%r; to X; the inverse image
of any point of X is a subspace of

acr; isomorphic to an open unit
disk. We call such a disk a residue
disk of X.

» A wide open subspace of XaCr; is the

complement in Xacr; of the union red
of a finite collection of disjoint . . :
closed disks of radius A; < 1: . R
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Warm-up: Computing “tiny” integrals

We refer to any Coleman integral of the form fg w in which
P, Q lie in the same residue disk (so P = Q (mod p)) as a tiny
integral. To compute such an integral:

» Construct a linear interpolation from P to Q. For instance,
in a non-Weierstrass residue disk, we may take

x(t) = (1 —8H)x(P) + tx(Q)

where y(t) is expanded as a formal power series in .

» Formally integrate the power series in t:

JQ w = r w(x(t),y(t))dt.

P 0
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Properties of the Coleman integral

Coleman formulated an integration theory, allowing us to

define flg w whenever w is a meromorphic 1-form on X, and
P,Q € X(Qp) are points where w is holomorphic.
Properties of the Coleman integral include:

Theorem (Coleman)
» Linearity: flg(ocwl +Bwz) = ocflg wi+ B fl? wy.
> Additivity: [ w = [Fw + [§w.

» Change of variables: if X' is another such curve, and f : U — U’
is a rigid analytic map between wide opens, then

* Q)
fzgf w = f]j:(zg) w.
» Fundamental theorem of calculus: L? df =f(Q) —f(P).
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Coleman’s construction

How do we integrate if P, Q aren’t in the same residue disk?
Coleman’s key idea: use Frobenius to move between different
residue disks (Dwork’s “analytic continuation along
Frobenius”)

Frobenius

— “Tiny"integral

So we need to calculate the action of Frobenius on differentials.
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Frobenius, MW-cohomology

» X': affine curve (X — { Weierstrass points of X })

» A: coordinate ring of X’
To discuss the differentials we will be integrating, we recall:
The Monsky-Washnitzer (MW) weak completion of A is the ring A'
consisting of infinite sums of the form

{ > By(x) Bi(x) € K[x], deg B; < Zg},

i=—00

further subject to the condition that v, (B;(x)) grows faster than
a linear function of i as i — *o00. We make a ring out of these
using the relation y? = f(x).

These functions are holomorphic on wide opens, so we will
integrate 1-forms

dx
w=gluy)s, gluy)e AT,
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Using the basis differentials

Any odd differential w = h(x,y) g—;, h(x,y) € A" can be written as
w = dfw +cowo + -+ ng_lwzg_l,
where f, € Af, ¢ e Qp and

x dx
w; = 2]/

(i=0,...,2¢—1).

The set {wi}?i 81 forms a basis of the odd part of the de Rham
cohomology of AT.

By linearity and the fundamental theorem of calculus, we
reduce the integration of w to the integration of the w;.
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Integrals between points in different residue disks

Let ¢ denote a lift of p-power Frobenius:

» On a hyperelliptic curve y* = f(x),

¢ (ry) = (o, (/f ().

» A Teichmiiller point of X is a point P fixed by Frobenius:
¢(P) = P.
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Integrals between points in different residue disks

OXFORD

One way to compute Coleman integrals fg w;:
» Find the Teichmiiller points P/, Q’ in the residue disks of
P, Q.
» Use Frobenius to compute | 19,/ w;.
» Use additivity in endpoints to recover the integral:
[Rwi=[p wi+ 5 wi+ [§
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The Frobenius step (Kedlaya’s algorithm)
We have a p-power lift of Frobenius ¢ on AT:

d(x) =+,
_ fP) —f(x)v>1/2 = (1/2> ) —fp)
=P 2 T yvvJ J\I )
Now we use it on Hi gy (X')7; let w; = 4’;
e (XA xPd(xP) PP Ldx
bl =0 <2y> 2000) 260
‘ 1/2 —fx)P)\ d
_ it ( "Z( /)W)zy
29—1
= dfl + Z Mi]’w]',
j=0

where ﬁ € Al
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Frobenius and Coleman integrals
(B.-Bradshaw-Kedlaya ("10))

» Use Kedlaya’s algorithm to calculate the action of
Frobenius ¢ on each basis differential, letting

29—1

d*w; = dfl’ + Z Mijwj.

j=0

» Compute fg,/ w;j by solving a linear system

Q’ $(Q) Q' Q 21
J wi:J (UZ'ZJ C])*(,UZ‘:J dfl-‘r ZMU(D]
/ d)(Pl) p’ p’ j:0
Q' 2¢—1 Q'

|, wi=fien—pp+ > My |,

» The eigenvalues of M have C-norm p'/? # 1,s0 M — I is
invertible; solve the system to obtain the integrals | 19/ w;.
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Integrals via Teichmiiller, continued

» The linear system gives us the integral between different
residue disks.

» Then putting it all together, we have

Q P’ Q' Q
J w; = J w; +J w; +J w;
P P ’ Q’

Frobenius

— “Tiny"integral
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Iterated Coleman integrals

OXFORD

There is a generalization to n-fold iterated line integrals:

JQ W, -y = Jl Jtl . 'rnlfn(tn)”‘fl(tl)dtn Cdhy

P 0Jo 0

and an algorithm using Frobenius (B., 2013) to compute iterated
Coleman integrals.

These iterated Coleman integrals play a key role in Kim’s
nonabelian Chabauty program.
We focus on the case n = 2, and we use the convention

JQ W;Wwj = JQ w;(R) JR w;j

P P P
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Tiny double integrals

OXFORD

“Tiny” double integration (points P, Q in the same
non-Weierstrass residue disk)

» Compute local coordinate (x(t),y(t)) at P.
» Let R = (a +x(Q), fla+x(Q))).

> Write
Q Q R
J (,UZ'(,U]' = J wl(R) (U]
P P P

r X(t)jdX(t)> x(R(a))" dx(R(a))
o 2y(t) ) 2yR(a) da -
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Moving between different disks

OXFORD

As before, we can link integrals between non-Weierstrass
points via Frobenius.

To compute the integrals fg w;wy when P, Q are in different
disks:

» Compute Teichmiiller points P/, Q' in the disks of P, Q.

» Use Frobenius to calculate fg, W;W.
» Recover the double integral:

[ wiwy = [ wiwy — [p wiwg — (L? wz’) (LI; wk) —

(fQ/ wi) (IP// wk) + IS, w;Wr.
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Expanding Frobenius

Suppose P, Q are Teichmiiller. We have

Q $(Q)
J W;Wy = J W; Wy
p $(P)

JQ WijWwg = JQ(dD*wi)(dJ*wk)

P P
Jp w;Wwy = Jp dfl’ + Z Ml'jw]' dfk + Z Mk]-wj
i=0 i=0
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The linear system
For all 0 < i,k < 2¢ — 1, define the constants cj:

Q
i = J 4 (R)((R)) — fi (P)(F(Q) — fi(P))
Zg 1
J ZMU‘U] —f(P

2g 1 2¢—1

+A(Q) J ZMk]w, J FRIY. Mywi(R))
j=0

Then

I§ wowo

€oo
[ wows

= (g — (M)#2)

IQ w w C2g—1,2¢—1
p W2g—-1W2e—-1
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Quadratic Chabauty
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Kim’s nonabelian Chabauty program
The aim is to generalize the Chabauty-Coleman method, 2
which says that for a curve X/Q with rank J(Q) < g, we have

X(Qp)1 == {z € X(Qyp): L w = 0}

for some w € HO(XQP, Q). Kim’s program is to give further
iterated p-adic integrals vanishing on rational or integral points
on curves by studying Selmer varieties, with the hope of precisely
cutting out rational or integral points.

Explicit examples have been worked out in the case of
» P\ {0,1, oo} (Dan-Cohen-Wewers, Dan-Cohen)
» Elliptic curve E\ {O}, rk E(Q) is 0,1 (Kim, B.-Kedlaya-Kim,
B.—Besser, B.-Dan-Cohen-Kim-Wewers, B.-Dogra)

» Genus g hyperelliptic curve C \ {oco} or C, where we have
rank | = g (B.—Besser—Miiller, B.-Dogra)
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Quadratic Chabauty

Let X/Q be a genus g hyperelliptic curve. Given a global p-adic
height pairing i, we want to study it on integral points:

\h/ = hp + Z hy

uadratic form, rewrite as a . . . v#p
1 p-adic analytic function p-adic analytic function

via double Coleman integral L
using Coleman integrals takes on finite

number of values
on integral points
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Quadratic Chabauty

Given a global p-adic height pairing &, we want to study it on
integral points:

\h/ = ]’lp + Z hy

B . \/
uadratic form, rewrite as a . . . v#p
1 p-adic analytic function p-adic analytic function

via double Coleman integral —
using Coleman integrals takes on finite

number of values
on integral points
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Local height at p

By Coleman-Gross, the local height h, is given in terms of
Coleman integration: for D, E € Div’(X) of disjoint support,

hy (D, E) :J wp.
E
Theorem (B.-Besser-Miiller)
If P € X(Qp), then hy(P — c0) := hy(P — 0o, P — 00) is equal to a
double Coleman integral

s—1 p
T(P) := Iy (P — 00) = ZJ w; @,
i=0 ™
where {Mo, ..., Mg 1} forms a dual basis to {wy, ..., we_1} with

respect to the cup product pairing on Hye (X/Q,).
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Local heights away from p

OXFORD

If g # p then h, is defined in terms of arithmetic intersection
theory on a regular model of X over Spec(Z).

There is an explicitly computable finite set T C Q, such that

—> hy(P—o0)eT

qFp

for integral points P € X(Q).
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Strategy of Quadratic Chabauty

Consider the Q,-valued functionals f; = [, w; for0 <i<g—1

on J(Q).
Idea when rk(J(Q)) =r=g:

» Suppose the f; are linearly independent functionals on J(Q).

» Then {fifj}icj<g—1 is a natural basis of the space of
Q-valued quadratic forms on J(Q).

» The p-adic height h is also a quadratic form, so there must
exist o;j € Qp such that

h= ) wiff

ij<g—1

» Linear algebra gives us the global p-adic height in terms of
products of Coleman integrals.
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Quadratic Chabauty

We use these double and single Coleman integrals to rewrite the
global p-adic height pairing / and to study it on integral points:

Ju = \hp/ + ) h

quadratic form, rewrite as a vEp
p-adic analytic function
using Coleman integrals

p-adic analytic function

via double Coleman integral takes on finite

number of values
on integral points

hy - \h/ - Zhv

p-adic analytic function quadratic form, rewrite as a v#p
via double Coleman integral p _?dlc analytic functlon ini
& using Coleman integrals takes on finite

number of values
on integral points
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Quadratic Chabauty

Theorem (B.-Besser-Miiller)

If r = ¢ > 1 and the f; are independent, then there is an explicitly
computable finite set T C Q, and explicitly computable constants
o € Qp such that

p(P):=1(P)— Y  oyffi(P)
0<i<j<g—1
takes values in T on integral points.
Main strategy of quadratic Chabauty:

p-adic heights ~» p-adic integrals ~» p-adic power series (set
equal to a finite set of constants)

Then solve and produce a finite set of points containing integral
points!
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Rational points for bielliptic genus 2 curves

Let K be Q or a quadratic imaginary number field, X/K be
given by
¥ =x0faxt b+ c

and let
Ey:y*=x+ax® +bx+c Ey:y? =2 + b +acx + %,
with maps
fii: X — £ Hh: X — E;
(xy) = (x%y) (x,y) = (cx 2 cyx3).

Theorem (B.-Dogra "16)

Let X/K be as above and suppose E1 and E; each have rank 1. We can
carry out quadratic Chabauty to recover a finite set of p-adic points
containing X(K).
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Details (all the p-adic heights)

Theorem (B.-Dogra "16)
Then X/K be a genus 2 bielliptic curve as before. Then X(K) is

contained in the finite set of z in X(K,) satisfying
p(z) = 2hg, p(f2(2)) — b, p(fi(2) + (0, V) — h p(fi(2) + (0, —/C))
— 20 logy, (f2(2))? + 201 (logg, (1(2)) + logg, ((0, v/¢))?)
€,

where Q) is the finite set of values

{Z (hE,o(fi (2) + (0, V) + heyo(fi(2) + (0, — V) — 2h, 5(fa(2))) } ,

vfp

hg, (P;)

for (zy) in Hv)(p X(Kyp), and where o; = KO loge, (%"
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Example : Computing X,(37)(Q(7))

Consider

Xo(37) : y* = —x® — 9x* — 11x% 4 37.
We have rk(Jp(37)(Q(i))) = 2.
Change models and use
X:y2 :x6—9x4+11x2+37,
which is isomorphic to X((37) over K = Q(i); we have

rk(J(Q)) = rk(J(Q(7))) = 2.

Define
Ei:y>=x"—16x+16 Ey:y* = x> — x> —373x + 2813

and maps from X

f] : X — E] fz : X — E;
(x,y) — (x*=3,y) (x,y) — (37x72+4,37yx3).

Take P; and P; to be points of infinite order in E;(Q) and E>(Q).
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Xo(37)(Q(1)), continued

We compute

p(z) = 2hg, p(f2(2) —hE1 o(fi(2) + (=3, V37))
— he, p(fi(2) + (=3, —V/37))
— 200k, (f;_ ) + 204 (e, (f1(2)) + logg, ((—3, V37))?)

and find that points z € X(Q(i)) satisfy

p(z) = glogp(37).

Taking p = 41,73,101, we use p to produce points in
X(Q41), X(Q73), X(Q101)-
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Recovered points in X(Q4;)

X(Fq1)

recovered x(z) in residue disk z € X(K)

(1,9

14+16-41+23-412 +5-415 + 23 - 415 1 0(41%)
1+6-41+23-412 430 - 413 + 14 - 41* + O(41%)

(415) (2,1)
2419-41+36-412 4+15-41% +26 - 41% + O(415)

542541 +26-412 4 26 - 413 + 31 - 414 + O(41°
541441+ 12 413 4+ 33 - 414 + O(41°
6+ 18-412 +31-413 + 6 -41* 4+ O(41°
6+30-41+35-412 411413 + O(41°

94+9.41+434-412 +22.413 + 24 . 414 + O(41%) (i,4)
94+39-41+14-412 46 -41% +17-41* + O(415)

13+10-41+2-412 415413 +29 - 41* + O(41°
134741 +8-412 32413 + 14 - 41% 4 O(41°
16+ 13- 41 + 6 - 413 + 18 - 41% 4 O (415

16 +12-41 + 8- 412 49413 432 41* + O(41°
17424 -41 +37 - 412 + 16 - 413 + 28 - 414 4+ O(41°
17 +19 - 41 +20- 412 4+ 7. 413 + 7. 41* + O(41°
184341 +7-412 +9-41% +-38 - 414 + O(41°
18441434 - 412 +3-413 + 32414 + 0(41°

204741440412 422413 + 7. 414 + O(41
2042341426412 4+17-41%3 422414 + O(41

3241+ 13412 416 - 413 + 8- 41* + O(41
9.41+27-412 24413 432 - 41* 4 O(41
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Recovered points in X(Qy3)

X(Fz3) recovered x(z) in residue disk z € X(K) (or X(Q(V/3)))
2,1) 2+461-73450-732+71-733 +56-731 + O(73°)
24 0(73%) (2,1)
(5,26) 54637344732 442.73% +25.73% + O(73%)
543973465732 433733 + 60 - 73% + O(73%)
(7,16) 7+62-73+31-732 +33.73% 4 44.73% 4 0(73°)
7429-73+67-73% +69-73% +17-73* + 0(73%)
(9,34)
(10,30) | 10+53-73+35-73% 4 21.73% +67-73* + O(73%)
10439 - 73 + 40 - 732 + 17 - 733 + 59 - 73* 4+ 0(73°)
(18,17)
(19,2)
(20,15)
(21,4) 21+17-73470-73% 4 42.73% + 18- 73* + O(73%)
21+ 5273+ 67 -73% +20-73% +-27-73* + O(73%) (/3,4
(23,31) 234 18-73 459732 +23.73% +2.73% + O(73%)
23 +70-73 453732 4 21-73% + 50 - 73* + O(73%)
(25,25)
(27,4) 27 4+62-73+28-73%2 + 56 - 733 + 58 . 73% +- 0(73%) (i,4)
27 +24-73430-73% 420 - 73% + 65 - 73* + O(73%)
(29,8) 29 +70-73421-732 +56-73° +5.73* + O(73°)
29 +34-73 442732 419.73% 4 54.73% + O(73%)
(30,20)
(36,17) | 36+70-73+19-73% 4 11-73% +54.73% + O(73%)
36 + 3273423732 4 23.73% 428 . 73% + O(73%)
oot oot oot
(0,16) 61-73+63-732 +51-73% +16 - 73* + 0(73%)
12.73 49732 421733 +56- 734 + O(73%)
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Recovered points in X(Q101)

X(Fq01) recovered x(z) in residue disk z € X(K)
2,1) 2+ 0(101 2,1)
2438-101 + 11 - 1012 4 99 - 1013 4 26 - 101* + O(101%

(8,36) 8490101 + 39 - 1012 + 80 - 1013 + 70 - 101* 4+ O(101°
8 +40 - 101 + 84 - 1012 4 74 - 1013 + 15 - 101* + O(101%
(10,4) 10 +5-101 +29 - 1012 + 66 - 1013 + 10 - 101* 4 O(101° (i,4)

(12,7) 12412101 + 95 - 1012 + 55 - 1013 + 48 - 101* + O(101°
12436 - 101 + 62 - 1012 + 97 - 1013 + 27 - 101* + O(1015
(14,21) | 14+ 62-101+ 621012 + 41 - 1013 + 51 - 101* + O(1015
14 + 80 - 101 + 72 - 1012 4 32 - 1013 4 75 - 101* + O(101%

)
(101°)
(101°)
(101°)
(101°)
10 +49 - 101 + 80 - 1012 + 74 - 1013 + 8 - 1014 + O(101%)
(101°)
(101°)
( )
(101°)

(17,18) 17 + 65 - 101 4 37 - 1012 + 80 - 101 + 45 - 101% + O(101°)
17 +50 - 101 + 61 - 1012 + 89 - 1013 + 61 - 1014 + O(101°)

(22,3) 22 459101 + 78 - 1012 + 43 - 1013 + 53 - 101* 4 O(101°)
22 496 - 101 + 29 - 1012 + 43 - 1013 + 86 - 1014 + O(101%)

(28,37) 28 4+ 30 - 101 + 83 - 1012 +5 - 1013 423 - 101* + O(101%)
28 + 37 - 101 + 24 - 1012 4 78 - 1013 + 35 - 1014 + 0(101%)
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Recovered points in X(Q1¢1), continued

X(Fyo1) recovered x(z) in residue disk | z € X(K)
(30,46)
(31,23) 31423101 4 11-1012 + 67 - 1013 + 39 - 1014 + O(1015

(101°)

31429101 + 68 - 1012 + 29 - 1013 + 24 - 101* + O(101°)

(34,45) 34 +91-101 + 46 - 1012 + 28 - 1013 + 34 - 1014 + 0(101)
34 451101 4 73 - 1012 + 34 - 1013 + 14 - 1014 + 0(101%)

(37,22)

(38,28)

(39,46) 39 4+ 76 - 101 + 86 - 1012 + 18 - 1013 + 64 - 101* + O(101%)
39 +31- 101 4 43 - 1012 + 10 - 1013 + 48 - 1014 + 0(101%)

(46,6)

(47,32)

(48,27) | 48+443-101+100-1012 +47-101% +19-101* + O(1015)

(
48 421101 4 38 - 1012 + 80 - 1013 + 95 - 1014 ++ 0(101%)
(50,5) 50 + 59 - 101 4 19 - 1012 + 64 - 1013 + 36 - 1014 + 0(101%)
50 + 74 - 101 + 69 - 1012 + 80 - 1013 + 21 - 1014 + 0(1015)
OO+ OO+
(0,21)
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Putting it together and computing X,(37)(Q(i))

Steffen Miiller carried out the Mordell-Weil sieve on the sets of
points found in X(Q41), X(Q73), and X(Q101); conclusion:

X(Q) ={(£2:£1:1),(£i:£4:1),(1:£1:0)},
or in other words,

Xo(37)(Q(1)) ={(+2i: £1:1),(£1:£4:1),(i:+1:0)}

Note: the computation of points in X(Qy3) recovered the points

(£+v—=3,+4) € Xo(37)(Q(v/=3)) as well!
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