

p-adic heights on Jacobians of hyperelliptic curves II

Jennifer Balakrishnan

University of Oxford

PIMS Summer School on Explicit Methods for Abelian Varieties University of Calgary June 17, 2016

Coleman-Gross *p*-adic heights

Choices

We've seen the following: *p*-adic heights on elliptic curves over number fields beyond **Q** require a choice of idele class character.

However, going from elliptic curves to Jacobians of higher genus curves requires an additional choice: in particular, if our *p*-adic height is to be symmetric, we must choose a certain direct sum decomposition of

$$H^1_{dR}(X) = H^0(X, \Omega^1) \oplus W,$$

i.e., a choice of *W* such that *W* is isotropic with respect to the cup product pairing.

Since we have chosen *p* to be an ordinary prime, there is a canonical choice of *W*: the unit root subspace for the action of Frobenius.

Coleman-Gross *p*-adic height pairing

Then the Coleman-Gross *p*-adic height pairing is a symmetric bilinear pairing

$$h: \mathrm{Div}^0(X) \times \mathrm{Div}^0(X) \to \mathbf{Q}_p$$
, where

- ▶ *h* can be decomposed into a sum of local height pairings $h = \sum_{v} h_v$ over all finite places v of \mathbf{Q} .
- ▶ $h_v(D, E)$ is defined for $D, E \in \text{Div}^0(X \times \mathbf{Q}_v)$ with disjoint support.
- ▶ We have $h(D, \operatorname{div}(\beta)) = 0$ for $\beta \in k(X)^{\times}$, so h is well-defined on $J \times J$.
- ► The local pairings h_v can be extended (non-uniquely) such that $h(D) := h(D, D) = \sum_v h_v(D, D)$ for all $D \in \text{Div}^0(X)$.
- ▶ We fix a certain extension and write $h_v(D) := h_v(D, D)$.

Local height pairings

We consider the global height pairing h as a sum of (finitely many) local height pairings $h = \sum h_v$; Coleman-Gross achieve a description of these local heights solely in terms of the curve.

Construction of h_v depends on whether v = p or $v \neq p$.

- $v \neq p$: arithmetic intersection theory, as in Müller's lectures
- ▶ *v* = *p*: logarithms, Coleman integration of normalized differentials of the third kind (*p*-adic Green's functions); in particular,

$$h_p(D, E) = \int_E \omega_D$$

for ω_D a certain differential of the third kind with $\operatorname{Res}(\omega_D) = D$. This is a Coleman integral.

Coleman integration

p-adic line integrals

A Coleman integral is a *p*-adic *line integral*.

p-adic line integration is difficult – how do we construct the correct path?

- ► We can construct local ("tiny") integrals easily, but extending them to the entire space is challenging.
- ► Coleman's solution: *analytic continuation along Frobenius*, giving rise to a theory of *p*-adic line integration satisfying the usual nice properties

Notation and setup

- ► *X*: genus *g* hyperelliptic curve (of the form $y^2 = f(x)$, *f* monic of degree 2g + 1) over $K = \mathbf{Q}_p$
- $ightharpoonup \overline{X}$: special fibre of X
- ► $X_{\mathbf{C}_p}^{\mathrm{an}}$: generic fibre of X (as a rigid analytic space)

Notation and setup, in pictures

UNIVERSITY OF OXFORD

- ► There is a natural reduction map from $X_{C_p}^{an}$ to \overline{X} ; the inverse image of any point of \overline{X} is a subspace of $X_{C_p}^{an}$ isomorphic to an open unit disk. We call such a disk a *residue disk* of X.
- ► A wide open subspace of $X_{C_p}^{an}$ is the complement in $X_{C_p}^{an}$ of the union of a finite collection of disjoint closed disks of radius $\lambda_i < 1$:

Warm-up: Computing "tiny" integrals

We refer to any Coleman integral of the form $\int_P^Q \omega$ in which P, Q lie in the same residue disk (so $P \equiv Q \pmod{p}$) as a *tiny integral*. To compute such an integral:

► Construct a linear interpolation from *P* to *Q*. For instance, in a non-Weierstrass residue disk, we may take

$$x(t) = (1 - t)x(P) + tx(Q)$$

$$y(t) = \sqrt{f(x(t))},$$

where y(t) is expanded as a formal power series in t.

► Formally integrate the power series in *t*:

$$\int_{P}^{Q} \omega = \int_{0}^{1} \omega(x(t), y(t)) dt.$$

Properties of the Coleman integral

Coleman formulated an integration theory, allowing us to define $\int_P^Q \omega$ whenever ω is a meromorphic 1-form on X, and $P,Q \in X(\mathbf{Q}_p)$ are points where ω is holomorphic. Properties of the Coleman integral include:

Theorem (Coleman)

- Linearity: $\int_P^Q (\alpha \omega_1 + \beta \omega_2) = \alpha \int_P^Q \omega_1 + \beta \int_P^Q \omega_2$.
- Additivity: $\int_P^R \omega = \int_P^Q \omega + \int_Q^R \omega$.
- ► Change of variables: if X' is another such curve, and $f: U \to U'$ is a rigid analytic map between wide opens, then $\int_P^Q f^* \omega = \int_{f(P)}^{f(Q)} \omega$.
- ► Fundamental theorem of calculus: $\int_{P}^{Q} df = f(Q) f(P)$.

Coleman's construction

How do we integrate if *P*, *Q* aren't in the same residue disk? Coleman's key idea: use Frobenius to move between different residue disks (Dwork's "analytic continuation along Frobenius")

So we need to calculate the action of Frobenius on differentials.

Frobenius, MW-cohomology

- ► X': affine curve ($X \{ \text{Weierstrass points of } X \}$)
- ► *A*: coordinate ring of *X*′

To discuss the differentials we will be integrating, we recall: The *Monsky-Washnitzer (MW) weak completion of A* is the ring A^{\dagger} consisting of infinite sums of the form

$$\left\{\sum_{i=-\infty}^{\infty}\frac{B_i(x)}{y^i},\ B_i(x)\in K[x],\deg B_i\leqslant 2g\right\},\,$$

further subject to the condition that $v_p(B_i(x))$ grows faster than a linear function of i as $i \to \pm \infty$. We make a ring out of these using the relation $y^2 = f(x)$.

These functions are holomorphic on wide opens, so we will integrate 1-forms

$$\omega = g(x,y)\frac{dx}{2y}, \quad g(x,y) \in A^{\dagger}.$$

Using the basis differentials

Any odd differential $\omega = h(x,y) \frac{dx}{2y}, h(x,y) \in A^{\dagger}$ can be written as

$$\omega = df_{\omega} + c_0 \omega_0 + \cdots + c_{2g-1} \omega_{2g-1},$$

where $f_{\omega} \in A^{\dagger}$, $c_i \in \mathbf{Q}_p$ and

$$\omega_i = \frac{x^i dx}{2y} \qquad (i = 0, \dots, 2g - 1).$$

The set $\{\omega_i\}_{i=0}^{2g-1}$ forms a basis of the odd part of the de Rham cohomology of A^{\dagger} .

By linearity and the fundamental theorem of calculus, we reduce the integration of ω to the integration of the ω_i .

Integrals between points in different residue disks

Let ϕ denote a lift of *p*-power Frobenius:

• On a hyperelliptic curve $y^2 = f(x)$,

$$\Phi:(x,y)\mapsto (x^p,\,\sqrt{f(x^p)}).$$

▶ A *Teichmüller point* of *X* is a point *P* fixed by Frobenius: $\phi(P) = P$.

Integrals between points in different residue disks

One way to compute Coleman integrals $\int_{P}^{Q} \omega_{i}$:

- ► Find the Teichmüller points P', Q' in the residue disks of P, Q.
- ▶ Use Frobenius to compute $\int_{P'}^{Q'} \omega_i$.
- Use additivity in endpoints to recover the integral: $a^{D'}$

$$\int_{P}^{Q} \omega_{i} = \int_{P}^{P'} \omega_{i} + \int_{P'}^{Q'} \omega_{i} + \int_{Q'}^{Q} \omega_{i}.$$

The Frobenius step (Kedlaya's algorithm)

We have a *p*-power lift of Frobenius ϕ on A^{\dagger} :

$$\phi(x)=x^p,$$

$$\phi(y) = y^p \left(1 + \frac{f(x^p) - f(x)^p}{f(x)^p} \right)^{1/2} = y^p \sum_{i=0}^{\infty} \binom{1/2}{i} \frac{(f(x^p) - f(x)^p)^i}{y^{2pi}}$$

Now we use it on $H^1_{MW}(X')^-$; let $\omega_i = \frac{x^i dx}{2y}$.

where $f_i \in A^{\dagger}$.

Frobenius and Coleman integrals (B.-Bradshaw-Kedlaya ('10))

 Use Kedlaya's algorithm to calculate the action of Frobenius φ on each basis differential, letting

$$\phi^*\omega_i = df_i + \sum_{j=0}^{2g-1} M_{ij}\omega_j.$$

► Compute $\int_{P'}^{Q'} \omega_j$ by solving a linear system

$$\int_{P'}^{Q'} \omega_{i} = \int_{\Phi(P')}^{\Phi(Q')} \omega_{i} = \int_{P'}^{Q'} \Phi^{*} \omega_{i} = \int_{P'}^{Q'} \left(df_{i} + \sum_{j=0}^{2g-1} M_{ij} \omega_{j} \right)$$
$$\int_{P'}^{Q'} \omega_{i} = f_{i}(Q') - f_{i}(P') + \sum_{j=0}^{2g-1} M_{ij} \int_{P'}^{Q'} \omega_{j}.$$

► The eigenvalues of M have C-norm $p^{1/2} \neq 1$, so M - I is invertible; solve the system to obtain the integrals $\int_{p_I}^{Q'} \omega_i$.

Integrals via Teichmüller, continued

- ► The linear system gives us the integral between different residue disks.
- ► Then putting it all together, we have

$$\int_{P}^{Q} \omega_{i} = \int_{P}^{P'} \omega_{i} + \int_{P'}^{Q'} \omega_{i} + \int_{Q'}^{Q} \omega_{i}$$

Iterated Coleman integrals

There is a generalization to *n*-fold iterated line integrals:

$$\int_{P}^{Q} \omega_n \cdots \omega_1 = \int_{0}^{1} \int_{0}^{t_1} \cdots \int_{0}^{t_{n-1}} f_n(t_n) \cdots f_1(t_1) dt_n \cdots dt_1$$

and an algorithm using Frobenius (B., 2013) to compute iterated Coleman integrals.

These iterated Coleman integrals play a key role in Kim's nonabelian Chabauty program.

We focus on the case n = 2, and we use the convention

$$\int_{P}^{Q} \omega_{i} \omega_{j} := \int_{P}^{Q} \omega_{i}(R) \int_{P}^{R} \omega_{j}$$

Tiny double integrals

"Tiny" double integration (points *P*, *Q* in the same non-Weierstrass residue disk)

- ► Compute local coordinate (x(t), y(t)) at P.
- ► Let $R = (a + x(Q), \sqrt{f(a + x(Q))})$.
- Write

$$\int_{P}^{Q} \omega_{i} \omega_{j} = \int_{P}^{Q} \omega_{i}(R) \int_{P}^{R} \omega_{j}$$

$$= \int_{0}^{x(Q)-x(P)} \left(\int_{0}^{a} \frac{x(t)^{j} dx(t)}{2y(t)} \right) \frac{x(R(a))^{i}}{2y(R(a))} \frac{dx(R(a))}{da}.$$

Moving between different disks

As before, we can link integrals between non-Weierstrass points via Frobenius.

To compute the integrals $\int_{P}^{Q} \omega_{i} \omega_{k}$ when P, Q are in different disks:

- ► Compute Teichmüller points P', Q' in the disks of P, Q.
- ▶ Use Frobenius to calculate $\int_{P'}^{Q'} \omega_i \omega_k$.
- ► Recover the double integral:

$$\int_{P}^{Q} \omega_{i} \omega_{k} = \int_{P'}^{Q'} \omega_{i} \omega_{k} - \int_{P'}^{P} \omega_{i} \omega_{k} - \left(\int_{P}^{Q} \omega_{i}\right) \left(\int_{P'}^{P} \omega_{k}\right) - \left(\int_{Q'}^{Q'} \omega_{i}\right) \left(\int_{P'}^{Q'} \omega_{k}\right) + \int_{Q'}^{Q} \omega_{i} \omega_{k}.$$

Expanding Frobenius

Suppose *P*, *Q* are Teichmüller. We have

$$\int_{P}^{Q} \omega_{i} \omega_{k} = \int_{\Phi(P)}^{\Phi(Q)} \omega_{i} \omega_{k}$$

$$\int_{P}^{Q} \omega_{i} \omega_{k} = \int_{P}^{Q} (\Phi^{*} \omega_{i}) (\Phi^{*} \omega_{k})$$

$$\int_{P}^{Q} \omega_{i} \omega_{k} = \int_{P}^{Q} \left(df_{i} + \sum_{j=0}^{2g-1} M_{ij} \omega_{j} \right) \left(df_{k} + \sum_{j=0}^{2g-1} M_{kj} \omega_{j} \right)$$

The linear system

For all $0 \le i, k \le 2g - 1$, define the constants c_{ik} :

$$\begin{split} c_{ik} &= \int_{P}^{Q} df_{i}(R)(f_{k}(R)) - f_{k}(P)(f_{i}(Q) - f_{i}(P)) \\ &+ \int_{P}^{Q} \sum_{j=0}^{2g-1} M_{ij} \omega_{j}(R)(f_{k}(R) - f_{k}(P)) \\ &+ f_{i}(Q) \int_{P}^{Q} \sum_{j=0}^{2g-1} M_{kj} \omega_{j} - \int_{P}^{Q} f_{i}(R)(\sum_{j=0}^{2g-1} M_{kj} \omega_{j}(R)). \end{split}$$

Then

$$\begin{pmatrix} \int_{P}^{Q} \omega_{0}\omega_{0} \\ \int_{P}^{Q} \omega_{0}\omega_{1} \\ \vdots \\ \int_{R}^{Q} \omega_{2g-1}\omega_{2g-1} \end{pmatrix} = (I_{4g^{2}} - (M^{t})^{\otimes 2})^{-1} \begin{pmatrix} c_{00} \\ \vdots \\ c_{2g-1,2g-1} \end{pmatrix}.$$

Quadratic Chabauty

Kim's nonabelian Chabauty program

The aim is to generalize the Chabauty-Coleman method, which says that for a curve X/\mathbf{Q} with rank $J(\mathbf{Q}) < g$, we have

$$X(\mathbf{Q}_p)_1 := \left\{ z \in X(\mathbf{Q}_p) : \int_b^z \omega = 0 \right\}$$

for some $\omega \in H^0(X_{\mathbb{Q}_p}, \Omega^1_X)$. Kim's program is to give further *iterated p*-adic integrals vanishing on rational or integral points on curves by studying *Selmer varieties*, with the hope of *precisely* cutting out rational or integral points.

Explicit examples have been worked out in the case of

- ▶ $\mathbf{P}^1 \setminus \{0, 1, \infty\}$ (Dan-Cohen–Wewers, Dan-Cohen)
- ► Elliptic curve $E \setminus \{O\}$, rk $E(\mathbf{Q})$ is 0, 1 (Kim, B.–Kedlaya–Kim, B.–Besser, B.–Dan-Cohen–Kim–Wewers, B.–Dogra)
- ► Genus *g* hyperelliptic curve $C \setminus \{\infty\}$ or *C*, where we have rank J = g (B.–Besser–Müller, B.–Dogra)

Quadratic Chabauty

Let X/\mathbf{Q} be a genus g hyperelliptic curve. Given a global p-adic height pairing h, we want to study it on integral points:

$$\begin{array}{c} h \\ \text{quadratic form, rewrite as a} \\ p\text{-adic analytic function} \\ \text{using Coleman integrals} \end{array} = \begin{array}{c} h_p \\ p\text{-adic analytic function} \\ \text{via double Coleman integral} \end{array} + \begin{array}{c} \sum_{v \neq p} h_v \\ \text{takes on finite} \\ \text{number of values} \\ \text{on integral points} \end{array}$$

Quadratic Chabauty

Given a global *p*-adic height pairing *h*, we want to study it on integral points:

Local height at *p*

By Coleman-Gross, the local height h_p is given in terms of Coleman integration: for $D, E \in \text{Div}^0(X)$ of disjoint support,

$$h_p(D,E) = \int_E \omega_D.$$

Theorem (B.-Besser-Müller)

If $P \in X(\mathbf{Q}_p)$, then $h_p(P-\infty) := h_p(P-\infty, P-\infty)$ is equal to a double Coleman integral

$$\tau(P) := h_p(P - \infty) = \sum_{i=0}^{g-1} \int_{\infty}^{P} \omega_i \bar{\omega}_i,$$

where $\{\bar{\omega}_0, \ldots, \bar{\omega}_{g-1}\}$ forms a dual basis to $\{\omega_0, \ldots, \omega_{g-1}\}$ with respect to the cup product pairing on $H^1_{dR}(X/\mathbb{Q}_p)$.

Local heights away from *p*

If $q \neq p$ then h_q is defined in terms of arithmetic intersection theory on a regular model of X over Spec(\mathbf{Z}).

There is an explicitly computable finite set $T \subset \mathbf{Q}_p$ such that

$$-\sum_{q\neq p}h_q(P-\infty)\in T$$

for integral points $P \in X(\mathbf{Q})$.

Strategy of Quadratic Chabauty

Consider the \mathbb{Q}_p -valued functionals $f_i = \int_O \omega_i$ for $0 \le i \le g-1$ on $J(\mathbb{Q})$.

Idea when $rk(J(\mathbf{Q})) = r = g$:

- ► Suppose the f_i are linearly independent functionals on $J(\mathbf{Q})$.
- ► Then $\{f_if_j\}_{i \le j \le g-1}$ is a natural basis of the space of \mathbf{Q}_p -valued quadratic forms on $J(\mathbf{Q})$.
- ► The *p*-adic height *h* is also a quadratic form, so there must exist $\alpha_{ij} \in \mathbf{Q}_p$ such that

$$h = \sum_{i \leqslant j \leqslant g-1} \alpha_{ij} f_i f_j$$

▶ Linear algebra gives us the global *p*-adic height in terms of products of Coleman integrals.

Quadratic Chabauty

We use these double and single Coleman integrals to rewrite the global *p*-adic height pairing *h* and to study it on integral points:

$$\frac{h}{\text{quadratic form, rewrite as a}} = \frac{h_p}{\text{p-adic analytic function}} + \sum_{\substack{v \neq p \\ \text{takes on finite number of values on integral}}} h_v$$

$$h_p$$
 — h = — $\sum_{v \neq p} h_v$ quadratic form, rewrite as a p -adic analytic function using Coleman integrals p -adic analytic function p -adic analytic function using Coleman integrals p -adic analytic function p -adic analytic func

Quadratic Chabauty

Theorem (B.-Besser-Müller)

If $r = g \geqslant 1$ and the f_i are independent, then there is an explicitly computable finite set $T \subset \mathbf{Q}_p$ and explicitly computable constants $\alpha_{ij} \in \mathbf{Q}_p$ such that

$$\rho(P) := \tau(P) - \sum_{0 \le i \le j \le g-1} \alpha_{ij} f_i f_j(P)$$

takes values in T on integral points.

Main strategy of quadratic Chabauty:

p-adic heights \rightsquigarrow *p*-adic integrals \rightsquigarrow *p*-adic power series (set equal to a finite set of constants)

Then solve and produce a finite set of points containing integral points!

Rational points for bielliptic genus 2 curves

Let K be \mathbb{Q} or a quadratic imaginary number field, X/K be given by

$$y^2 = x^6 + ax^4 + bx^2 + c$$

and let

$$E_1: y^2 = x^3 + ax^2 + bx + c$$
 $E_2: y^2 = x^3 + bx^2 + acx + c^2$,

with maps

$$f_1: X \longrightarrow E_1 \qquad f_2: X \longrightarrow E_2 \ (x,y) \mapsto (x^2,y) \qquad (x,y) \mapsto (cx^{-2},cyx^{-3}).$$

Theorem (B.-Dogra '16)

Let X/K be as above and suppose E_1 and E_2 each have rank 1. We can carry out quadratic Chabauty to recover a finite set of p-adic points containing X(K).

Details (*all* the *p*-adic heights)

Theorem (B.-Dogra '16)

Then X/K be a genus 2 bielliptic curve as before. Then X(K) is contained in the finite set of z in $X(K_{\mathfrak{p}})$ satisfying

$$\begin{split} \rho(z) &= 2h_{E_2,\mathfrak{p}}(f_2(z)) - h_{E_1,\mathfrak{p}}(f_1(z) + (0,\sqrt{c})) - h_{E_1,\mathfrak{p}}(f_1(z) + (0,-\sqrt{c})) \\ &- 2\alpha_2 \log_{E_2}(f_2(z))^2 + 2\alpha_1 (\log_{E_1}(f_1(z))^2 + \log_{E_1}((0,\sqrt{c}))^2) \\ &\in \Omega, \end{split}$$

where Ω is the finite set of values

$$\left\{ \sum_{v \nmid p} \left(h_{E_1,v}(f_1(z) + (0,\sqrt{c})) + h_{E_1,v}(f_1(z) + (0,-\sqrt{c})) - 2h_{E_2,v}(f_2(z)) \right) \right\},$$

for
$$(z_v)$$
 in $\prod_{v \nmid p} X(K_v)$, and where $\alpha_i = \frac{h_{E_i}(P_i)}{[K:\mathbf{O}] \log_{E_i}(P_i)^2}$.

Example : Computing $X_0(37)(\mathbf{Q}(i))$

Consider

$$X_0(37): y^2 = -x^6 - 9x^4 - 11x^2 + 37.$$

We have $\text{rk}(J_0(37)(\mathbf{Q}(i))) = 2$.

Change models and use

$$X: y^2 = x^6 - 9x^4 + 11x^2 + 37,$$

which is isomorphic to $X_0(37)$ over $K = \mathbf{Q}(i)$; we have $\operatorname{rk}(J(\mathbf{Q})) = \operatorname{rk}(J(\mathbf{Q}(i))) = 2$.

Define

$$E_1: y^2 = x^3 - 16x + 16$$

$$E_2: y^2 = x^3 - x^2 - 373x + 2813$$

and maps from *X*

Take P_1 and P_2 to be points of infinite order in $E_1(\mathbf{Q})$ and $E_2(\mathbf{Q})$.

$X_0(37)(\mathbf{Q}(i))$, continued

We compute

$$\begin{split} \rho(z) &= 2h_{E_2,\mathfrak{p}}(f_2(z)) - h_{E_1,\mathfrak{p}}(f_1(z) + (-3,\sqrt{37})) \\ &- h_{E_1,\mathfrak{p}}(f_1(z) + (-3,-\sqrt{37})) \\ &- 2\alpha_2 h_{E_2}(f_2(z)) + 2\alpha_1 (h_{E_1}(f_1(z)) + \log_{E_1}((-3,\sqrt{37}))^2) \end{split}$$

and find that points $z \in X(\mathbf{Q}(i))$ satisfy

$$\rho(z) = \frac{4}{3} \log_p(37).$$

Taking p = 41,73,101, we use ρ to produce points in $X(\mathbf{Q}_{41}), X(\mathbf{Q}_{73}), X(\mathbf{Q}_{101})$.

Recovered points in $X(\mathbf{Q}_{41})$

$X(\mathbf{F}_{41})$	recovered $x(z)$ in residue disk	$z \in X(K)$
(1,9)	$1 + 16 \cdot 41 + 23 \cdot 41^2 + 5 \cdot 41^3 + 23 \cdot 41^4 + O(41^5)$	
	$1 + 6 \cdot 41 + 23 \cdot 41^2 + 30 \cdot 41^3 + 14 \cdot 41^4 + O(41^5)$	
(2,1)	$2 + O(41^5)$	(2,1)
	$2 + 19 \cdot 41 + 36 \cdot 41^{2} + 15 \cdot 41^{3} + 26 \cdot 41^{4} + O(41^{5})$	` , ,
(4, 18)	, -, , , , , , ,	
$\frac{(5,12)}{(5,12)}$	$5 + 25 \cdot 41 + 26 \cdot 41^2 + 26 \cdot 41^3 + 31 \cdot 41^4 + O(41^5)$	
(0,12)	$5 + 14 \cdot 41 + 12 \cdot 41^3 + 33 \cdot 41^4 + O(41^5)$	
(6,1)	$6 + 18 \cdot 41^2 + 31 \cdot 41^3 + 6 \cdot 41^4 + O(41^5)$	
(0,1)	$6 + 30 \cdot 41 + 35 \cdot 41^2 + 11 \cdot 41^3 + O(41^5)$	
(7,15)	0 + 30 · 41 + 33 · 41 + 11 · 41 + O(41)	
	$9 + 9 \cdot 41 + 34 \cdot 41^2 + 22 \cdot 41^3 + 24 \cdot 41^4 + O(41^5)$	(: 4)
(9,4)		(i, 4)
	$9 + 39 \cdot 41 + 14 \cdot 41^2 + 6 \cdot 41^3 + 17 \cdot 41^4 + O(41^5)$	
(12,5)	2 2 4 5	
(13, 19)	$13 + 10 \cdot 41 + 2 \cdot 41^{2} + 15 \cdot 41^{3} + 29 \cdot 41^{4} + O(41^{5})$	
ll	$13 + 7 \cdot 41 + 8 \cdot 41^2 + 32 \cdot 41^3 + 14 \cdot 41^4 + O(41^5)$	
(16,1)	$16 + 13 \cdot 41 + 6 \cdot 41^3 + 18 \cdot 41^4 + O(41^5)$	
	$16 + 12 \cdot 41 + 8 \cdot 41^2 + 9 \cdot 41^3 + 32 \cdot 41^4 + O(41^5)$	
(17, 20)	$17 + 24 \cdot 41 + 37 \cdot 41^2 + 16 \cdot 41^3 + 28 \cdot 41^4 + O(41^5)$	
	$17 + 19 \cdot 41 + 20 \cdot 41^2 + 7 \cdot 41^3 + 7 \cdot 41^4 + O(41^5)$	
(18, 20)	$18 + 3 \cdot 41 + 7 \cdot 41^2 + 9 \cdot 41^3 + 38 \cdot 41^4 + O(41^5)$	
	$18 + 41 + 34 \cdot 41^2 + 3 \cdot 41^3 + 32 \cdot 41^4 + O(41^5)$	
(19,3)	, , , , , , , , , , , , , , , , , , , ,	
(20,6)	$20 + 7 \cdot 41 + 40 \cdot 41^2 + 22 \cdot 41^3 + 7 \cdot 41^4 + O(41^5)$	
` ` ` `	$20 + 23 \cdot 41 + 26 \cdot 41^2 + 17 \cdot 41^3 + 22 \cdot 41^4 + O(41^5)$	
$\overline{\infty}^+$	∞ ⁺	∞ ⁺
(0, 18)	$32 \cdot 41 + 13 \cdot 41^2 + 16 \cdot 41^3 + 8 \cdot 41^4 + O(41^5)$	
(3,20)	$9 \cdot 41 + 27 \cdot 41^2 + 24 \cdot 41^3 + 32 \cdot 41^4 + O(41^5)$	
Н	7 11 21 11 32 11 3(11)	

Recovered points in $X(\mathbf{Q}_{73})$

$X(\mathbf{F}_{73})$	recovered $x(z)$ in residue disk	$z \in X(K) \text{ (or } X(\mathbf{Q}(\sqrt{3})))$
(2,1)	$2 + 61 \cdot 73 + 50 \cdot 73^2 + 71 \cdot 73^3 + 56 \cdot 73^4 + O(73^5)$	
	$2 + O(73^5)$	(2,1)
(5,26)	$5 + 63 \cdot 73 + 4 \cdot 73^2 + 42 \cdot 73^3 + 25 \cdot 73^4 + O(73^5)$, , ,
	$5 + 39 \cdot 73 + 65 \cdot 73^2 + 33 \cdot 73^3 + 60 \cdot 73^4 + O(73^5)$	
(7,16)	$7 + 62 \cdot 73 + 31 \cdot 73^2 + 33 \cdot 73^3 + 44 \cdot 73^4 + O(73^5)$	
(1,10)	$7 + 29 \cdot 73 + 67 \cdot 73^2 + 69 \cdot 73^3 + 17 \cdot 73^4 + O(73^5)$	
(9,34)	, , , 2, , , , , , , , , , , , , , , ,	
$\frac{(3)(31)}{(10,30)}$	$10 + 53 \cdot 73 + 35 \cdot 73^2 + 21 \cdot 73^3 + 67 \cdot 73^4 + O(73^5)$	
(10,50)	$10 + 39 \cdot 73 + 40 \cdot 73^2 + 17 \cdot 73^3 + 59 \cdot 73^4 + O(73^5)$	
(18, 17)	10 + 39 · 73 + 40 · 73 + 17 · 73 + 39 · 73 + 0(73)	
(19, 2)		
(20, 15)	$21 + 17 \cdot 73 + 70 \cdot 73^2 + 42 \cdot 73^3 + 18 \cdot 73^4 + O(73^5)$	
(21,4)		((5.4)
(22.21)	$21 + 52 \cdot 73 + 67 \cdot 73^2 + 20 \cdot 73^3 + 27 \cdot 73^4 + O(73^5)$	$(\sqrt{3}, 4)$
(23,31)	$23 + 18 \cdot 73 + 59 \cdot 73^2 + 23 \cdot 73^3 + 2 \cdot 73^4 + O(73^5)$	
ll	$23 + 70 \cdot 73 + 53 \cdot 73^2 + 21 \cdot 73^3 + 50 \cdot 73^4 + O(73^5)$	
(25, 25)		
(27,4)	$27 + 62 \cdot 73 + 28 \cdot 73^{2} + 56 \cdot 73^{3} + 58 \cdot 73^{4} + O(73^{5})$	(i, 4)
	$27 + 24 \cdot 73 + 30 \cdot 73^{2} + 20 \cdot 73^{3} + 65 \cdot 73^{4} + O(73^{5})$	
(29,8)	$29 + 70 \cdot 73 + 21 \cdot 73^2 + 56 \cdot 73^3 + 5 \cdot 73^4 + O(73^5)$	
	$29 + 34 \cdot 73 + 42 \cdot 73^2 + 19 \cdot 73^3 + 54 \cdot 73^4 + O(73^5)$	
(30, 20)		
(36, 17)	$36 + 70 \cdot 73 + 19 \cdot 73^2 + 11 \cdot 73^3 + 54 \cdot 73^4 + O(73^5)$	
	$36 + 32 \cdot 73 + 23 \cdot 73^2 + 23 \cdot 73^3 + 28 \cdot 73^4 + O(73^5)$	
$\overline{\infty^+}$	$_{\infty}^{+}$	∞+
(0, 16)	$61 \cdot 73 + 63 \cdot 73^2 + 51 \cdot 73^3 + 16 \cdot 73^4 + O(73^5)$	
' '	$12 \cdot 73 + 9 \cdot 73^2 + 21 \cdot 73^3 + 56 \cdot 73^4 + O(73^5)$	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

Recovered points in $X(\mathbf{Q}_{101})$

$X(\mathbf{F}_{101})$	recovered $x(z)$ in residue disk	$z \in X(K)$
(2,1)	$2 + O(101^7)$	(2,1)
	$2 + 38 \cdot 101 + 11 \cdot 101^2 + 99 \cdot 101^3 + 26 \cdot 101^4 + O(101^5)$	
(8,36)	$8 + 90 \cdot 101 + 39 \cdot 101^2 + 80 \cdot 101^3 + 70 \cdot 101^4 + O(101^5)$	
	$8 + 40 \cdot 101 + 84 \cdot 101^2 + 74 \cdot 101^3 + 15 \cdot 101^4 + O(101^5)$	
(10,4)	$10 + 5 \cdot 101 + 29 \cdot 101^2 + 66 \cdot 101^3 + 10 \cdot 101^4 + O(101^5)$	(i,4)
(, , , ,	$10 + 49 \cdot 101 + 80 \cdot 101^2 + 74 \cdot 101^3 + 8 \cdot 101^4 + O(101^5)$	(,,,,
(12,7)	$12 + 12 \cdot 101 + 95 \cdot 101^2 + 55 \cdot 101^3 + 48 \cdot 101^4 + O(101^5)$	
($12 + 36 \cdot 101 + 62 \cdot 101^2 + 97 \cdot 101^3 + 27 \cdot 101^4 + O(101^5)$	
(14, 21)	$14 + 62 \cdot 101 + 62 \cdot 101^2 + 41 \cdot 101^3 + 51 \cdot 101^4 + O(101^5)$	
(,)	$14 + 80 \cdot 101 + 72 \cdot 101^2 + 32 \cdot 101^3 + 75 \cdot 101^4 + O(101^5)$	
(15, 11)		
$\frac{(17,18)}{(17,18)}$	$17 + 65 \cdot 101 + 37 \cdot 101^2 + 80 \cdot 101^3 + 45 \cdot 101^4 + O(101^5)$	
(17,10)	$17 + 50 \cdot 101 + 61 \cdot 101^2 + 89 \cdot 101^3 + 61 \cdot 101^4 + O(101^5)$	
(18, 45)	1, 100 101 01 101 05 101 01 101 0(101)	
$\frac{(10,43)}{(20,47)}$		
(22,3)	$22 + 59 \cdot 101 + 78 \cdot 101^2 + 43 \cdot 101^3 + 53 \cdot 101^4 + O(101^5)$	
[[(22,3)	$22 + 96 \cdot 101 + 29 \cdot 101^{2} + 43 \cdot 101^{3} + 86 \cdot 101^{4} + O(101^{5})$	
(24, 19)	22+30-101+23-101 +43-101 +00-101 +0(101)	
$\frac{(24,19)}{(27,39)}$		
$\frac{(27,39)}{(28,37)}$	$28 + 30 \cdot 101 + 83 \cdot 101^2 + 5 \cdot 101^3 + 23 \cdot 101^4 + O(101^5)$	
(20,37)	$28 + 30 \cdot 101 + 83 \cdot 101^{2} + 78 \cdot 101^{3} + 23 \cdot 101^{4} + O(101^{4})$ $28 + 37 \cdot 101 + 24 \cdot 101^{2} + 78 \cdot 101^{3} + 35 \cdot 101^{4} + O(101^{5})$	
	20 + 3/ · 101 + 24 · 101 - + /0 · 101 + 33 · 101 · + O(101 ·)	

Recovered points in $X(\mathbf{Q}_{101})$, continued

$X(\mathbf{F}_{101})$	recovered $x(z)$ in residue disk	$z \in X(K)$
(30, 46)		
(31, 23)	$31 + 23 \cdot 101 + 11 \cdot 101^2 + 67 \cdot 101^3 + 39 \cdot 101^4 + O(101^5)$	
	$31 + 29 \cdot 101 + 68 \cdot 101^2 + 29 \cdot 101^3 + 24 \cdot 101^4 + O(101^5)$	
(34, 45)	$34 + 91 \cdot 101 + 46 \cdot 101^2 + 28 \cdot 101^3 + 34 \cdot 101^4 + O(101^5)$	
	$34 + 51 \cdot 101 + 73 \cdot 101^2 + 34 \cdot 101^3 + 14 \cdot 101^4 + O(101^5)$	
(37, 22)		
(38, 28)		
(39, 46)	$39 + 76 \cdot 101 + 86 \cdot 101^2 + 18 \cdot 101^3 + 64 \cdot 101^4 + O(101^5)$	
	$39 + 31 \cdot 101 + 43 \cdot 101^2 + 10 \cdot 101^3 + 48 \cdot 101^4 + O(101^5)$	
(46,6)		
(47,32)		
(48, 27)	$48 + 43 \cdot 101 + 100 \cdot 101^2 + 47 \cdot 101^3 + 19 \cdot 101^4 + O(101^5)$	
	$48 + 21 \cdot 101 + 38 \cdot 101^2 + 80 \cdot 101^3 + 95 \cdot 101^4 + O(101^5)$	
(50,5)	$50 + 59 \cdot 101 + 19 \cdot 101^2 + 64 \cdot 101^3 + 36 \cdot 101^4 + O(101^5)$	
	$50 + 74 \cdot 101 + 69 \cdot 101^2 + 80 \cdot 101^3 + 21 \cdot 101^4 + O(101^5)$	
<u>∞</u> +	∞ ⁺	∞+
(0,21)		

Putting it together and computing $X_0(37)(\mathbf{Q}(i))$

Steffen Müller carried out the Mordell-Weil sieve on the sets of points found in $X(\mathbf{Q}_{41})$, $X(\mathbf{Q}_{73})$, and $X(\mathbf{Q}_{101})$; conclusion:

$$X(\mathbf{Q}(i)) = \{(\pm 2 : \pm 1 : 1), (\pm i : \pm 4 : 1), (1 : \pm 1 : 0)\},\$$

or in other words,

$$X_0(37)(\mathbf{Q}(i)) = \{(\pm 2i : \pm 1 : 1), (\pm 1 : \pm 4 : 1), (i : \pm 1 : 0)\}.$$

Note: the computation of points in $X(\mathbf{Q}_{73})$ recovered the points $(\pm \sqrt{-3}, \pm 4) \in X_0(37)(\mathbf{Q}(\sqrt{-3}))$ as well!