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Open question on supersingular curves

Let p be a prime number. Let g be a natural number.

Open question:
Does there exist a supersingular curve of genus g defined over a finite
field of characteristic p, for every p and g?

Outline. What is:

1 a supersingular elliptic curve;
2 a supersingular curve of higher genus;
3 known about this question already;
4 the next step?
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Complex elliptic curves and p-torsion

Let E be a complex elliptic curve.

E ' C/L for a lattice L = Zω1 +Zω2.
(Thus E is an abelian group).

Torsion points: E [p](C) = {Q ∈ E(C) | pQ = 0E}.

Then E [p](C)' 1
p L/L' (Z/p)2.

If X is a complex curve of genus g ≥ 2, its Jacobian JX is a p.p. abelian
variety of dimension g and JX [p](C)' (Z/p)2g .
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Elliptic curves - algebraic version

Let E : y2 = h(x) be an elliptic curve over k = Fp where
h(x) = x3 + ax2 + bx + c = ∏

3
i=1(x−λi).

Algebraic group law on E :

The `-torsion of E is Ker[`] where [`] : E → E is mult.by-`.

E [`](k) := {Q ∈ E(k) | `Q = 0E} ' (Z/`)2 if p - `.
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Torsion points - example

Let E : y2 = x3 + ax2 + bx + c and ` = 3.

A point Q has order 3 iff 2Q =−Q iff x(2Q) = x(Q).

This occurs iff x(Q) is a root of the 3-division polynomial.

P. < a,b,c >= PolynomialRing(ZZ ,3)

E = EllipticCurve(P, [0,a,0,b,c])

d3 = E .division_polynomial(3,x = None)

3∗x4 + 4∗a∗x3 + 6∗b ∗x2 + 12∗c ∗x−b2 + 4∗a∗c

If p 6= 3, then d3(x) has 4 distinct roots so E has 8 points of order 3
and |E [3](k)|= 9.
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Collapsing torsion points - example

What if p = 3?
d3 = 3∗x4 + 4∗a∗x3 + 6∗b ∗x2 + 12∗c ∗x −b2 + 4∗a∗c.

P3. < a,b,c >= PolynomialRing(GF (3),3)

r3 = d3.change_ring(P3)

+a∗x3−b2 + a∗c

Mod p binomial thm: In k [x ], (x + α)p = xp + αp.

So r3 = a∗x3−b2 + a∗c has{
one (triple) root a 6≡ 0 mod 3
no roots a≡ 0 mod 3

So |E [3](k)| divides 3 when p = 3.
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Ordinary and supersingular elliptic curves

p rp reduction of p−division polynomial of y2 = x3 + bx + c
5 +2∗b ∗x10−b2 ∗c ∗x5 + b6−2∗b3 ∗c2−c4

7 +3∗c ∗x21 + 3∗b2 ∗c2 ∗x14 + (−b7 ∗c−2∗b4 ∗c3 + 3∗b ∗c5)∗x7

−b12−b9 ∗c2 + 3∗b6 ∗c4−b3 ∗c6 + 2∗c8

Then rp has at most (p−1)/2 roots. The p-torsion points on
E : y2 = f (x) collapse to either p points or 1 point modulo p.

Def:

E is

{
ordinary if |E [p](k)|= p
supersingular if |E [p](k)|= 1
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Supersingularity and slopes

If E/Fq is elliptic curve, then #E(Fq) = q + 1−a.
The zeta function of E is Z (t) = (1−at + qt2)/(1− t)(1−qt).

Fact: p | a iff E supersingular.

E supersingular, Newton polygon of 1−at + qt2 has slopes 1/2.

called G1,1.

E ordinary, then Newton polygon has slopes 0 and 1.

called G0,1⊕G1,0.
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Sage - computing supersingularity

E = EllipticCurve(GF (5), [0,1,0,2,0])
Elliptic Curve defined by y2 = x3 + x2 + 2∗x over Finite Field of size 5
E .is_supersingular()
True
E .hasse_invariant()
0
E .trace_of_frobenius()
0
F = E .frobenius()
C = F .absolute_charpoly()
x2 + 5
C.newton_slopes(5)
[1/2,1/2]
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Examples of supersingular elliptic curves

For all p, there exists a supersingular elliptic curve E/Fp2 (Igusa).
The number of isomorphism classes of ss elliptic curves is b p

12c+ ε.

p = 2: y2 + y = x3 (unique)
p ≡ 3 mod 4: y2 = x3−x
p ≡ 2 mod 3: y2 = x3 + 1

p odd: y2 = h(x), where h(x) cubic with distinct roots, is supersingular
iff the coefficient cp−1 of xp−1 in h(x)(p−1)/2 is zero.

This coefficient vanishes iff Cartier operator trivializes dx
y ∈ H0(E ,Ω1).

C(
dx
y

) = C(
yp−1dx

yp ) =
1
y

C(h(x)(p−1)/2)dx) =
c1/p

p−1dx

y
.

y2 = x(x −1)(x−λ) is supersingular for p−1
2 choices of λ ∈ Fp (Igusa).
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Review: supersingular elliptic curves

Let E be a smooth elliptic curve over k = k , with char(k) = p.
Let E [p] be the kernel of the inseparable multiplication-by-p morphism.

E is supersingular if it satisfies the following equivalent conditions:

A. The only p-torsion point is the identity: E [p](k) = {id}.

B. The Newton polygon of E is a line segment of slope 1
2 .

C. The Cartier operator annihilates H0(E ,Ω1).

D. End(E) non-commutative (order in quat. algebra)
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Introduction: different properties when g > 1

Let A be a p.p. abelian variety of dimension g over k = k , char(k) = p.
Let A[p] be the kernel of the inseparable multiplication-by-p morphism.

The following conditions are all different for g ≥ 3.

A. p-rank 0 - The only p-torsion point is the identity: A[p](k) = {id}.

B. supersingular - The Newton polygon of A is a line of slope 1
2 .

C. superspecial - The Cartier operator annihilates H0(X ,Ω1).

Then C⇒ B⇒ A but A
g≥3
6⇒ B

g≥2
6⇒ C

Question: if g ≥ 2, do these occur for Jacobian of smooth k -curve?
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Curves of higher genus

Let k = Fp (an algebraically closed field of char. p).

Let X be a (smooth projective connected) curve over k .

Recall: everything you learned about Riemann surfaces (C-curves).

Analogous structures: e.g., functions, differentials, Jacobians.

More complicated definitions: e.g., genus is g = dim(H0(X ,Ω1)) rather
than ’the number of holes’.

Guideline:
Most facts not involving the number p are still true.
Most facts involving the number p are now false.
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Jacobians

Suppose X is a curve. The genus is g = dim(H0(X ,Ω1)).

If g ≥ 2, there is no natural group law on the points of X .

(Recall, define group structure on points of a complex curve by
integrating holomorphic differentials and taking quotient by lattice of
periods: Jx = Ω1(X )∗/H1(X ,Z)' Cg/L. Its p-torsion points satisfy
JX [p](C)' (Z/p)2g .)

Now Jacobian JX of X is Pic0(X ) (line bundles of deg 0) or
Div0(X )/PDiv(X) (divisors of deg 0 mod principal divisors).

Then JX is a principally polarized abelian variety of dimension g.

Rachel Pries (CSU) Supersingular curves PIMS summer school 14 / 32



B. Definition of Newton polygon

Let X be a smooth projective curve defined over Fq, with q = pa.
Zeta function of X is Z (X/Fq, t) = L(X/Fq, t)/(1− t)(1−qt)

where L(X/Fq, t) = ∏
2g
i=1(1−wi t) ∈ Z[t ] and |wi |=

√
q.

The Newton polygon of X is the NP of the L-polynomial L(t).
Find p-adic valuation vi of coefficient of t i in L(t).
Draw lower convex hull of (i ,vi/a) where q = pa.

Facts: The NP goes from (0,0) to (2g,g).
NP line segments break at points with integer coefficients;
If slope λ occurs with length mλ, so does slope 1−λ.

Definition
X/Fq is supersingular if the Newton polygon of L(X/Fq, t) is a line
segment of slope 1/2.
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B. Definition of Newton polygon

Let A be a p.p. abelian variety of dimension g over k .

Manin: for c,d relatively prime s.t. λ = c
d ∈Q∩ [0,1],

define a p-divisible group Gc,d of dimension c and height d .

The Dieudonné module Dλ for Gc,d is a W (k)-module.
Over Frac(W (k)), there is a basis x1, . . . ,xd for Dλ s.t. F dxi = pcxi .

There is an isogeny of p-divisible groups A[p∞]∼⊕λGmλ

c,d .

Newton polygon: lower convex hull - line segments slope λ, length mλ.

Definition: A supersingular iff λ = 1
2 is the only slope.

There is a partial ordering on NPs; the supersingular NP is ’smallest’.
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The supersingular property

Let X be a smooth projective curve defined over Fq, with q = pa.
The following are equivalent:

1 X is supersingular;
2 the Newton polygon of L(X/Fq,T ) is a line segment of slope 1/2;
3 each eigenvalue of the relative Frobenius morphism equals ζ

√
q

for some root of unity ζ;
4 X is minimal (satisfies lower bound in Hasse-Weil bound for

number of points) over Fqr for some r ;
5 Tate: End(Jac(X ×Fq k))⊗Qp 'Mg(Dp), Dp quat alg ram at p, ∞;
6 Oort: Jac(X ) is geometrically isogenous to a product of

supersingular elliptic curves.
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Motivation for studying supersingular curves

* maximal and minimal curves (supersingular) yield good
error-correcting Goppa codes;

* abelian varieties with complex multiplication are often supersingular,
useful in cryptography;

* good signature schemes built using supersingular curves;

* supersingular curves play a key role in geometric proofs about
stratifications of Ag by Newton polygon type (or EO type).
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Example: Hermitian curves are supersingular

Let q = pn. The Hermitian curve Xq has affine equation yq + y = xq+1.

It has genus g = q(q−1)/2.

It is maximal over Fq2 because #Xq
(
Fq2

)
= q3 + 1.

Ruck/Stichtenoth: Xq is unique curve of genus g maximal over Fq2 .

Hansen: Xq is the Deligne-Lusztig variety for Aut(Xq) = PGU(3,q).

The L-polynomial of Xq is L(Xq/Fq, t) = (1 + qt2)g .

The only slope of the Newton polygon of L(Xq/Fq, t) is 1/2.

Thus Jac(Xq) is supersingular.
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Which Newton polygons occur for Jacobians?

For all p and g, there exists:
a supersingular p.p. abelian variety of dimension g, namely Eg ;
and a supersingular singular curve of genus g.

Open question:
Does there exist a supersingular smooth curve of genus g defined over
a finite field of characteristic p, for every p and g?

More generally,
which Newton polygons occur for Jacobians of smooth curves?

For g = 1 both, g = 2 all three, g = 3 all five.

Let Ag be the moduli space of p.p. abelian varieties of dimension g.
The image of Mg in Ag is open and dense for g ≤ 3.
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Open question for g = 4:

For all p, does there exist a smooth curve of genus 4
which is supersingular? or whose NP has slopes 1/3,1/2,2/3?

σ4 ν0
3⊕σ1

ν0
4

ν1
1⊕σ3

ν1
1⊕ν0

3 ν2
4 ν3

4 ν4
4

∗: don’t know if this NP occurs for Jacobian of smooth curve for all p
∗: this NP occurs but some components may have problems
∗: each component has good geometric properties.

(Katz, Oort, Faber/Van der Geer, Pries, Achter-Pries)
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Do all NPs occur for Jacobians? Guess - unlikely?

Observation (Oort 2005) dim(Ag) = g(g + 1)/2 and
the dimension of the supersingular locus Ag[σg] is bg2/4c.

The difference δg is length of longest chain of NPs connecting the
supersingular NP σg to the ordinary NP νg .

If g ≥ 9, then δg > 3g−3 = dim(Mg).

Either (i) Mg does not admit a perfect stratification by NP
(i.e., there are two NPs ξ1 and ξ2 such that Ag [ξ1] is in the closure of Ag [ξ2]

but Mg [ξ1] is not in the closure of Mg [ξ2].)

or (ii) some NPs do not occur for Jacobians of smooth curves.

Test case: g = 11 with NP G5,6⊕G6,5 having slopes of 5/11,6/11
(does occur when p = 2 - Blache).
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Do all NPs occur for Jacobians? Evidence?

Only non-existence results are for curves with automorphisms:
Bouw 2001: Not all p-ranks occur for cyclic degree d > 2 covers

Especially, not all NPs occur for wildly ramified covers:
Deuring-Shafarevich formula restricts p-rank.
Oort: If p = 2, there does not exist a hyp. ss curve of genus 3.

Scholten/Zhu: p = 2, n ≥ 2, there is no hyp. ss curve with g = 2n−1.

(for odd p, generalized for Artin-Schreier covers X
Z/p→ P1 by Blache)

But.....

Van der Geer & Van der Vlugt: If p = 2, then there exists a
supersingular curve of every genus.
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Step one of proof by VdG/VdV

Def: R[x ] ∈ k [x ] is an additive polynomial if R(x1 + x2) = R(x1) + R(x2).
Then R[x ] = c0x + c1xp + c2xp2

+ chxph
.

Supersingular Artin-Schreier curves

If R[x ] ∈ k [x ] is an additive polynomial of degree ph, then
X : yp−y = xR[x ] is supersingular with genus ph(p−1)/2.

Proof: Induction on h, starting with h = 0.
Key fact: Jac(X ) is isogenous to a product of Jacobians of
Artin-Schreier curves for additive polynomials of smaller degree.

Remark: Bouw et al studied L-polynomials, automorphism groups of X .
Remark: Blache studied first slope of NP of more general AS curves
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Existence of supersingular curves when p = 2

Van der Geer and Van der Vlugt

If p = 2, then there exists a supersingular curve over F2 of every genus.

Proof sketch: Expand g as (with si ≤ si−1 + ri−1 + 2)
g = 2s1(1 + 2 + · · ·+ 2r1) + 2s2(1 + 2 + · · ·2r2) + · · ·+ 2st (1 + 2 + · · ·+ 2rt ).

Let L =⊕t
i=1Li for Li subspace of dim di := ri + 1 in vector space of

additive polynomials of deg 2ui , with ui = (si + 1)−∑
i−1
j=1(rj + 1).

If f ∈ L, let Cf : yp−y = xf . Let Y be fiber product of Cf → P1 for all
f ∈ L. Then JY ∼⊕f 6=0JCf (thus supersingular). Also, gY = ∑f 6=0 gCf .

The number of f ∈ L which have a non-zero contribution from Li , but
not from Lj for j > i , is (2di −1)∏

i−1
j=1 2dj . Each adds 2ui−1 to g.

So gY = ∑
t
i=1(2di −1)∏

i−1
j=1 2dj 2ui−1 = ∑

t
i=1 2si (1 + · · ·+ 2ri ) = g.
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Supersingular Artin-Schreier curves for odd p

Here is what VdG/VdV’s method produces for odd p.

Karemaker/P
Let g = Gp(p−1)2/2 where G = ∑

t
i=1 psi (1 + p + · · ·pri ). Then there

exists a supersingular curve over Fp of genus g.

Can this be improved?

VdG/VdV also prove that there exists a supersingular curve defined
over F2 of every genus. The construction is a little more complicated.
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Related question: the p-rank of X

If X is a smooth k -curve of genus g,

Fact/Def:
then |JX [p](k)|= pf for some integer 0≤ f ≤ g called the p-rank of X .

Also, f = dimFp Hom(µp,JX [p]) where
µp ' Spec(k [x ]/(xp−1)) is the kernel of Frobenius on Gm.

Let L(t) be the L-polynomial of the zeta function of an Fq-curve X .

The p-rank of X is the length of the slope 0 portion of NP(X ).

X is supersingular if all slopes of NP(X ) equal 1/2.
X supersingular implies X has p-rank 0 but converse false for g ≥ 3.
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Existence of curves with given genus and p-rank

Let g ∈ N, 0≤ f ≤ g and p prime.

The moduli space Mg (resp. Hg) of (hyperelliptic) curves of genus g
can be stratified by p-rank into strata M f

g (resp. H f
g )

whose points represent (hyperelliptic) curves of genus g and p-rank f .

Theorem: Faber/Van der Geer
Every component of M f

g has dimension 2g−3 + f ;
there exists a smooth curve over Fp with genus g and p-rank f .

Theorem: Glass/P (p odd), P/Zhu (p even)

Every component of H f
g has dimension g−1 + f ;

there exists a smooth hyp. curve over Fp with genus g and p-rank f .

In most cases, it is not known whether M f
g and H f

g are irreducible.
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Supersingular versus p-rank 0

Let A/k be a p.p. abelian variety of dimension g.

Fact: If A is supersingular, then A has p-rank 0.

If g ∈ {1,2} and A has p-rank 0, then A is supersingular.
If g ≥ 3 and A has p-rank 0, then A usually not supersingular.

Example: Let j ∈ N with p - j and h(x) ∈ k [x ] of degree j .
The curve X : yq + y = h(x) has genus g = (q−1)(j−1)/2.
Deuring-Shafarevich formula: Jac(X ) has p-rank 0.

Zhu: Let q = 2 and j = 2n+1−1, none of the 2-rank 0 curves
y2 + y = h(x) are supersingular.
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Moduli of curves: supersingular versus p-rank 0

Oort: There exists a hyperelliptic curve of genus 3 with p-rank 0 which
is not supersingular.

proof: study intersection of two codim 1 conditions in M 0
3 .

Application - Achter/P. Let g ≥ 3 and p 6= 2 for hyperelliptic

The generic point of any component of the p-rank 0 strata M 0
g and H 0

g
is not supersingular.

A 6⇒ B for curves:
if g ≥ 3, there exists a (hyperelliptic) curve of genus g with p-rank 0
which is not supersingular.

Rachel Pries (CSU) Supersingular curves PIMS summer school 30 / 32



Newton polygon results for f = g−3 and f = g−4

For g ≥ 4 and g−2≤ f ≤ g, the p-rank determines the Newton
polygon (and so that Newton polygon occurs, open and dense in M f

g .

Let νg,f = f (G0,1 + G1,0) + (G1,g−f−1 + Gg−f−1,1).

Application - Achter/P. Let g ≥ 3 and f = g−3.

The generic point of each component of M g−3
g has Newton polygon

νg,g−3 (slopes 0, 1
3 ,

2
3 ,1).

Application - Achter/P. Let g ≥ 4 and f = g−4.

The generic point of at least one component of M f
g has Newton

polygon νg,g−4 (slopes 0, 1
4 ,

3
4 ,1).

Note: When g = 4, there is at most one component of M 0
4 whose generic NP

is not ν4,0. If so, the NP has slopes 1
3 ,

1
2 ,

2
3 .
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Proof: inductive strategy, reduce to p-rank f = 0

Let νr be a NP type with p-rank 0 occurring in dimension r .

Let cr = codim(Ag[νr ],Ag).

For g ≥ r , let νg be the NP type with p-rank g− r ‘containing’ νr

(νg = (G0,1⊕G1,0)g−r ⊕νr ), add g− r slopes of 0,1.

Proposition P
If there exists a component Sr of Mr [νr ] s.t. codim(Sr ,Mr ) = cr ,

then, for all g ≥ r ,

there exists a component Sg of Mg[νg] s.t. codim(Sg ,Mg) = cr .
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