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Outline of talk

. SRB measures -- from Axiom A to general diffeomorphisms
ll. Conditions for existence and statistical properties of SRB measures
lll. A class of “strange attractors” and some concrete examples

IV. Extending the scope of previous work, to infinite dim, random etc.



[Part . SRB measures: from Axiom A to general D.S. j

SRB measures for Axiom A attractors (1970s)
M = cpct Riem manifold, J = map or Jt = flow
Assume uniformly hyperbolic or Axiom A attractor
A very important discovery of Sinai, Ruelle and Bowen is that

these attractors have a special invariant prob meas #
with the following properties:

(1) (time avg = space avg)
for all cts
—Zg@ f'z) — /wd/‘ Leb-a.e. x observables

(2) (characterlstlc W*" geometry) I has conditional densities
on unstable manifolds

(3) (entropy formula)

hu(f) = /log |det(D f|E™)|dp Proofs involves

Moreover Markov partitions &
OTEOVED (I)é ; (2) — (3) connection to stat mech




Next drop Axiom A assumption.
How general is the idea of SRB measures ?

M = cpct Riem manifold, J = arbitrary diffeomorphsim or flow

Recall: properties of SRB measures in Axiom A setting:
() time avg = space avg, (2) characteristic |}/ geometry, (3) entropy formula

4 N
Theorem [Ledrappier-Strelcyn, L, L-Young 1980s]
Let (f,u) be given where t is an arbitrary invariant Borel prob.
Then (2) <= (3); more precisely:
(f, 1) has pos Lyap exp a.e. and # has densities on W
<— hu(f) = /Z)‘jm@ di whgre i are Ityap exp
- with multiplicities m;

. )

We defined SRB measures for general (f, 1) by (2).

Note: Entropy formula proved for volume-preserving diffeos (Pesin, 1970)

Entropy inequality (<) proved for all (f, 1) (Ruelle, 1970s)



What is the meaning of all this?

For finite dim dynamical systems, an often adopted point of view is

observable events = positive Leb measure sets

For Hamiltonian systems,
Liouville measure = the important invariant measure

Same for volume preserving dynamical systems

But what about “dissipative” systems, e.g., one with an attractor ?

UPPOSE f. U U, f(U)CU, and A=nyf"(U)

Assume f is volume decreasing.

Then Leb(A) =0 ,and all inv meas are supported on A
i.e., no inv meas has a density wrt Leb

This does not necessary imply no inv meas can be physically relevant
= reflecting the properties of Lebesgue



Here is how it works: A i

K has densities on V" together with //// /(
. 1 .
if @le) = lim % o(f'z) =

éif}w*
:>then p(z) =oy) VyeW(z) 1R x\\\

integrating out along 1175, properties on W" passed to basin
8 8 8 prop P

—

Crucial to this argument is the absolute continuity of the WW? foliation
proved in nonuniform setting [Pugh-Shub 1990]

To summarize :

e one way to define SRB meas for general (f, 1) is
pos Lyap exp + conditional densities on TW*" i.e.property (2)

* conditional densities on W* implies physical relevance

under assumptions of ergodicity and no 0 Lyap exp e. property (1)



And how is the entropy formula related to all this ?

> >

entropy comes from expansion
but not all expansion goes into making entropy conservative case: no wasted expansion

Ruelle’s entropy inequality Pesin’s entropy formula

But whether entropy = sum of pos Lyap exp,
what does that have to do with backward-time dynamics!?

Entropy formula holds iff system is conservative in forward time
= an interpretation of SRB measure

Meaning of gap in Ruelle’s Inequality:
4 )
Theorem [Ledrappier-Young, 1980s] ( f, 1) as above; assume ergodic for simplicity.

Then

“in the direction of E, ”

here §; € [0,dim E;] is the di ion of 1
hu(f):Z)\;r(gi where 0, dim F;] is the dimension o
i

- J

Interpretation: dim(pu|W") = Z 0; is a measure of disspativeness



[Part ll. SRB meas: conditions for existence & stat propertiesJ

A difference between results for Axiom A and general diffeos is that
no existence is claimed

A natural condition that guarantees existence

A Start with a reference box,

A
| | P or a stack of T/ “-leaves,
A A

\j

or a stack of surfaces roughly || to //*
or just one such surface

Keep track of “good” returns to ref set
“good” = stretched all the way across
Let R = return time with unif bounded distortion

m = Leb meas in £

Prop [Young 80s] If /Rdm < oo , the SRB meas exists.

Most SRB meas (outside of Axiom A) were constructed this way.
First time | used it: piecewise unif hyperbolic maps of R?  [Young, 1980s]



In the same spirit that (finite) Markov partitions facilitated the study
of statistical properties of Axiom A systemes,
| proposed (1990s) that

(1) stats of systems that admit countable Markov extensions
can be expressed in terms of their renewal times, and

(2) this may provide a unified view of a class of nonuniformly hyperbolic
systems that have “controlled hyperbolicity”

F
B)’(')Jmﬁlaenn £ seek A—A s.t. (F,A) hasa countable
5 ’ { r l Markov partition

M = M

- In practice, fix a reference set Ay with

— ﬁ—\ hyperbolic (product) structure.
S Build skyscraper until

“ good return “

“dynamical renewal”




KTheorem [Young, 90s] k
Suppose J admits a Markov extension with return time R, m=Leb,
(a) If /Rdm <oo,then f hasan SRB meas U
(b) If m{R>n} <C0",0 <1, then (f, ) has exp decay of correl
(c) If m{R>n}=0(n"%),a>1, then decay ~ n~**!

\ (d) If m{R>n}=0(n""),a>2, then CLT holds.

J
ldea is to swap messy dynamics for a nice space w/ Markov structures

Construction of Markov extension was carried out for several known examples
e.g.

4 )
Theorem [Young 1990s] Exponential decay of time correlations

} for collision map of 2D periodic Lorentz gas

J

Remarks |.Important progress in hyperbolic theory is the understanding
that deterministic chaotic systems produce stats very similar to
those from (random) stochastic processes

2. Above are conditions for natural inv meas & their statistical properties.
To check these conditions, need some degree of hyperbolicity for the dyn sys



[Part lll. Proving positivity of Lyap exp in systems w/out inv conesj

Major challenge even when there is a lot of expansion
Reason : where there is expansion, there is also contraction ...
Y0 = tangent vector at X, Up = Df;}(vo)

|vn || sometimes grows, sometimes shrinks , ,
cancellation can be delicate

A breakthrough, and an important paradigm:

g
Theorems f(@) =1—a2?, acl0.2

|. [Jakobson 19811 There is a positive meas set of g for which

fa has an invariant density and a pos Lyap exp.

2. [Lyubich; Graczyk-Swiatek 1990s] Parameter space 0,2] = AUB mod Leb 0
s.t. A is open and denseand a € A = f, has sinks

B3 has positive meas and a € B = f, has acim & pos exp )
-

Intermingling of opposite dynamical types makes it impossible
to determine pos Lyap exp from finite precision or finite # iterates




Next breakthrough: The Henon maps [Benedicks-Carleson [990]
T :R?* — R?, Tov(z,y) = (1 — ax® +y, bx)

[BC] devised (i) an inductive algorithm to identify a “critical set”, and
(i) a scheme to keep track of derivative growth for points that do not
approach the “critical set” faster than exponentially

Borrowing [BC]’s techniques:

/Theorem [Wang-Young 2000s] [technical details omitted]
Setting: F, . : M 9 where M =S' x D,, (m-dim disk)
a = parameter, &' =‘“determinant” (dissipation)
Assume
|. singular limit defined,i.e. Fyue — Foo ase—0

2. fo=F.0l(S' x {0}):S" O has “enough expansion”
3. nondegeneracy + transversality conditions
Then for all suff small € >0 | 3 A(e) = pos meas set of a

s.t. (a) La,e has an ergodic SRB measure
(b) Amax >0 Leb-a.e.in M




We called the resulting attractors “rank-one attractors”
= |-D instability, strong codim | contraction

2

® “fattening up expanding circle maps e.g. z +—> 2~ gives solenoid maps;

slight “fattening up” of ID maps (wl/ singularities) gives rank-one maps

® passage to singular limit = lower dim’l object makes problem tractable

® rank-one attractors (generalization of Henon attractors) are currently
the only class of nonuniformly hyperbolic attractors amenable to analysis

e proof in [BC] is computational, using formula of Henon maps;
[WY]'’s formulation + proof are geometric, independent of [BC]

® Motivation: rank-one attractors likely occur naturally, shortly after
a system’s loss of stability

® [WY] gives checkable conditions so results can be applied
without going thru 100+ page proof each time



Application of rank-one attractor ideas
Shear-induced chaos in periodically kicked oscillators

Simplest version: linear shear flow
do

— =1+ oy kicks delivered with period T
dt pd

d ©.@)

—I=—\y  +Asin(2r6) n; 5(t —nT)

heS', ye R, o=shear, A=damping, T >>1

Unforced equation: {y = 0} = attractive limit cycle

Rick shean
g=9° —— Increasing shear

key : S —

( ) /—\

shear

.4 = —— - deformation —
A damping

- y .7.4.

assuming ¢ « 1




o shear

f=1+ oy " = kick period — A = — - deformation
A damping
y = —Ay + kick  Fr=time-T map of driven system
4 )
Theorem [Wang-Young 2000s]
o . .
(a) small X A : invariant closed curve
o)
(b) as A increases : invariant curve breaks, horseshoes develop
. ’, f KAM
(c) large %A : “dichomtomy (S )
' h h
ergodic SRB meas Amax < 0 orseshoes

+ sinks

Amax > 0 pPOs meas set parameters

. open set of parameters

Proof obtained by checking conditions in [WY]; general limit cycles OK.

Other applications of this body of ideas

- homoclinic bifurcations [Mora-Viana 1990s]

- periodically forced Hopf bifurcations [VWang-Young 2000s]

- forced relaxation oscillators [Guckenheimer-Weschelberger-Young 2000s]

- Shilnikov homoclinic loops [Ott and Wang 2010s]

- forced Hopf bif in parabolic PDEs, appl to chemical networks [Lu-VWang-Young 2010s]




(Part IV. Extending the scope of existing theory j

A. Infinite dimensional systems

Dynamical setting for certain classes of PDEs

Consider = + Au = f(u)

where © € X = function space, A = linear operator, { = nonlinear term
To definea C” dynamical system, need (X, | -||) s.t
(1) ug € X = wu(t) existsandisuniquein X forall t >0,
so semiflow f*: X — X is well defined

(2) tr~> u(t) is continuous for t >0

t r This imposes restriction on
t
(3) J7 el foreach the choice of (X, || - ||)

Remark. Dissipative PDEs (e.g. reaction diffusion eqtns) have attractors
w/ a very finite dimensional character -- natural place to start

e.g. Multiplicative Ergodic Theorem proved only for Hilbert/Banach space operators
that are quasi-compact [Mane, Ruelle, Thieullen, Lian-Lu ....]



In infinite dimensions: what plays the role of Leb measure ?
More concretely, what is a " typical” solution for a PDE ?

Sample results

.
Theorem Under global invariant cones conditions:

Constantin-Fois-Nicolaenko 80s,

Chow, Sell, Mallet-Paret, Lu ...

(b) Existence of stable W foliation [known]

(a) Existence of center manifold W

(c) Absolute continuity of W*-foliation in the case dim(W*°) < oo

i.e. if Xq,>, =disks transversal to W?, [Lian-Young-Zeng 2010s]

and 0 : 21 — X2 is holonomy along W *leaves,
then Leb(6(A)) < c Leb(A) for all Borel A C ¥ .

Interpretation

Notion of “almost everywhere” in Banach space

inherited from Leb measure class on W*°
e.g. a.e.in the sense of k-parameters of initial conditions

]

General idea: use of finite dim’l probes in infinite dim sp

- /



More general setting X = Banach or Hilbert space
F:[0,00) x X — X cts semiflow, fi(x) = F(t,x)
Assume (1) F|(p00)xx IS C*?
2) f', Df’ injective [backward uniqueness]
(3) existence of compact A C X , f*(A) = A [attractor]

4 )
Theorem Assume no 0 Lyap exponents.

(2) [Li-Shu, Blumenthal-Young 2010s] £ is an SRB measure if and only if

hu(f) = /ZAj dim E; du

(b) [Blumenthal-Young 2010s] Absolute continuity of W*
-

i.e. statistics of SRB visible

B. Random dynamical systems (RDS)
e fwg O fwg O fw17 ZZd Wlth IaW v

where V' is a Borel probability on C" (M )= space of self-maps of

Motivation : small random perturbations of deterministic maps, SDEs



Two notions of invariant measures
Stationary measure 4y _ /P(A‘Qj)d,u(l‘)
Equivalently, = /(fw)*,u P(dw) in the random maps representation

Sample measures = [ conditioned on the past

@)

W = (wn)n:—oo lu’ﬂ — nli_{glo(fw—l Or---0 fw—n—l—l © fw—n)*lu“

Interpretation : Htw describes what we see at time 0 given that
the transformations  f,, 'n <0, have occurred.

g
Theorem. Given RDS with stationary [, Amax = largest Lyap exp

(a) [Le Jan, 1980s] If Amax < 0, then [ is supported on a finite set
of points for v* —a.e.w called random sinks .

(b) [Ledrappier-Young, 1980s] If K has a density and Amax > 0, then

entropy formula holds and #w are random SRB measures for v% — a.e.w

(c) [L-Y 1980s] Additional Hormander condition on derivative process

partial dimensions satisfy 5. _ 1 for < i 5. =0 for i>ig
(2 ? (A
b J




Application: reliability of biological and engineered systems

L,(?)

fluctuating input

L0 = is internal state of system at time of presentation

*)

(large)
dynam sys

R(t)

‘)

response

Say the dyn sys is reliable wrt a class of signals

if the dependence of R(t) on Tg tends to 0 with as t increases.

et

If Anax < 0 and a.e. Hw is, e.g. supported on a single point, then

Lt = state of system at time t is largely indep of x( : reliable

If Amax > 0 then Hw is supported on stacks of lower dim’l surfaces,

Tt depends on T no matter how long we wait: unreliable

Example: coupled oscillators
at  t = 50,500, 2000




Another application of RDS : climate e.g. Ghil group
stationary meas: theoretical avg vs sample meas: now given history

C. Open dynamical systems

= systems in contact with external world (rel to nonequilibrium stat mech)

A simple situation is leaky systems, i.e., systems with holes
Questions include escape rate p , surviving distributions etc

Sample result :

4 a
THEOREM [Demers-Wright-Young 2000s] Billiard tables with holes

() escape rate p is well defined

(2) limiting surviving distribution oo well defined & conditionally invariant

I (NOO)|M\H = e Pl
(3) characterized by SRB geometry and entropy formula h — Z Am; = +p

(4) tends to SRB measure as hole size goes to 0

Result extendable to systems admitting Markov extension



D. Farther afield

In biological systems, I've encountered the following challenges :

(1) Inverse problems : Given basic structure + outputs of system,
deduce dynamics and (nonequilibrium) steady states

(2) Continuous adaptation to (changing) stimulus,
& partial convergence to time-dependent steady states

Concluding remarks

* Importance of idea measured by impact and how it shapes
future development, SRB ideas truly lasting

®* Dynamical systems has evolved since the 1970s, will remain
fun, vibrant , and relevant as long as it continues to evolve .....



