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My Background

» Ph.D. in Industrial Engineering from UW-Madison
» Focus on optimization models for power systems

» Cascading power failures

» Dispatch models incorporating renewable generation
» Themes

> Large scale computation
> Uncertainty

» This talk is based on my thesis research with
» Jeff Linderoth, Jim Luedtke, and Bernard Lesieutre
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» Software for energy analysis workflows

» Primary clients are renewable developers

» Web platform for energy analysis

» Prospecting for new development
» Early stage economic and feasibility analysis
» Production cost modeling
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» Interested in both clean energy and math!
» Potential colloboration in the future
» Potential clients

» Great location!
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» Climate change is ongoing, want to reduce emissions

» Reduce through increasing renewables
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» Climate change is ongoing, want to reduce emissions

» Reduce through increasing renewables
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Challenges

Bulk Power Systems (BPS)

» Composed of generation and high voltage transmission
equipement.

» Goal to serve load with least cost electricity while
maintaining reliability.




Challenges

Bulk Power Systems (BPS)

» Composed of generation and high voltage transmission
equipement.

» Goal to serve load with least cost electricity while
maintaining reliability.

Challenges

» Renewables [often]| connect with bulk power system

(BPS)
» BPS must maintain system reliability
» Renewables intermittent and uncertain
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» Generators rotating synchronously with grid

» Connection to every load



Bulk Power Systems
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North America split into 4 interconnected grids
» Generators rotating synchronously with grid

» Connection to every load



North America Interconnections

North American Regional
Reliability Councils
and Interconnections
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Complex system requiring continuous supply demand balance
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Long term capacity markets
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Optimization in Power System

» Operational /Markets

> Real time market / economic dispatch - LP
» Day ahead market / unit commitment - MIP

» Planning

» Production cost model simulation - MIP
» Capacity expansion MIP / DFO

» Reliability
» Power flow / optimal power flow - NLP
» Dynamics / transient stability simulation - NLP

» LP = Linear Program

» MIP = Mixed Integer Program

» NLP = Nonlinear Program

» DFO = Derivative Free Optimization
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» Generators
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Power Flow

Laws of physics, can't control branch flow
Control net injects

» Generators
» Ramping characterstics, limits

» Demand Response
» Storage (hydro, battery)
AC power flow - balanced 3 phase power system model
» Nonlinear, nonconvex equations
» Difficult to solve
» We use DC approximation (linear)
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Modern Complexity for Power Systems

Uncertainty
Asking more of our transmission grid, robust to uncertainty

» Wind

Solar

>
» Demand Response
» Energy Storage

>

Electric Vehicles



Reliability Problems

Power Interruptions
> $79 billion economic loss (2001)
> $247 billion electricity sales
» Hidden from system, distributed throughout economy

» New technologies: renewables, EVs, etc. stressful on
system



Reliability Problems

Power Interruptions
> $79 billion economic loss (2001)
> $247 billion electricity sales
» Hidden from system, distributed throughout economy

» New technologies: renewables, EVs, etc. stressful on
system

Cascading power failures
» Rare, but costly

» Equillibrium balancing economics and reliability
» Northeast blackout 2003

» $6 billion economic loss
> Loss of life
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Uncertain Injects

Uncertainty in Injects to Power System
» Subset of nodes have uncertain injections

» Solar, wind
» Demand (relatively certain, however EVs could represent
change)

» Subset of assets respond to uncertainty (slack
distribution)

» Rotational inertia, peaker plants and regulation
> Energy storage, enhanced power controls



Uncertainty is Multivariate Normal

Assumption
Uncertainty in net injections are Multivariate Normal

» Uncertainty in errors from forecast

» Known or can be empirically estimated

» Potentially correlated

Eric Anderson Reliability and Renewable Generation 18/38
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» Subset of nodes have uncertain injections (i.e. wind)
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Gaussian Injects

Net Injection Uncertainties
» Subset of nodes have uncertain injections (i.e. wind)
» Subset of generators respond to uncertainty (slack
distribution)
x = Gy (x5 + BB) — (d + Cud™)

x  Net injects

xg  Generator dispatch

[ Slack distribution

d Expected demand

0™ Nodal demand variation (E [6™] = 0, ¥ known)
A Aggregate demand variation (A = 17§™)
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DC Power Flow

Decoupled (DC) Power Flow equations

» Linearization of nonlinear AC Power Flow

y = DC#H
x=Cly
x = B

Net injections, x < 0 =demand (N)

Branch flows (E)

Phase angle (N)

Diagonal branch susceptance matrix (E x E)
System matrix, B= CTDC (N x N)
Node-arc incidence matrix (E x N)
N-Number of nodes, E-Number of edges

N0 < X



Linear Shift Factors

DC Power Flow — > Linear Shift Factors

Linear Shift Factors

where A= B'CB~!
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Gaussian Branch Flows

Assuming Gaussian injects and linear shift factors
» Branch flows are Gaussian as well
Y=Y+ ACG/jA — ACMé’"

y Branch flows

Yo Branch flows for forecasted system
ACg8A  Flow variation due to slack generation movement
AC,,0™ Flow variation due to nodal inject changes
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Issues with Deterministic Analysis

Normal distributed injects — Normal branch flows!

Problem!

» Branch constraints violated half the time when at its limit

In a stable system



Normal Branch Flow

PDF of Power Flow
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Normal Branch Flow

PDF of Power Flow
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Need to probabilistically enforce constraints



Chance Constraint Model

Replace the standard constraints with probalistic ones 23

Pl-Us<y.<U]>1—¢ Ve
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2Vrakopoulou, M. and Chatzivasileiadis, S. and Andersson; G.



Chance Constraint Model

Replace the standard constraints with probalistic ones 23
Pl-Us<y.<U]>1—¢ Ve

Deterministic equivalent
Branch flows
Ye + Se]i S Ue Ve

with
m=o"1(1-¢)

IBjenstock, D. and Chertkov, M. and Harnett, S.
2Vrakopoulou, M. and Chatzivasileiadis, S. and Andersson; G.
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Current Models

Determinsitic has fixed line thresholds
» Line is completely okay
» or system is infeasible
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Current Models

Determinsitic has fixed line thresholds
» Line is completely okay
» or system is infeasible
Chance Constraints
» Enforce line threshold probalistically
Line thresholds are soft constraints in real life
» Multiple line ratings (i.e. short term emergency rating)

» Hard limit typically relay tripping
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Limited by
» Sagging due to current flow and line heating
» Worst case environmental conditions (seasonally)
» An acceptable probability of line failure
» Enforce N-1 Reliability Constraint



Line Limits

Limited by
» Sagging due to current flow and line heating
» Worst case environmental conditions (seasonally)
» An acceptable probability of line failure
» Enforce N-1 Reliability Constraint

Dynamic line limits

> Real time limits based on current environmental
conditions
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System Risk

System risk related to line loadings (severity measure) *
System Risk Probability of line failure

h(y) = P=[at least one line fails|y]

Intuition

» Grid relatively stressed when more lines are near their limit

2Qin Wang and McCalley, J.D. and Tongxin Zheng and Litvinov, E.
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Line Risk Function

Risk function takes the normalized flow returns line risk

g(ye) = P=[Line e fails|y,]

Piece-wise linear function chosen
» Below L, there is no risk associated with loading
» After L, the risk increases linearly with loading

» At critical capacity U€, line fails with certainty

0 ye < L
g()/e) = at+by. L<y.<Ue
1 U<y



Line Risk Function

Piecewise Linear Risk Function
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System Risk, Fixed Injects

System Risk Probability that at least one line fails

h(y) = P=[at least 1 line fails]
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System Risk, Fixed Injects

System Risk Probability that at least one line fails
h(y) = P=[at least 1 line fails]

With fixed line flows, independent failures

hy)=1-1](-g0w)

ecf
» Implies hard line constraint, line risk=system risk

» h(y) < € not convex
» But it is log convex, log transform and solve



Gaussian Flow and Risk Function

PDF of Power Flow Piecewise Lincar Risk Function
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> Q: represents demand uncertainty, wind, etc.
» =: likelihood of failure given flow



Line Risk Function

Risk function takes the normalized flow returns line risk

g(ye) = P=[Line e fails|y.]

Assume Conditioned on line flow
» Failure probabilities independent
> Bold letters w.r.t. 2, orthogonal to =

> Q: represents demand uncertainty, wind, etc.
» =: likelihood of failure given flow

Line flows are not independent!

» But we calculate and account for branch covariance



System Risk Under Uncertainty

Line Risk Function

p(pl,0%) = Eq [g(ye)]

Function representation

p(ug, o) = (a+ bpf) [1 = ®(ar)] + bogd(ar)

Function is
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Line Risk Function

p(pl,0%) = Eq [g(ye)]

Function representation

p(ug, o) = (a+ bpf) [1 = ®(ar)] + bogd(ar)

Function is
» Convex with respect to 1%, 0¥ of branch flow y,
» & second order cone representable

» Not expressable due to CDF of standard normal
evaluation

» Derivatives expressable



System Risk Under Uncertainty

Line Risk Function

p(pl,0%) = Eq [g(ye)]

Function representation

p(ug, o) = (a+ bpf) [1 = ®(ar)] + bogd(ar)

Function is
» Convex with respect to 1%, 0¥ of branch flow y,
» & second order cone representable

» Not expressable due to CDF of standard normal
evaluation

» Derivatives expressable

Solve with Cutting Planes!
Reliability and Renewable Generation 36/38



Solution Exploration Demo

http://eja4.info/pow-explore.html
» Toggle in bottom left to change dispatch model

bus1 bus2

Nodes: 30 Cost: 590.2
Edges: 41 Risk: 0.0122
Gens: 6 ‘SD[Demand]: 1.66823

Total Demand: 189.20

Total Gen: 189.20 .
.
N
.
°
A .' o« ® .
[ .®
‘This is a 30 bus grid.
Daa

i


http://eja4.info/pow-explore.html

Conclusion

Review

» Need improved analysis for uncertainty in renewable
generation

» Correlation in renewable generation is important
» Line failure risk vs system risk

Next Steps
» Incorporate in analysis such as Capacity Expansion



Conclusion

Review

» Need improved analysis for uncertainty in renewable
generation

» Correlation in renewable generation is important

» Line failure risk vs system risk
Next Steps
» Incorporate in analysis such as Capacity Expansion

Hope you enjoyed!
Questions?




DC Optimal Power Flow

Economic dispatch with quadratic cost function
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Full JCC Model

min Z (2 (% + B704) +ax + o]

(xB:0,y.m.2)
Z-C;‘ij—Zj coYe = d; Vi
—be >, ch0; =0 Ve
ye € [-U, U] Ve
x5+ 5ok € (6, GP™]vj
Zj pi=1

— Z Aejﬁj =0 Ve
s2 — oA + 2#6021 > O’elel Ve
(|Ye|ase) >0 Ve
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Cost Risk Frontier

0-2 Cost vs Risk L(.9)

Cost vs Risk L(.99)
1072
T T

15 /\

—— OPF
— CC
—JCC

Risk

el
/ Risk

0.5

| | | 0 | |
570 580 590 570 580
Cost

500
Cost
» OPF - single point

» CC - tighten probabalistic branch constraint from .5 —
infeasible

» JCC - tighten system risk from lowest cost — infeasible
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