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PREFACE

The inaugural MathIndustry (“Math to power industry”) event took place virtually 
during August, 2020. The workshop is the flagship event of the MathIndustry pro-
gram, which aims to facilitate meaningful scientific interactions between academic 
and industry in the mathematical sciences.

The Pacific Institute for the Mathematical Sciences (PIMS) and partners offered 
the MathIndustry workshop in 2020 as a rapid response program to the economic 
impacts of the COVID-19 pandemic. The workshop trained young mathematical 
scientists for jobs in important industry sectors in western Canada. The program 
began with a training bootcamp (software best practices, business communications, 
project management) and included group collaborations with industry partners. 
This volume represents the immediate results obtained by those groups. Effective 
business decision-making requires expertise in modelling, computation, statistics, 
optimization and other areas of the mathematical sciences. This volume contains 10 
reports demonstrating how mathematics and statistics can be used effectively. Dur-
ing the workshop, teams developed tools which can be used to automatically detect 
when parking lots have available parking spaces, create optimal work schedules for 
employees, and analyze how making changes to a cylindrical heater may alter the 
heater’s performance. Some teams analyzed housing price data to determine what 
features most impact real estate markets, or developed pricing models for oil which 
take into account constraints due to congestion in the networks which deliver oil and 
the recent trends of oil prices to fall below zero. One team used data to approximate 
the relative amounts of two different radon isotopes present in samples, despite the 
difficulties encountered in taking precise measurements of these samples. Another 
team found ways to make blockchain technology more efficient by reducing the size 
of the computation required to make a transaction, and another developed metrics 
to measure the performance of politicians. All of these projects were motivated by 
an industry partner’s desire to advance their technology, perform more efficiently, or 
commercialize their ideas in development. In short, these teams provided business 
solutions which are benefitting Canada’s economy.

The MathIndustry workshop was made possible by the hard work of the organizing 
committee, the industry partners who provided business problems and mentorship, 
and the academic mentors. We acknowledge their participation and contributions. 
We would also like to thank Mitacs for their training and internship partnerships 
and Dhavide Arulliah of QuanSight for supporng the teams.
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OPTIMIZATION OF EMPLOYEE WORKING SCHEDULE AMID COVID-19

A. MASANIKA1, A. SPIVAK2, C. HANRATTY3, W. M. ABDULLAH4

ABSTRACT. We report on a two-week COVID-19 motivated project to create employee 
schedules aimed at limiting the percentage of the workforce in the workplace at any time
while keeping associated commute time to a minimum. The project was structured as
an optimization problem. Genetic algorithms were explored, adapted and implemented. 
Preliminary results suggest this as a promising avenue justifying further efforts.

1. INTRODUCTION

Due to the outbreak of COVID-19 around the world, and government policies imple-
mented as a response to the outbreak, many corporations have chosen to let their employees 
work from home to prevent the spread of the disease. In order to re-open the economy 
safely with respect to the disease threat, one of the recommendations from health authori-
ties is to allow only a limited percentage of workers in the workplace at any specific time. 
Given these constraints, it is useful for companies to arrange flexible work schedules so 
that the employees are at the workplace during reasonable working hours. With changed 
schedules and perhaps shorter work shifts come the risk of increased employee commute 
time or increased ratio of commute time to work shift length. Thus it is desirable that these 
new schedules be designed to reduce commute time as well. Another objective in reducing 
commuting time is directly COVID-19 related: less time commuting poses a reduced risk 
of an employee being exposed to the disease.

In this project, we design a mathematical model to address such a scheduling problem. 
We implement a genetic algorithm to generate employees’ working-at-office schedule for 
a model business satisfying certain reasonable criteria described in what follows and in the 
following section.

We fix a workplace, the Salesforce Tower in San Francisco with a variable number of 
employees. The city is divided into 39 neighborhoods numbered 0-38 and each employee’s 
residence is identified with a number in this interval. Using Uber traffic data for n employ-
ees whose neighborhood locations are randomly generated, we seek to reduce commute 
time while maintaining a fixed range on work shift length and aiming to keep the maximum 
percentage of employees in the workplace at any time less than 35%.

We organize the rest of this report in the following way. In Section 2, we discuss the 
mathematical representation of the problem followed by a description of our algorithm to 
solve the stated problem. Results from numerical experiments on a standard collection of
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test instances are provided in Section 3. Conclusions drawn from these preliminary studies
follow in Section 4.

2. MATHEMATICAL MODEL AND THE GENETIC ALGORITHM

The mathematical representation of the problem and the algorithm deployed to solve the
problem are discussed in this section.

2.1. Model. This section is devoted to providing a mathematical model of the optimization
problem. We used the following parameters in our model.

• The total number of employees n = 200∼ 1000
• Zone of the company Sc
• Employees’addresses Si

e(i≤ i≤ n)
• The maximum percent of workers at the office aimed for is α = 25∼ 35%
• Working time window 7AM−9PM
• Employee’s weekly working hours T = 15∼ 25 hours
• Weekdays D = {M,T,W,T h,F}
• A tuple of schedules for the employees x = (x1, . . . ,xn)

The objective function is

f (x) = f1(x)× f2(x)(2.1)

such that

• f1(x) is the mean daily travel time for the employees in minutes
• f2(x) is the highest percent of employees in the office at any time

The goal is to minimize f (x). Any slight increase of f1(x) and/or f2(x) (i.e., closer to
α) will increase the value of f (x). Our goal is to minimize total commute time subject
to the constraint that the workforce presence in the office at any time should not exceed
35% of the total number of employees. To this end, we chose our objective function to be
f = f1× f2 and we examine the output produced by the algorithm for solutions that meet
the desired percentage.

The following criteria were stipulated:

• Each employee must have precisely one shift per day
• No specific working sub-groups that have to be present at a given time (e.g., incor-

porating meeting schedule)

2.2. The Algorithm. To solve our problem we use a genetic algorithm. Our goal is to min-
imize the objective function (also known as fitness) f (x). We have presented our algorithm
(pseudocode) to solve the problem in Algorithm 2.1.
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Algorithm 2.1 Our Algorithm (DataSet)

1: Initialization: Possible solutions are created from the given DataSet
2: Evaluation: Evaluate an individual using the objective function f (x)
3: loop <until the algorithm meets the stop criteria>
4: Selection: Pick two individuals as parents
5: Recombination: Apply crossover between parents
6: Mutation: Randomly (15%) change the newly created individual (child)
7: Evaluation: Apply Step 2 (Evaluation) to the parents and the child. If the child is

better than any of the parents then replace that parent by the child

2.2.1. Description.
• Initialization: There are a number of individuals in the initial population. An indi-

vidual x is a solution or a weekly work at office schedule for all employees. First we
set the population size or the number of individuals required in the population. Then
our algorithm starts generating individuals. For an individual, the algorithm selects
a start time and a shift length for each working day for each employee (see, Figure
3). During initialization, our algorithm evaluates the value of objective function for
each individual and finds the best individual among initial population.
• Evaluation: Now using Equation 2.1, we can calculate the mean daily travel time

for the employees in minutes as well as the highest percent of employees in the
office at any time. Therefore, we can get the value of the objective function f (x) by
multiplying these values.
• Generation: The number of iterations allowed in the algorithm is known as genera-

tion. On the other hand, we can consider this as the stop criteria. In each generation,
our algorithm has the following phases: Recombination, Mutation and Evaluation.
• Recombination: In our algorithm, we use crossover as a recombination procedure.

This is also known as one of the “mating” processes for two selected parents. First,
we pick two individuals A and B randomly from the population. Then the child
is produced by taking each employee’s schedule from either of its parents in the
following manner. Define

p(A,B) =
f (A)

f (A)+ f (B)
to be the probability of A “passing on its genes” compared to B, based on relative
fitness (which parent has the lowest objective function value). Then each row in
A×B should be coded to have a p(A,B) chance of taking the corresponding row
from A and a 1− p(A,B) chance of taking the row from B.
• Mutation: We allow a 15% chance of mutation for which one row of a matrix takes

on a random row within the starting parameters. Once offspring are generated, then
we keep the best two out of three of the offspring and two parents.
• Evaluation and selection: In this step, the algorithm compares the objective func-

tion values of the parents and the child. Let fA, fB, fC denote the value of the
objective functions for the parents A, B and the child C respectively. If fC is less
than fA and/or fB, then C replaces the parent with larger f value. Again, if C beats
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either of its parent, then we compare C with the best solution and update the best
accordingly. Therefore, the population converge to a better solution and the popu-
lation size remain the same.
• Output: The algorithm returns best as a solution after meeting the stop criteria.

3. NUMERICAL TESTING

In this section, we provide results from numerical experiments on selected test instances.

3.1. Data Sources. The data set for the experiments was generated from the Uber Move-
ment website [4]. Our original intention was to consider a city in Canada which would
be familiar to the PIMS program participants. Our first assumption was that mean travel
time for any trip would not vary much with the day of the work week but rather, signifi-
cant differences would be found based on the time of the day of travel. We focused on the
downloadable CSV files entitled Travel Times by Hour of Day (Weekdays Only) since as
the name indicates, this is precisely the data we were looking for.

Unfortunately regardless of the city chosen, there were represented only between 0-5
hours of departure for trips between any fixed origin and any fixed destination and those
hours were not well chosen to capture commute times. This is reflected in our finding that
it appears that for whatever city one searches for on the Uber Movement, regardless of its
size and population, and whatever point of departure one chooses in that city, downloaded
file, contains exactly 1,048,576 rows or trips.

Because the data was limited, we turned then to the Filtered Data on the website. The
Filtered Data does not provide zones but it does include trips to a chosen address from
many neighbourhoods, given by name. In particular, we chose San Francisco city in Cali-
fornia, USA, where other data, including geographic maps, extensive census information,
and information on distances between major sites, were available and could be evaluated
for reliability. With the combination of our original Uber data, the neighbourhood names
from the filtered data, and information from the 2016 US census, we were able to get for
each of the 39 neighborhoods, average travel times for the five different times of the day:
AM Peak Hours (7am-10am), Midday (10am-4pm), PM Peak Hours (4pm-7pm), Evening
(7pm-12am), Early Morning (12am-7am).

We chose as our office location the single largest office building in San Francisco, the
Salesforce Tower (see, Figure 1). We were able to get approximately 75% of the data
points this way, i.e., average commute time to and from each of the 39 neighborhoods for
each of five periods of the workday as listed in the previous paragraph. The remainder were
obtained from the available data by comparison with regard to distances and identifying
similar traffic conditions.

3.2. Input and output formats of our algorithm. In Figures 2 and 3 each row represents
one of the 200 randomly chosen employees. In Figure 2, the entries in the left-hand column
identify the neighborhood in which the corresponding employee lives. For example, the
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FIGURE 1. Location of the model work place and neighborhood

first employee lives in neighborhood 29, and the entries represent the commute time for
each hour in a workday. Figure 3, shows the output of our algorithm indicating the start
time and shift length for each employee.

FIGURE 2. The input format

FIGURE 3. The output format
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FIGURE 4. Algorithm Results

3.3. Experimental Environment. The experiments were performed on PC with 3.4 GHz
Intel Xeon CPU, 8 GB RAM running Windows. The implementation language is Python
and the code was compiled with a Jupyter Notebook version 6.0.3 compiler. Source code
available on GitHub at [1].

3.4. Results. After implementing the algorithm in Python, we ran a variety of tests to
establish its utility. These tests are recorded in Figure 4 in order of decreasing f (x). Each
test was run on a choice of P = population size, G = number of generations, and E =
number of employees. We recorded the value of f (x) initially, and after the chosen number
of generations.

These tests demonstrated the general trend that f (x) decreases with number of genera-
tions, G. Recall that a lower f (x) denotes a stronger schedule. This can be observed in
Figure 5 where fix the population size at 6, fix the number of employees at 200, and plot
number of generations against f (x).
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FIGURE 5. Decrease in Objective Function over Many Generations

While there is a general downwards trend, we notice that some higher generation sizes
also yield higher f (x) (for instance, when G = 10,30). This perceived discrepancy happens
because each test was run on a different initial population. These fluctuations suggest that
G < 100 is not sufficient to optimize the schedule. However, for G = 1000, there is a clear
decrease in f (x), compared to the other tested values.

In Figure 6, we take a closer look at the schedule produced after 1000 generations. Fig-
ure 6A shows the distribution of start times in this schedule. We can see that the start times
are relatively balanced with the exception of the first shift in a day. We posit that this bias
lowers the value of f2. In particular, since only employees who start at 7am can be in the
office at 7am, more employees are free to start at this time without negatively effecting the
percent of employees in the office.

Figure 6B depicts the distribution of shift lengths in this schedule, and shows that shorter
shift lengths are favoured. This will also lower the value of f2, as shorter shift lengths
means an employee will contribute to the percent of employees in the office during fewer
time slots.
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(A) Start Times (B) Shift Lengths

FIGURE 6. Analysis of a 200 Employee Schedule after 1000 generations.

We conclude our analysis by considering the quality of this 1000 generations schedule.
To do this, we compare this schedule to 20 randomly generated schedules, that is 20 sched-
ules who did not undergo optimization.

In a randomly generated schedule, total commute time ranged from 43-44 minutes. Af-
ter 1000 generations, the total commute time was reduced to 42.6 minutes. In a randomly
generated schedule, the maximum percentage of employees in the office at any time ranged
from 41 to 47 percent. Recall that the goal is f2 < α = 35%. After 1000 generations, this
was reduced to f2 = 38%, which is much closer to the target 35%. The test creating the
1000 generation schedule was run over night. We believe that given the time to run more
generations, the algorithm could produce an even better schedule.

4. CONCLUSION

The goal of this project was to create a workforce schedule that reduces commute time,
and the maximum percent of employees in the office. Such a schedule is difficult to calcu-
late by hand for a workplace with a large number of employees. We modeled this problem
to minimize the function f (x) = f1(x)× f2(x) where f1(x) is mean commute time and f2(x)
is highest percentage of employees in the office. We deployed the genetic algorithm to find
a schedule that minimizes this function. After running our algorithm for 200 employees
and 1000 generations, we found an improved schedule. This shows that it is possible to
automate schedule creation for large offices.

This work is an initial investigation during a two week workshop period. There are more
aspects that merit investigation as described below.

Data set: As part of a longer project we would seek out other sources of data in place or
to use along with the Uber Movement data.
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Initial Population Generation: Currently our algorithm assigns every employee a shift
every day. We would like to investigate letting employees have days without shifts, as this
could decrease commute time.

The Objective Function: We ran our algorithm with one choice of objective function.
We would like to try different objective functions to balance the optimization of f1 and f2.

The Mating Procedure: We would like to compare different mating procedures to con-
sider larger or smaller “chromosomes”. That is instead of taking entire rows from either
parent, it would be interesting to compare taking individual elements from the matrix.

Time: One constraint of the genetic algorithm is its long run time. We ran a variety of
tests over night, but we would like to run longer tests with higher populations and number
of generations.

Algorithm: In our two week investigation we had time to consider one algorithm. This
demonstrated that it is possible to use an algorithmic approach to creating these schedules.
However, the genetic algorithm has a long run time so it would be valuable to compare its
results to the results of other algorithms.
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PRACTICAL OPTION VALUATION WITH NEGATIVE 
UNDERLYING PRICES

ANA ROLDAN-CONTRERAS, ELHAM SOUFIANI, GUILLERMO MARTINEZ 
DIBENE, MOHSEN SEIFI, NISHANT AGRAWAL, YAO YAO,

AND ANATOLIY SWISHCHUK

Abstract. Here we propose two alternatives to Black 76 to value Euro-
pean option future contracts in which the underlying market prices can
be negative or mean reverting. The two proposed models are Ornstein-
Uhlenbeck (OU) and continuous time GARCH (generalized autoregres-
sive conditionally heteroscedastic). We then analyse the values and 
compare them with Black 76, the most commonly used model, when
the underlying market prices are positive.

1. Introduction

In March 2020, the prompt month WTI futures contract settled below 
zero for the first time in the contract’s history. Many market participants 
apply the Black 76 model or some variation when calculating the value of the 
options on this futures contract as a relatively straightforward, parametric 
valuation method. This calculation model is hard wired into many Com-
modity Trading and Risk Management Systems. Traders and risk managers 
rely on its straightforward and reproducible output.

However, Black 76 requires positive underlying market prices. The nega-
tive prompt month settlement price caused considerable consternation among 
energy traders and risk managers.

More generally, OTC options are also available on basis or differential 
prices. These transactions are options on the difference between two pub-
lished indexes such as NYMEX Henry Hub and AECO (for natural gas) 
or Cushing WTI and Houston (for crude oil). As such, these instruments 
frequently have negative underlying market prices.

Our task is to propose alternative models to Black 76 to valuate option 
prices when the underlying future contracts can assume negative values.

2. Definitions

A primary security (or securities for short) is any asset that can be 
traded independently from any other asset, such as stocks. A derivative 
security or (or derivatives) are legal contracts conferring financial rights or 
obligations upon the holder.

A forward contract is an agreement to buy or sell a risky asset (such as 
crude oil or natural gas) at a determined future date T, known as delivery



PRACTICAL OPTION VALUATION WITH NEGATIVE UNDERLYING PRICES

date, at a specified price K, known as delivery price. The price of the
asset (or commodity) at time t is known as forward price and denoted by
F (t, T ). Notice K = F (0, T ).

Similarly, a future contract (or futures for short) involves an underlying
asset, which we typically take as a forward contract, and a specified delivery
date T. A future price set at time t with delivery date T will be denoted as
f(t, T ).

An European option is a derivative security contract that gives the
holder the right, but not the obligation to buy or sell the underlying asset,
for a price K fixed in advance, known as exercise or strike price, at a
specified future time Te, known as exercise or expiry date. An option
contract with expiry date Te stops being valid after this time. The option is
known as a call option if the holder has the right to buy the asset, while a
put option gives the holder the right to sell the asset.

Forwards and futures are legal agreements between two parties giving
obligations between them, in contrast, options are legal agreements giving
rights to the holder. Because of this advantage intrinsic in options (the
holder may trigger the contract should it be in their favour) is that they are
to be purchased. We are concerned with valuing them; specifically, we are
interested in valuing European call options for futures prices.

3. Proposed alternative models to Black 76.

Black 76 model is obtained from the more general Black-Scholes model
(1973). Black-Scholes is a model for the price of a stock at time t and it is
given by the following Stochastic Differential Equation (SDE)

dSt = µStdt+ σStdWt,

where 0 ≤ t ≤ T represents time (T is the expiry date), µ ∈ R is a number
known as the “drift”, σ > 0 is the “volatility” and (Wt)t≥0 is Wiener process
(or Brownian motion). In this model, S0 is deterministic (not random) and
known in advance. Using Itō’s formula, it can be deduced that

St = S0e
(µ− 1

2
σ2)t+σWt .

This shows that under the assumptions of Black-Scholes, the stock price will
be positive (assuming S0 > 0) for all times.

3.1. Ornstein-Uhlenbeck (Vasicek) model (1930/1977). The first al-
ternative we propose to Black 76 is given by the following Ornstein-Uhlenbeck
SDE

(1) dSt = a(b− St)dt+ σdWt,

where a, σ > 0 and b ∈ R. Here a is known as the “reversion rate”, b as
the “mean” and σ as the “volatility.” Again, using Itō’s formula, it can be
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shown that the solution to the OU SDE is given by

(2) St = e−atS0 + b(1− e−at) + σe−at
t∫

0

easdWs.

This is a Gaussian random variable with mean e−atS0 + b(1 − e−at) and
variance σ2(1 − e−at)/2a. It is readily seen it can assume negative values
and as t→∞, this Gaussian random variable converges in distribution to a
Gaussian with mean b and variance σ2/2a, the rate of convergence is given
by a. The value of an European call option at time t with delivery date Te,
rate of risk-free investment r, and strike price K is given according to

(3) C(F, Te) = e−r(Te−t)
[
ξ+(t, Te)Φ

(
ξ−(t, Te)

ζ

)
+ ζΦ′

(
ξ−(t, Te)

ζ

)]
in which Φ is the distribution function of a standard Gaussian random vari-
able and

ξ±(t, Te) = e±aTe(F (t, Te)− b)−K

ζ = σ

√
1− e−2aTe

2a

The future prices of this model will be modelled using (1).

3.2. Continuous Time GARCH model: Some times the commodity
prices exhibit different behavior with respect to time, which is known as
Mean-Reversion. It means that, unlike stock prices that tend to change
around zero, they tend to return to a non-zero long-term mean. Therefore
for a risky asset St which has a mean reverting stochastic process, we have
the following SDE:

(4) dSt = a(b− St)dt+ σStdWt

where W is a standard wiener process, σ > 0 is the volatility, the constant
b ∈ R is the mean reversion level (the long term mean), and a > 0 measures
the rate (or the strength) of our mean reversion.The closed form of the above
equation for a European Call has been provided in section (4).

4. Methodology and results

4.1. OU model. According to (1), we need to calibrate the parameters a,
b and σ. Using (2) (in which S is substituted for the future price F ) it can
be seen that observations of the future price are in a linear relation plus
normally distributed error terms. As such, least-squares linear regression
can be used. In Fig. 3 we do the calibration of the parameters for the OU
model using Natural Gas future prices provided by Ovintiv. We can see the
prices are around the mean, which is an assumption of validity of the model.
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4.2. WTI Dataset. For WTI crude oil futures, we compare the option
prices calculated by the Black-76 model and the Vasicek model. Let C(t, Te)
be the value for the European call option written on a forward F. Then the
Black-76 formula for a European call option price is:

(5) C(t, Te) = e−r(Te−t)[F (t, T )N(d1)−KN(d2)],

where d1,2 :=
ln(F/K)± 1

2
σ2(Te−t)

σ
√
Te−t

.

The Vasicek formula for a European call option is similar to equation (6)
with slight differences:

(6) C(F, Te) = e−r(Te−t)
[
ξ∗+(t, Te)Φ

(
ξ∗−(t, Te)

ζ

)
+ ζΦ′

(
ξ∗−(t, Te)

ζ

)]
in which Φ is the distribution function of a standard Gaussian random vari-
able and

ξ∗±(t, Te) = e±aTe(F (t, Te)− b∗)−K

ζ = σ

√
1− e−2aTe

2a

where b∗ = b− λσ/a, λ ∈ R is a market price of risk.
We use the above formula for Black 76 and Monte Carlo simulation to get
the graphs 1 of option prices. Each graph in Figure 1 shows the option
prices with different strike price K. Except for the chart with the price
date of 2020-04-20, when we have a negative future price, the others are all
positive. From the graphs we can see that option prices on futures computed
by the Vasicek model are very close to the prices calculated by the Black-76
model when future prices are positive. . When future prices are negative

Figure 1. Black76 vs Vasicek models for Call option prices



PRACTICAL OPTION VALUATION WITH NEGATIVE UNDERLYING PRICES

we can employ Vasicek model again to come up with the call option prices.
Here Black 76 model would fail as it does not accept the negative prices.
Figure 2 shows the price of the option for various strike prices. These prices
have been calculated using Monte Carlo simulation.

Figure 2. Option prices if futures prices becomes negative

4.3. NYMEX Natural Gas Dataset. For the Natural Gas (NG) dataset,
we will see that all the underlying future prices are positive. However, they
exhibit a non-zero mean-reversion process over the time (figure 3).
In this case, for the corresponding option prices, we used the Continuous-

Time GARCH model (as in equation 4).
In this methodology, first we should consider the model (4) under a risk-
neutral probability P ∗. Therefore, in a risk-neutral world our model will
take the following look:

(7) dSt = a∗(b∗ − St)dt+ σStdW
∗
t

where:

a∗ := a+ λσ, b∗ :=
ab

a+ λσ

and W ∗t is defined as

W ∗t := Wt + λ

∫ t

0
S(u)du.

Here, λ ∈ R is the market price of risk.
For this model (7) we have an explicit option pricing formula for European
Call option [4]:

C∗T =e−(r+a
∗)TS(0)Φ(y+)− e−rTKΦ(y−)+

b∗e−(r+a
∗)T

[
(ea
∗T − 1)−

∫ y0

0
zF ∗T (dz)]

]
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Figure 3. Calibrations of parameters for different initial
“price dates.” Here the x-axis is the expiry date (T ) and
the y-axis is the price per unit. The dotted line is the mean
value b.

where, y0 is the solution of:

y0 =
ln

K
S(0)+

(
σ2

2 +a∗
)
T

σ
√
T

−

ln
(
1+

a∗b∗

S(0)

) ∫ T
0 ea

∗se
−σy0

√
s+
σ2s
2 ds

σ
√
T

with,

y+ := σ
√
T − y0, and y− := −y0,

and, F ∗T (dz) is the probability distribution under the risk-neutral probability
P ∗, as in [4].

4.3.1. Methodology and results. In this approach, to avoid the huge com-
putations regards to the explicit formula, we used Least Square Regression
method for calibrating the parameters by following the methodology in [5],

Fi+1 = τFi + µ+ sd(e),
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to have the following equations:

Fx =
n∑
i=1

Fi−1, Fy =
n∑
i=1

Fi,

Fxx =
n∑
i=1

F 2
i−1, Fyy =

n∑
i=1

F 2
i ,

Fxy =
n∑
i=1

Fi−1Fi

and then the following relationships can be considered:

τ =
nFxy − FxFy
nFxx − F 2

x

,

µ =
Fy − τFx

n
,

sd(e) =

√
nFyy − F 2

y − τ(nFxy − FxFy)
n(n− 2)

.

For our purpose, we used the Euler approximation to simulate the future
prices in order to approximate the corresponding European Call option
prices.

(8) Fi+1 = Fi exp a∗δ + b∗(1− exp−a∗δ) + σFi

√
1− exp−2a∗δ

2a∗
N0,1

Here, δ > 0 is a time space, and the Fi prices are the exact discrete solution
of equation (4). Hence, we can find the following relations between the
parameters:

a = − ln τ

δ
, b =

µ

1− τ
, σ = sd(e)

√
−2 ln τ

δ(1− τ2)

Finally, for the risk neutral parameters, the following adjustment has been
applied:

a∗ = a+ λσ, b∗ =
ab

a+ λσ
According to our dataset, there was not any access to the market option
prices to estimate the market price of risk. Therefore, the following formula
has been taken into account:

λ :=
dF
F − r
σ

where, dF
F is a returns on futures prices, r is the interest rates, and σ is the

implied volatilities.

The future prices were simulated 20 times (an exercise of this is shown in
figure 4), and the average of them is applied in the payoff function. Then,
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Figure 4. The evolution of simulated future price with re-
spect to time

Figure 5. In this picture, we can see the evolution of the
calculated option prices, according to the Continuous-Time
GARCH model, with respect to their related strike prices is
depicted

the discount of the average of payoffs considered as the requested call option
prices with continuous-time GARCH model approach (results can be seen
through figure (5) and (6)).

Here, the risk-neutral parameters a∗ and b∗ have been estimated as 1.68528518
and 2.64820985 respectively.
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Figure 6. In this table, the accuracy of our model compar-
ing to the known Black-76 model has been exhibited for the
first 10 strike prices

5. Conclusion

In this project, we worked with some useful alternative models which are
helpful for valuation of options on future contracts. While Black 76 is the
most commonly used model for pricing option future contracts in Industry,
it is necessary to have alternative models for the valuation when the prices’
behaviour differs from the prices describe by the same model. For WTI
future option prices, we have shown that the models O-U and Vasicek have
similar prices to those given by Black 76 when future prices are positive;
and give a valuation also when the future prices are negative. This is use-
ful when irregular events take place. Also, for Natural Gas future option
prices, continuous time GARCH also displays comparable values to Black
76. Further it allows us to calibrate a mean reversion parameter to describe
in a better way future option prices and their behaviour.

As a recommendation, it would be useful for industry to keep track of
this two models to know how to react in unusual situations and double
check their own valuation prices. This models have been shown to be simple
to understand, clear to calculate and comparable with what the industry
uses. With respect to the data and results, in table 1 are some suggestions
for the valuation according to the data’s nature:
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Future Prices Mean-Reversion Model
Positive 0 GBM or Black76
Positive b Continuous-time GARCH
Negative and Positive 0 OU process
Negative and Positive b Vasicek model

Table 1. Recommended model according to sign of prices
and mean reversion behaviour.
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Abstract. In this project we consider a cylindrical induction heater of the type

built by the McMillan–McGee corporation. Our goal is to develop a model for

the electric field induced inside the heater, and understand the effects of chang-

ing materials and physical dimensions. We studied the electrical field intensity 
through the Maxwell equations, which allowed us to find an exact expression for

the field intensity and calculate the power flowing into the casing of the pipe.

1. Problem Description

Contaminated soils are a significant environmental and safety concern. Many 
contaminants have the ability to flow into aquifer systems, thereby contaminating 
the public water supply. The depth at which some contaminants occur renders the 
use of excavation prohibitively expensive. Therefore, other methods are employed 
to remove contaminants in-situ, where depth is not a factor.

One such method includes heating the soil using electricity in order to vaporize the 
contaminants, which are subsequently extracted from the soil. Methods of heating 
the soil are also utilized in connection with heating subterranean heavy oil reservoirs 
or bitumen deposits to reduce the viscosity of the hydrocarbons so that it can be 
recovered more easily. A typical approach is to bury a tall cylindrical heating element 
in the ground, and thus heat it up at the desired depth.

However, cost considerations limit the heating elements and their housings to 
a small diameter. Moreover, the heating equipment used in such operations are 
sunk costs, as they are typically left in the ground after a remediation project 
is completed. Therefore, there is a need for an economical method and a device 
for heating soil that provides a large heating surface area, enables the selective 
heating of vertical extents of the element to different temperatures, and is capable 
of achieving soil temperatures sufficient to remediate contaminants with high boiling 
points, while allowing for recovery of at least some of the heating equipment after 
operations have concluded.
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One example of such a device consists of a conductive casing, such as a steel

pipe, which is heated by the induction of an electric current within its wall as a

result of the passing of an alternating current through a conductor located inside

the casing. The alternating current has to be of a sufficiently high frequency in order

to exploit the skin effect: it limits the penetration of the current into the pipe wall

to a very thin shell where, given a conductor in helical form, the current flows in a

circumferential direction. That is, the current density in the casing is greatest near

the inner surface of the casing. The skin effect results in establishing an appreciable

resistance in the casing, under which the passage of current through the resistance

generates heat.

2. Geometry of The Problem

In order to simplify our model, we may assume that we have conducting rings

inside the induction heater instead of a conducting helix.

r1
r2

air

steel

3. Methodology

We start with the description of the mathematical model. The electromagnetic

field is governed by the Maxwell equations, that relate the electric and magnetic

field intensities to the current induced in the work coil. In this work, we assume our

domain to have two distinct regions: the inside of the cylindrical shell and inside the

steel housing itself. The governing equations are mathematically the same in both

regions; the need for separation comes from the difference in physical parameters.

Idealization 1:

conducting helix
Idealization 2:

conducting rings View from above
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We write the equations in the cylindrical coordinates system to take advantage

of the rotational symmetry. Next, we derive an elliptic partial differential equation

satisfied by the angular component of the electric field intensity. We use the Fourier

series representation in the vertical variable, which reduces the original PDE to

a diagonal system of Bessel ODEs. Consequently, the Fourier coefficient of the

solution are linear combinations of the Bessel functions. The required constants in

the solution are found from the boundary conditions at the origin and at infinity,

and the interface conditions between the interior and the housing of the heating

element.

The second part of this work consists of numerically evaluating and visualizing

the solutions. Moreover, we are able to evaluate the power flowing into the casing

using the Poynting vector field.

4. Setup

The electromagnetic fields are described by the Maxwell’s equations:

∇×E = −iωµH,(4.1a)

∇×H = iωεE + J,(4.1b)

where

• E is the electric field intensity (volts/meter)

• H is the magnetic field intensity (amps/meter)

• J is the electric current density (amps/meter2)

• µ is the permeability of the medium (henrys/meter)

• ε is the permittivity of the medium (farads/meter).

We take the current source to be an infinite collection of rings of radius r2, spaced

at the intervals of 2L. We will work with a single loop located at z = 0, and impose

periodic boundary conditions in z ∈ [−L,L]. The current density is represented as

J(ρ, z) = φ̂ I0
δ(ρ− r2)δ(z)

2πρ
,(4.2)

where I0 is the total current (constant, in amps). We will solve a coupled system of

PDEs: both are (4.1), but with different values of the physical parameters µ and ε.

The setup is summarized in the figure below.
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so
u

rc
e

z

ρ
z = −L

z = L

ρ = 0 ρ = r1ρ = r2

air
∇×E = −iωµaH

∇×H = iωεaE + J

steel
∇×E = −iωµsH

∇×H = iωεsE

interface
Eφ(r1−, z) = Eφ(r1+, z)

Hz(r1−, z) = Hz(r1+, z)

Boundary conditions: Eφ is finite at ρ=0, vanishes as ρ→∞ and 2L-periodic in z.

5. Symmetry Reduction

Since the system is invariant under rotations, we have ∂φ = 0 for both regions.

We write out the Maxwell’s system (4.1) in components, and reduce it:
1

ρ�
�
�∂Ez

∂φ
−
∂Eφ
∂z

= −iωµaHρ(5.1a)

∂Eρ
∂z
− ∂Ez

∂ρ
= −iωµaHφ(5.1b)

1

ρ

(
∂

∂ρ

(
ρEφ

)
−
�

�
�∂Eρ

∂φ

)
= −iωµaHz(5.1c)

1

ρ�
�
�∂Hz

∂φ
−
∂Hφ

∂z
= iωεaEρ(5.1d)

∂Hρ

∂z
− ∂Hz

∂ρ
= iωεaEφ + I0

δ(ρ− r2)δ(z)

2πρ
(5.1e)

1

ρ

(
∂

∂ρ

(
ρHφ

)
−
�

�
�∂Hρ

∂φ

)
= iωεaEz(5.1f)

The system (5.1) decouples into two independent systems:
[
(5.1a), (5.1c), (5.1e)

]
and

[
(5.1d), (5.1f), (5.1b)

]
. The latter lacks a source, so the solution must be zero:

Eρ = Ez = Hφ = 0.

The former is actually nontrivial, and will be the subject of the work in the

following sections.



MODELLING INDUCTION HEATER

6. Solving The Equation: Inner Domain

Differentiating (5.1a) and (5.1c) with respect to z and ρ respectively, and substi-

tuting the results into (5.1e) gives

∂2Eφ
∂z2

+
∂

∂ρ

(
1

ρ

∂

∂ρ

(
ρEφ

))
= −ω2µaεaEφ +

iωµaI0

2π

δ(ρ− r2)δ(z)

ρ
(6.1)

We set

α =
iωµaI0

4πL
g =

Eφ
α

ka = ω
√
µaεa(6.2)

and write

∂2g

∂z2
+
∂2g

∂ρ2
+

1

ρ

∂g

∂ρ
+

(
k2
a −

1

ρ2

)
g =

2Lδ(ρ− r2)δ(z)

ρ
.(6.3)

Our next step is to take the Fourier series in the z-variable (this will automatically

enforce periodicity):

g(ρ, z) =
∑
n∈Z

ĝn(ρ)eiπnz/L =
∑
n∈Z

ĝn(ρ)eiknz,(6.4)

where kn = πn/L is the Fourier wave number. Then the coefficients satisfy

1

ρ2

(
ρ2 ∂

2

∂ρ2
+ ρ

∂

∂ρ
+
(
k2
a − k2

n

)
ρ2 − 1

)
ĝn(ρ) =

δ(ρ− r2)

ρ
.(6.5)

Let λ2
n = k2

n−k2
a, and set x = λnρ and ĝn(ρ) = ûn(λnρ) = ûn(x). Then the equation

above becomes(
x2 ∂

2

∂x2
+ x

∂

∂x
−
(
x2 + 1

))
︸ ︷︷ ︸
modified Bessel operator of order 1

ûn(x) =
x

λn
δ
(
x/λn − r2

)
.(6.6)

For x 6= λnr2, the equation above is the modified Bessel ODE of order 1, so we

expect the solution to take the form

ûn(x) =

{
AnI1(x) +BnK1(x), 0 < x < λnr2,

CnI1(x) +DnK1(x), λnr2 < x < λnr1,
(6.7)

where I1 and K1 are the modified Bessel functions of order one, of the first and

second kind respectively.

To find the constants An, Bn, Cn and Dn we begin with enforcing the continuity

and jump conditions at x = λnr2. The continuity condition dictates that(
Cn −An

)
I1(λnr2) +

(
Dn −Bn

)
K1(λnr2) = 0.(6.8)
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The jump condition1 dictates that(
Cn −An

)
I ′1(λnr2) +

(
Dn −Bn

)
K ′1(λnr2) =

1

λnr2
.(6.9)

We can write (6.8) and (6.9) together as a linear system:[
I1 K1

I ′1 K ′1

]
︸ ︷︷ ︸

=:M

(
Cn −An
Dn −Bn

)
=

(
0
1

λnr2

)
(6.10)

where it is understood that all entries of M are evaluated at λnr2. We can invert

M using the Wronskian identity for the Bessel functions, and thus obtain(
Cn −An
Dn −Bn

)
= M−1

(
0
1

λnr2

)
= −λnr2

[
K ′1 −K1

−I ′1 I1

](
0
1

λnr2

)
=

(
K1

−I1

)
(6.11)

That is,

Cn −An = K1(λnr2) and Dn −Bn = −I1(λnr2).(6.12)

Recall that Bessel function K1 has a singularity at the origin, so we must set Bn = 0

for all. Consequently,

Dn = −I1(λnr2)(6.13)

An additional condition on Cn and An will be provided by the continuity require-

ments at the interface ρ = r1.

7. Solving The Equation: Outer Domain

We now develop the solution in the darker region r1 < ρ < ∞. The symmetry

reduction is identical to the one before, and so are the two resulting independent

subsystems. The one featuring Eρ, Ez and Hφ = 0 is once again without a source,

so we conclude that Eρ = Ez = Hφ = 0 for all domains.

Equation for the other three components is similar to (6.1), except we don’t even

have a delta source. In place of (6.1) we have

∂2Eφ
∂z2

+
∂

∂ρ

(
1

ρ

∂

∂ρ

(
ρEφ

))
= −k2

sEφ,(7.1)

where we have set ks = ω
√
µsεs. We proceed by writing the solution as a Fourier

series in z:

Eφ(ρ, z) =
∑
n∈Z

Ên(ρ)eiknz, kn =
πn

L
.(7.2)

1See Appendix A for the derivation
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Substituting this representation into (7.1) gives(
ρ2 ∂

2

∂ρ2
+ ρ

∂

∂ρ
+
(
k2
s − k2

n

)
ρ2 − 1

)
Ên = 0.(7.3)

With the change of variables ν2
n = k2

n − k2
s , x = νnρ and Ên(ρ) = v̂n(νnρ) = v̂n(x),

the equation above becomes(
x2 ∂

2

∂x2
+ x

∂

∂x
− (x2 + 1)

)
v̂n = 0,(7.4)

which is the modified Bessel equation of order 1. Since we require the solution to

vanish at infinity, we can write the solution as

Ên(ρ) = αFnK1(νnρ),(7.5)

where Fn is the constant yet to be determined. (We don’t actually have to put α

into the expression above, but it makes the next step a bit nicer.)

8. Interface Conditions

We will require the electric field Eφ and the magnetic field Hz to be continuous

at the interface ρ = r1. The continuity condition Eφ(r1−, z) = Eφ(r1+, z) is written

as

α
∑
n∈Z

[
CnI1(λnr1) +DnK1(λnr1)

]
eiknz =

∑
n∈Z

αFnK1(νnr1)eiknz(8.1)

CnI1(λnr1) +DnK1(λnr1) = FnK1(νnr1).(8.2)

Recall that Dn is already known from (6.13), so we have

CnI1(λnr1)− FnK1(νnr1) = I1(λnr2)K1(λnr1)(8.3)

To impose the continuity condition Hz(r1−, z) = Hz(r1+, z), we first recall that by

equation (5.1c) we have

Hz(r1−, z) =
i

r1ωµa

∂
(
ρEφ(r1−, z)

)
∂ρ

and Hz(r1+, z) =
i

r1ωµs

∂
(
ρEφ(r1+, z)

)
∂ρ

,

so we must have

1

µa

∂
(
ρEφ(r1−, z)

)
∂ρ

=
1

µs

∂
(
ρEφ(r1+, z)

)
∂ρ

.(8.4)
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After some algebraic manipulations and removal of the derivatives of the Bessel

functions we get the following system for the coefficients Cn and Fn:[
I1(λnr1) −K1(νnr1)

I0(λnr1) −γnK0(νnr1)

]
︸ ︷︷ ︸

=:Wn

(
Cn

Fn

)
= I1(λnr2)

(
K1(λnr1)

K0(λnr1)

)
(8.5)

where γn = νnµa
λnµs

. Unfortunately, matrix Wn defined above is not a Wronskian of

the two Bessel functions. It’s inverse would not simplify, and therefore it is not

worthwhile to compute it by hand; instead, we will solve this system numerically

for each n.

Moreover, the matrix Wn as presented above is extremely ill-conditioned. To

mitigate this issue, we rewrite our solution in terms of the scaled Bessel functions

Ĩn(z) = e−|<z|In(z) and K̃n(z) = ezKn(z).(8.6)

9. Transferred Power

The time-averaged Poynting vector field is given by

P =
1

2
<
(
E×H∗

)
,(9.1)

where ∗ denotes the complex conjugate. One way to compute the power flowing

through the boundary of the casing is to evaluate the integral

PPoynt = 2πr1

ˆ L

−L
(P(r1, z))ρ dz.(9.2)

Alternatively, we can assume that the current density inside the steel housing is

given by Jφ = σEφ, and calculate the total power as

PE2 = 2πσ

ˆ L

−L

ˆ ∞
r1

E2
φ r dr dz.(9.3)

Both approaches were implemented with trapezoid rule and give similar results.

10. Physics

Physical constants:

(1) Casing radius r1 = 76mm.

(2) Source (coil) radius r2 = 66mm.

(3) Half-pitch L = 15mm.

(4) ω = 2π × 12 kHz is the temporal frequency.
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(5) Permeabilities2: µair = 1.26× 10−7H/m, µsteel = 1.26× 10−6H/m

(6) Conductivity σsteel = 7× 106 siemens/meter.

(7) Permittivities: εair = 9× 10−12F/m, εsteel = εair −
iσsteel

ω

With these values, the model gives the power flow into the steel casing of about 68

watts.

11. Plots

Here are a few plots generated by the accompanying Matlab script.
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2The values of permeabilities are not those quoted for the “room temperature”. They were

adjusted to account for the effect of the high temperature.
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12. Conclusion

We developed an analytical model which helps to compute the electric fields inside

the heating element, as well as quantitatively assess its dependence on the physical

parameters of the system. This analysis can be used to determine the optimal

structure of the heating element, as well as to better understand the underlying

physical processes.

A. Appendix : Jump Condition

To derive the jump condition we rewrite equation (6.6) as follows:

∂

∂x

(
x
∂u

∂x

)
− x2 + 1

x
u =

1

λn
δ
(
x/λn − r2

)
Integrate both sides in the neighbourhood of the jump:

ˆ λnr2+h

λnr2−h

(
∂

∂x

(
x
∂u

∂x

)
− x2 + 1

x
u

)
dx =

ˆ λnr2+h

λnr2−h
δ
(
x/λn − r2

) dx
λn

((
λnr2 + h

)∂u
∂x

∣∣∣
x=λnr2+h

)
−
((
λnr2 − h

)∂u
∂x

∣∣∣
x=λnr2−h

)
+O(h) = 1

Let h→ 0: (
λnr2

∂u

∂x

∣∣∣
x=λnr2+

)
−
(
λnr2

∂u

∂x

∣∣∣
x=λnr2−

)
= 1

∂u

∂x

∣∣∣
x=λnr2+

− ∂u

∂x

∣∣∣
x=λnr2−

=
1

λnr2
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ANALYZING LEGISLATORS AND POLICY AREAS

DANA BERMAN, JILLIAN GLASSETT, DANYI LIU, DIAAELDIN TAHA, AND AARON (XIANG) ZHENG

Abstract. We used o�cial legislative data on the Canadian and United States govern-

ments to see if politicians cluster around policy topics. Both data sets provided di�erent 
information on legislators and legislation, resulting in two distinct methodologies and 
results. For the Canadian data set, we identi�ed the distribution of times spoken in par-

liament per topic and visualized how o�en the topic came up in session from 2017 to 2019

using t-SNE. We saw that some topics were evenly spread over the three years while other

topics clustered around a particular year. We provided insight into how this data can be

used to analyze legislative performance. For the U.S. data set, we examined the percent-

age of bills that became law as a measure of political performance for current legislators.

We also used various clustering techniques to analyzed politician’s interest in di�erent

policy areas based on (co-) sponsored bills. We found that these groupings bear strong 
connections to both parties and location. We also performed some preliminary analysis

on legislation passing rates by topic.

1. Introduction

Performance measurement in the the �eld of sports has achieved signi�cant growth 
and development. Using data-based performance evaluation to make key decisions has 
played an important role in sports such as football, basketball, and ice hockey

1
. Analysis 

of complex aspects of the game requires a comprehensive mathematical tool to facilitate 
a continuous cycle of “question and answer” to provide detailed and �exible explanations.

What if we applied the same mathematical tools and concepts to political performance?

IOTO International Inc. is a non-partisan analysis company that specializes in using AI 
to gain insights from political data. �rough the PIMS Math

Industry 
workshop, we were 

given the opportunity to collaborate with this company. �e IOTO team provided us with 
some data sets mined from o�cial government websites. �is report summarizes the work, 
which occurred over a two-week period.

Out of respect and con�dentiality considerations, we will not provide the data sets nor 
the code used.

2. Problem Statement

IOTO provided us with two main data sets, one from Canada and one from the U.S. A�er 
cleaning up the data and conducting an initial analysis, we found that the the data sets were 
too di�erent to make a direct comparison between the two countries a worthy endeavor.

�e Canadian data set was based on debate records on the �oor of Parliament from 2017

1
“Decomposing the Immeasurable Sport: A deep learning expected possession value framework for 

soccer”, Javier Fernández, Luke Bornn, Dan Cervone, http://www.lukebornn.com/papers/
fernandezsloan2019.pdf

http://www.lukebornn.com/papers/fernandez_sloan_2019.pdf
http://www.lukebornn.com/papers/fernandez_sloan_2019.pdf
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through 2019. Beyond basic information on the legislators, the data set contained the date,

time, duration and topic that each legislator spoke on; it did not contain any legislative

information. �e U.S. data set contains the total bills sponsored or co-sponsored by each

legislator; it also contains some basic information on each legislator. For each legislator,

the record covered the legislator’s entire congressional career, and was separated into

thirty-two policy topics. Since the both data sets had information on policy topics, we

focused on the following question:

�estion. Do politicians cluster around certain topics?
In addition to this question, we performed a preliminary analysis of the percentage of

(U.S.) bills that pass, and on the passing rate of legislator clusters. �is was possible a�er

the IOTO team mined some additional data on bill status. Given that we are studying the

Canada and U.S. separately, we will split our report into two sections, one per country.

Each section will detail our methodology and results. We will summarize all the results at

the end.

3. Canada

Hansard is the name of the o�cial reports of the Parliamentary debates in Britain and

several other Commonwealth countries including Canada. It is named a�er the Hansards,

a family of printers who worked with the Parliament at Westminster in the late 18th cen-

tury.
2

We received access to a data set that is derived from the Canadian Parliamentary Hansard

speech data and were tasked with analysing the topics that were discussed in the debates.

�e data set included such information as MPs names, party a�liation, and timestamped

summaries of the topics the MPs discussed on the �oor of the Canadian Parliament. We

restricted our analysis to the years 2017, 2018, and 2019. Our analysis involved 88,235 data

points covering around 7,000 topics.

3.1. Motivating�estions. For the sake of brevity, we showcase our work for only two

questions:

(1) Is it possible to detect activity in the Parliament? Is it possible to tell when a

particular subject is becoming a popular debate topic?

(2) Can we tell which topics are usually discussed with other topics or on their own?

3.2. Methodology and Results.

3.2.1. Detecting activity and popularity. We used the number of times an event of interest

occurs in the Canadian Parliament during a speci�ed time window as a sign of activity.

�is is a very natural indicator of activity that is prevalent throughout both the scienti�c

and the popular literature. For instance, a sharp increase in a location of the number of

cases con�rmed to have contracted a particular disease is a sign that an outbreak might

be taking place.

We created two plots showing the spikes in debates from 2017 to 2019 in the Canadian

Parliament. Both plots are of a 30-day moving average to reduce the amount of noise. �e

2Encyclopaedia Britannica, “Hansard,” (accessed September 01, 2020),https://www.britannica.
com/topic/Hansard

https://www.britannica.com/topic/Hansard
https://www.britannica.com/topic/Hansard
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Figure 1. A plot of the 30-days moving average of the number of times

each party spoke on the �oor of the Canadian Parliament. (Years: 2017,

2018, and 2019.)

�rst plot, Figure 1, shows the number of times each party spoke; it shows how the Liberal,

Conservative, and NDP parties dominate the speaking times (in order from greatest to

least). All other parties overlap each other near the bo�om of the graph.

Our second plot, Figure 2, took the ten most popular
3

topics discussed in the Canadian

Parliament during 2018 and 2019. When considering some of these spikes in context of

what was going on at the time, the results are not surprising. For example, two topics had

a spike during the spring of 2019: Political In�uence and SNC-Lavalin Group Inc.
4,5

Taking these results, we decided to look into the co-occurrence of topics.

3.2.2. Detecting co-occurrence of topics. �e debates in the Hansard dataset we analyzed

discussed a li�le over 7,000 signi�cant topics. We counted the number of times every topic

was mentioned during each single hour the Parliament was in session. �e dataset that

resulted from this counting procedure was both high dimensional and large in size.

3
based on amount time spoken on �oor; more time equals more popular

4Wikipedia, https://en.wikipedia.org/wiki/SNC-Lavalinaffair
5
When considering the top 20 topics, there is also a spike for the topic ”Aboriginal People”.

https://en.wikipedia.org/wiki/SNC-Lavalin_affair
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Figure 2. A plot of the 30-days moving average of the number of times

each of the top-10 topics was mentioned on the �oor of the Canadian

Parliament. (Years: 2018, 2019.)

Due to time constraints and computational limitations, we restricted our a�ention to

qualitatively analyzing the dataset through visual means. We used the t-distributed sto-

chastic neighbor embedding algorithm (t-SNE) to create two-dimensional visualizations

of our dataset that we could easily interact with. �e t-SNE is a nonlinear dimensionality

reduction technique that embeds high dimensional datasets in lower dimensions. �e al-

gorithm tries to keep close points in the original dataset also close in lower dimensional

embedding. It is considered the state of the art in visualizing very high dimensional data.

Figure 3, which contains four plots, show some of our results from using t-SNE. Since

the dataset was undersampled into hours for these plots, each dot in the plots below is a

vector that has the number of times each (signi�cant) topic was mentioned during one of

those hours; multiple topics can be represented by the same dot. �e top-le� plot (Figure

3a) colors each dot by year. �is top le� plot will be used with each other plot to understand

our results.

�e topics will have di�erent levels of “spread” over the three years. Figure 3b shows

the trade agreements have some clustering but is relatively evenly distributed. However,

Figure 3d almost entirely clustered in 2019, showing that it was a topic brought more
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(a) �e years 2017, 2018, and 2019 high-

lighted.

(b) �e topic “trade agreements” high-

lighted.

(c) �e topic “imprisonment and prisoners”

highlighted.

(d) �e topic “criminal prosectution” high-

lighted.

Figure 3. �e t-SNE map of the topics discussed in the Hansard dataset

of the Canadian Parliament for the years 2017, 2018, and 2019.

o�en in 2019 than the previous two years. Looking at all four plots, we can see not only

the occurrence of speci�c topics, but also when two topics may co-occur. For instance,

Figures 3b and 3c have a bit of overlap in right about the center, while Figures 3c and 3d

has less.
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3.3. Conclusion and Future Directions. Using both a line graph and a t-SNE plot to

look at occurrence–and co-occurrence–gives us a be�er idea of topic trends in the Cana-

dian Parliament. An interesting direction to take this is to compare these occurrences

with the occurrences of bills introduced in Parliament around the same time; the same

thing can be done with bills passed. �is can give some perspective on how the speaking

time on a topic may a�ect a bill being introduced and/or passing. �is idea can be taken a

step further by focusing on speci�c legislators who spoke on a topic. Is there a correlation

with speaking time and the number of bills introduced? What about frequency a legislator

spoke on a topic? Or number of bills passed? To continue this analysis, we need to gather

more data about legislation from the Canadian Parliament from 2017-2019, making sure

this includes the status of a bill, the (co-)sponsors of the bill, when the bill was introduced,

and more.

4. U.S.

�e Library of Congress was established in 1800 as a collection of books intended for

the use of Congress. Despite its humble beginnings, haunted by a lack of funding, space

shortages and �res, the Library has acquired a “symbolic role as a repository and promoter

of the democratic tradition”
6
. In recent years, by collaborating with the House, the Senate

and U.S. Government Publishing O�ce
7

, the Library provides an o�cial online source for

legislative information
8

. �e site includes a portrait of the current legislators in the form of

aggregated data. Information on each member of Congress includes: name, party, number

of sponsored/co-sponsored legislation, number of legislation by policy area, and more.

4.1. Motivating�estions. We a�empt to use this compact data set in order to answer

the following questions:

(1) How do politicians cluster around policy areas?

(2) How does this clustering, and other pertinent data, relate to a congress member’s

ability to pass bills to law.

4.2. Methodology and Results. As mentioned previously, our focus will be on policy

area clustering. However, since the end goal is to study legislator performance, we begin

by presenting some clear trends that were observed in our initial exploration. Recall that

our data contained a portrait of the 437 representatives and 100 senators in the 116
th

Con-

gress. For each legislator, we were able to compute the percentage of bills that became law

out of all the bills that have been sponsored or cosponsored by this given legislator. We

will use this percentage as a measure of political performance.

A rapid overview revealed two factors which in�uence the percentage of bills that be-

come law for each legislator. Firstly, we found that representatives
9

who worked in the

house in 2019-2020 are more likely to (co)-sponsor bills that become law; this may need to

6History of the Library, https://www.loc.gov/about/history-of-the-library/
7HLibrary of Congress to retire �omas,Adam Mazmanian https://fcw.com/articles/2016/

04/28/thomas-loc-retired.aspx
8
See congress.gov.

9
representative here meaning a member of the House of Representatives

https://www.loc.gov/about/history-of-the-library/
https://fcw.com/articles/2016/04/28/thomas-loc-retired.aspx
https://fcw.com/articles/2016/04/28/thomas-loc-retired.aspx
congress.gov
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be compared to previous representatives to make further conclusions. Additionally, (co)-

sponsorship from an experienced or “seasoned” legislator increases the probability of a

bill becoming law. �ese �ndings can be visualized in Figure 4.

Figure 4. Percentage of bills that became law in terms of number of con-

gresses spent in o�ce.

Other features, such as party a�liation, do not appear to have an obvious e�ect on legisla-

tor e�ciency. In order to �nd new trends, we must mine the data to �nd what lies beneath

the surface.

4.2.1. Legislators and policy areas. When exploring the data, we chose to focus on the

legislators’ interest in various policy areas. To account for factors such as varying number

of years in o�ce, we consider the following ratio:

number of bills (co)-sponsored in a given policy area
total number of bills (co)-sponsored

Since some policy areas inherently require more bills than others, we then subsequently

normalize these ratios.

Remark. We excluded 4 legislators from our data sets since they were newly elected and

had therefore had li�le information. We set a cut-o� o� 100 bills total (co-)sponsored.

We begin to visualize our data by using t-SNE
10

. �is method allows us to plot our data

in a two dimensional space in such a way that preserves nearness. �is plot is presented in

Figure 5a, where we coloured the points by party. �e separation between Democrats and

Republicans demonstrates that policy area clustering is a reasonable indicator of political

position.

10scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.
html

scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
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We cluster our data using two methods: k-means
11

and gmm
12

(Gaussian mixture model).

In order to maintain a balance between how much variation can be a�ributed to the clus-

ters and our ability to interpret these clusters, we chose to cluster our data into four groups.

A�er comparing our results for each method, we determined that the gmm yields be�er

results. �e kmeans algorithm produced clusters with a highly uneven number of legisla-

tors; there was a cluster containing only a single legislator.

In order to further re�ne our clustering, we chose to only consider a subset of policy

areas. By reducing the number of features, we improved some clustering scores. �is was

done through feature selection.

4.2.2. Feature Selection. To determine which policy areas, we would re-run gmm while em-

ploying a greedy algorithm. Considering two clustering scores (Silhoue�e
13

and Calinski-

Harabasz
14

score), we ran two greedy algorithms that, at any given step, pick the best

feature to add. We plo�ed the scores against the added features at each step and select our

desired features accordingly. Finally, we considered those policy areas that were selected

with the greedy algorithm for both the Silhoue�e score and the Calinski-Harabasz score.

Clustering according to the selected data yields four groups of legislators. We obtained

a sense of how well our data is clustered through another t-SNE visualization. In Figure

5b, we coloured our data to represent each cluster. �e points are superimposed onto a

heat-map based on Figure 5a.

(a) Democrats in blue

Republicans in red

(b) Groups 1, 2, 3, 4 are respectively

red, green, blue and yellow

Figure 5. t-SNE plots

11scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.
html

12scikit-learn.org/stable/modules/generated/sklearn.mixture.
GaussianMixture.html

13scikit-learn.org/stable/modules/generated/sklearn.metrics.
silhouettescore.html

14scikit-learn.org/stable/modules/generated/sklearn.metrics.
calinskiharabaszscore.html

scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html
scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html
scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html
scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html
scikit-learn.org/stable/modules/generated/sklearn.metrics.calinski_harabasz_score.html
scikit-learn.org/stable/modules/generated/sklearn.metrics.calinski_harabasz_score.html
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In order to understand each group, we present Figure 6 which depicts the mean ratio

of (co-)sponsored bills in each cluster.

Figure 6. Average ratios of each policy area (feature selection)

By excluding senators, we can present the data geographically. In Figure 7, we colour each

congressional district according to the cluster of the corresponding representative.

Figure 7. Map of House representatives by group

In Figure 7, we also included the location of the 20 largest U.S. cities with a translucent

disk representing their population. �e largest U.S. cities almost all fall within Group 3

(blue). �is might be due to the fact that urban areas tend to have similar policy interests.
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4.2.3. Clusters and legislator performance. Taking a look at the mean percentage of bills

that became law for each cluster, we obtain minimal variability. However, it makes sense

to evaluate cluster performance based on each policy area. To this end, we consider a data

set containing information on bills introduced to congress since January 3
rd

2019. Our

data set contains information on almost 15 000 bills, including their sponsor, topic and

current status (e.g. introduced, passed House, became law). For each topic, we group our

data by clusters and evaluate the percentage of bills that became law. �ere are signi�cant

di�erences between the percentage of bills that became law in each cluster.

Out of the bills analyzed, only 156 have become law. Due to the small sample size, it

is premature to draw any conclusions without considering information like the average

number of bills passed in Congress. For this reason, we only summarize our results for

what has historically been most popular policy area: health (see Table 1).

Group 1 Group 2 Group 3 Group 4

Health
total 759 288 337 343

to law 1 1 6 1

percent 0.13 0.35 1.78 0.29

Table 1. Total number of bills sponsored in each group and amount that

made it to law

Despite information on bill sponsorship in the health policy area not being included to

produce our clustering, we observe a dramatic di�erence between Group 1 and Group 3.

4.3. Conclusion and further discussion. Our results suggest that legislators’ interest

in policy areas is an indicator of multiple factors such as legislative performance, political

position and even geographic location. We believe that our results are promising and

that more work is in order. In particular, we would like to further re�ne our clustering

by improving data preprocessing and considering other clustering methods. Moreover,

we are interested in what can be found by analyzing bill speci�c information instead of

aggregated data.

5. Summary

We have shown two di�erent approaches to answering the question if politicians cluster

around topics. From our initial analysis, we do see indication that they do cluster around

certain topics.

In the Canada data, you can see clusters around debate topics based on speaking time

and when it occurred. �e next steps is to start seeing how this data compares to Canada’s

legislation data, speci�c on bills presented and bills passed.

In the U.S. data, we see that there is clustering around parties, and from there some

clustering around policy areas. However there are indicators that the clusters are not

strictly down party lines and may be in�uenced by the region the legislator represents.
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A�er our results were computed,
15

, an article from the New York Times implies a similar

trend
16

.

�ere are many directions to go from based on our initial results. We have started

looking at bills passed for U.S. data; this can be further explored by topic, legislator, region,

etc. Additionally, we can use the Canada data with its legislative data to see if there are

correlations. We could determine which topic debated was “most successful” and under

that topic which legislator has the best record.

While analyzing legislator performance is further explored, it is important to consider

the ethical implications. Detailed sports analysis has already a�ected players; some players

in the NBA have avoided risky shots to keep good stats. We want to avoid this when

analyzing legislators while still positively changing the how politics is currently viewed

and discussed.
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Abstract. In this brief report, we establish a mixed-integer, linear programming
model to estimate the congestion surcharge from price spread for crude oil prices
over a fixed transport network with one or more consumer nodes. For the one node
model, the North American crude oil market is discussed. Pseudo data simulated
by an Ornstein-–Uhlenbeck stochastic process is used to study the multi-node
model.

1. Introduction

Spatial price integration in oil commodity markets studies the price movement in 
the market between market participants that are geographically separated. Crude 
oil markets are generally considered well-integrated as the different types of oil (e.g., 
light and heavy oil) are fungible assets and there is a vast network of pipelines and 
train capacity available to deliver oil efficiently to its destination.

There are many different classifications of oil commodities on the global market 
distinguished by its viscosity and sulphur content. Among them, we focus on West 
Texas Intermediate (WTI), a high-quality oil priced out of Cushing, Oklahoma 
which serves as the primary benchmark in North America, and Western Canada 
Select (WCS), Canada’s largest heavy oil stream.

Alberta produces approximately 4 million barrels per day (MMb/d) of crude oil 
of which approximately 3 MMb/d is classified as heavy oil. The majority of WCS is 
consumed in the Midwestern United States with the remaining excess stock destined 
for domestic consumption sent to the US Gulf Coast, see [4]. The US Gulf Coast 
is considered as a marginal consumption point where the last barrel is consumed. 
Canadian crude oil can reach the Gulf Coast through different pipeline options or 
rail from Edmonton or Hardisty, Alberta, see Figure 1. The transportation cost of 
the last barrel to the Gulf Coast sets the price of WCS.

The total off-take capacity of the pipeline from Alberta is on average less than 
the supply, this leads to “call-on-rail” (using expensive rail to transport oil) or 
shut-ins (mandatory curtailment of oil production). The price response to this 
supply-capacity difference is significant and appears as a regular breakdown in the 
price relationship between WCS and WTI that we define as a period of congestion 
pricing. This is exasperated by periods of congestion leading to the formation of 
transient “submarkets”.
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Figure 1. Map of crude oil pipelines [5]. The pink marker is located
at Hardisty, Alberta and the blue marker is located at Cushing, Ok-
lahoma.

1.1. Documented congestion. In the first half of 2018, western Canadian heavy
oil production increased steadily while pipeline capacity did not increase. As a
result, some production was shifted to rail, which is more expensive. Consequently,
Canadian crude benchmarks faced large price discounts, and the difference between
WCS and WTI increased compared to 2017 [7].

In the second half of 2018, the WCS–WTI differential widened more than normal.
The reason behind that was the supply of western Canadian oil production rose to
4.30 MMb/d while takeaway capacity on existing pipelines remained constant at
around 3.95 MMb/d. Moreover, the demand from the United States decreased due
to the shutdown of some refineries in the Midwest, the largest export market for
Canadian heavy crude oil [9], for maintenance.

Canadian crude oil exports via pipeline increased 3% from 3.1 MMb/d in 2018 to
3.2 MMb/d in 2019. At the same time, exporting crude oil via rail increased by 16%
from 2018 to 2019. This growth in rail exports was largely due to pipeline capacity
constraints in the Western Canada Sedimentary Basin [6]. Also, on October 28,
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2019, around 9, 120 barrels of oil were leaked from the Keystone pipeline causing a
shut down for ten days [3].

In 2020, due to the COVID-19 pandemic, activities such as travelling were re-
stricted in countries around the world to reduce the spread of the disease. The
demand for Canadian crude oil products decreased significantly and the Canadian
energy sector shut down production as low crude oil prices persisted [8]. The re-
duced supply removed pipeline capacity constraints in the transportation network
and reduced the price spread between WTI and WCS as a consequence.

1.2. Main result. In this report, in collaboration with Cenovus Energy Inc., we
build a mixed-integer linear (MIL) programming model to estimate the congestion
surcharge from the price spread between different geographic regions over a trans-
portation network connecting consumers and producers.

We start with a baseline model with a single consumer node that only considers
the price spread between Hardisty and Cushing in 2018–2020. Taking Hardisty
as the producer node and Cushing as the consumer node, we detect periods of
congestion and the associated surcharge during this period and show that this model
matches documented periods of congestion well. We then extend the model to
multiple consumer nodes. Due to a lack of data, we simulate price data using an
Ornstein–Uhlenbeck (OU) stochastic process (calibrated using historical WTI–WCS
spot prices) over a network of consumers (refineries) in the absence of sufficient real-
world data, and estimate the time and value the congestion surcharge.

This report consists of the following sections. In section two, a mixed-integer,
linear programming model is established for a transportation network to estimate
congestion. In section three, the one-node model is used to study the North Amer-
ican crude oil market for crude oil travelling from Alberta to the United States. In
section four, a general multi-consumer model is applied to simulated data from an
OU process. In section five, a summary of the results and possible future research
are discussed.

2. A mathematical model for congestion surcharge

In [2], Birge et al. shows that in an equilibrium integrated market, the price of
a commodity at different locations can be decomposed into a baseline price for the
commodity, a transportation cost, a congestion surcharge, and a variable contained
by a neutral band of values the local equilibrium price can take without exhibiting
arbitrage due to transportation costs, see Lemma 2.1.

We denote by T , a set of times measured in days, and S, a set of consumer
nodes over a transportation network connecting the nodes S to some collection of
producers. Note that each consumer node may represent a cluster of nodes in close
spatial proximity, such as all consumers residing in the same city.

Lemma 2.1 ([2, Proposition 3]). The set of equilibrium prices {λts, ∀s ∈ S, ∀t ∈ T }
over a market with fixed transportation network structure and transportation (link)
costs can be decomposed into

λts = ηt + ρs + εts + ωt
s, ∀s ∈ S, t ∈ T ,
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In this lemma, εts ∈ [−αs, αs] represents the neutral band, ηt is the baseline
price for the commodity taken to be the spot price at a neutral node unaffected by
congestion, and ωt

s ≥ 0 is the congestion surcharge.
In our model, we set ηt to be the equilibrium price of the producer (assumed to

be at a single node). Then, the formula in Lemma 2.1 reduces to ξts = ρs + εts + ωt
s

where ξts = λts − ηt denotes the price spread between consumer s and producer.
Therefore, to estimate the congestion surcharge in the transportation network,

we construct the following mixed-integer, linear programming problem.

minimize:
∑
s∈S

αs(2.1)

subject to: ξts = ρs + εts + ωt
s, ∀s ∈ S, t ∈ T ,

− αs ≤ εts ≤ αs, ∀s ∈ S, t ∈ T ,
0 ≤ ωt

s ≤ γtsM, ∀s ∈ S, t ∈ T ,
εts ≥ αs − (1− γts)M, ∀s ∈ S, t ∈ T ,

ψt ≤
∑
s

γts ≤ |S|ψt, ∀t ∈ T ,∑
t

ψt ≤ βT, ∀t ∈ T ,

ψt, γts ∈ {0, 1}, ∀s ∈ S, t ∈ T .

Here ξts denotes the price spread between the price of the commodity at the consumer
node s and the producer, M is a sufficiently large upper bound for the congestion
surcharge, ψ (resp. γ) is an indicator function taking the value 1 representing con-
gestion in the network (resp. representing congestion at s) and taking the value 0 in
the absence of congestion (resp. in the absence of congestion at s). Finally, β ∈ [0, 1]
is a fixed parameter set by the user that represents the proportion of the time that
congestion is allowed to manifest, i.e., time periods when the surcharge term ωt

s can
take positive values.

When there is only one consumer node in S, the above mixed-integer, linear
programming problem is simplified to

minimize: α(2.2)

subject to: λt = ρ+ εt + ωt, ∀t ∈ T ,
− α ≤ εt ≤ α,
0 ≤ ωt ≤ ψtM,

εt ≥ α− (1− ψt)M,∑
t

ψt ≤ βT,

ψt ∈ {0, 1},
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Figure 2. The price of WTI and WCS from January 2018, to Au-
gust 2020. Missing data in WCS is filled-in using the average of its
nearest neighbours. An outlier (-37USD) in WTI at Apr. 20, 2020
is replaced by interpolation.

i.e., γ is no longer necessary since the parameter determines which node experiences
congestion conditional on congestion occurring somewhere on the network.

3. Congestion surcharges in the crude oil market

In this section, we use the above programming model to estimate the congestion
surcharge in the crude oil market in North America. We analyze WCS from Hardisty,
Alberta and WTI from Cushing Oklahoma. We take Hardisty as the producer node
with WCS as the local price, and Cushing to be the consumer node with a local
price set to be 5USD lower than the WTI spot price to account for the difference
between heavy and light oil. See The spot price data between WCS and WTI from
January 2018 to August 2020 can be found in Figure 2.

Using model (2.2), we set the price spread to be WTI−WCS−5 as described
above, set M = 100 as an arbitrarily large upper bound for the congestion sur-
charge, and for β ∈ {0.2, 0.4, 0.6, 0.8}, we get the congestion surcharges shown in
Figure 3. The pink shaded regions represent time periods with documented pipeline
disruption or “call-on-rail”, while the green shaded region corresponds to a period
with sufficient pipeline capacity but with reduced demand. Therefore, we can see
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by visual inspection that selecting β = 0.4 or β = 0.6 the congestion surcharge
estimated by the model seems to match the historical market behavior well.

Figure 3. Estimated congestion surcharge for a single consumer
node with different choices of β. Periods of historical congestion
are denoted by the pink shaded regions and a period of decreased
demand is denoted by the green shaded region.

4. Multi-node model with pseudo data

In this section, we estimate the congestion surcharge in a transportation network
with one producer node and several consumer nodes. Due to the lack of data,
we simulate price spreads by using three correlated Ornstein–Uhlenbeck stochastic
processes for the consumer nodes. In this section, we provide a brief description of
the OU process and direct the reader to [1] for further details. We say a stochastic
process is an OU process if it follows the stochastic differential equation,

dxt = α(µ− xt) dt+ σ dWt.

.
The parameters α, µ, and σ for the OU process are calibrated using the WTI–WCS

spread spot price. Using the method of maximum likelihood estimation, we obtain
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the following parameters: α = 0.0119, µ = 16.275, σ = 2.053. These parameters
and three correlated Brownian motions following the correlation matrix

corr =

 1 0.8 0.7
0.8 1 0.56
0.7 0.56 1

 ,
are used to simulate three sample price spreads for the three refineries and the one
producer. See Figure 4.

Figure 4. Simulated paths for three refineries (consumer nodes s ∈ S)

Using model (2.1) with S containing three consumer nodes, the congestion sur-
charge for β ∈ {0.2, 0.4, 0.6, 0.8} are simulated in Figure 5.

5. Conclusion

In this project, we were able to generate congestion premiums using a mixed-
integer, linear programming model using the spread price between WTI and WCS as
an input. These estimated congestion premiums are consistent with the amount the
spot price increased during periods of historical congestion. Using these estimates,
one could model the spot price by first simulating a baseline mean reverting process
for the congestion-free price and then add the estimated surcharge. We further
generalized the model to a multi-node model. This multi-node model can be used
to further examine the congestion premium on more complicated networks and study
the graph-theoretic shape of the crude oil market by adding and removing refineries
to study the behaviour of congestion before and after changes are made to the
network structure.
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Figure 5. Multi-node congestion surcharges for three refineries with
different choices of β.
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Abstract. Using vehicle traffic data collected with Distributed Acoustic Sensing
(DAS) facilities from Fotech, we demonstrate that k-means clustering and Kalman
filtering can be used to determine the locations of individual vehicles, and track
the trajectories of vehicles over time. The implementation provided can handle
traffic data for several vehicles travelling in the same direction, with no car passing
another. We consider more complex traffic flow situations as future directions for
improvement to our method.

1. Background and Overview

Smart city applications have experienced a notable increase in interest over the
last few years. A smart city is a metropolis that employs a variety of electronic
Internet of things sensors to collect data. The data is used to improve the opera-
tions, resources and services across the city [8]. One of the branches of smart city
development consists of the development of real-time traffic monitoring with the aim
of reducing traffic congestion. Processing of fiber-optic distributed acoustic sensing
(DAS) data is in high demand within different smart city applications [15], [11]. DAS
signal data measures the strain in fiber optic cables that are placed underground.
For traffic monitoring applications, a fiber optic cable is run along a road. When
vehicles pass by, mechanical vibrations are created in the ground, causing slight de-
formities in the fibre optic cable. These deformities cause a phase differences in the
back-scattered light from laser pulses propagating through the fiber optic cable. The
DAS system is able to detect these minute differences, and creates a signal linearly
proportional to the strain in the cable at each point along its length [16]. DAS tech-
nologies have significant potential for traffic monitoring applications within a city.
DAS has proven to be successful in the similar topic of train monitoring, though
DAS signals from a road can be much more complex than DAS signals from trains.
In [16], an algorithm was presented for using DAS signals to track the positions of
trains over time, provided that there is a sufficiently large separation between trains

This work was funded by PIMS and Mitacs.
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at all times. The algorithm applies machine learning techniques to detect the train
edges, uses a distance-based optimization method for assigning train edges to train
objects, and uses a Kalman filter to track the train objects over time. DAS signals
from vehicles on a road, however, often appear in greater quantity, and in closer
proximity than those from trains. This presents challenges in the application of this
algorithm to vehicle traffic monitoring.

The goal of this project is to investigate a new methodology for identifying and
tracking vehicles, by making use of clustering algorithms and Kalman filtering tech-
niques in data mining and signal processing literature. We hope to provide a foun-
dation which can be extended upon to handle more complex traffic flow settings. In
Section 2 the proposed methodology for the solution of this problem is discussed. In
Section 3, the result of implementing this approach is presented. DAS data is pro-
vided by Fotech, and Python libraries and packages are used for coding. In Section
4 the future direction and possible improvements are discussed. Finally, a summary
of the project is given in Section 5.

2. Approach and Methodology

Our proposed methodology consists of three main steps: locating peaks in the
DAS signals, using clustering methods to determine vehicle positions, and tracking
these vehicle positions over time. Investigations relating to these three steps are
presented in Section 3. Here, we provide an overview of the process by which these
three steps can be combined into a real-time traffic monitoring method, summarized
in Figure 1.

DAS signals are read one at a time. A single DAS signal reading is referred to as
a shot, and consists of one sample from each position along the fiber optic cable, for
a given instant in time. A fixed number of shots, which will be referred to as the
window size, are analyzed at any given time. When a new shot is read, the analysis
window is shifted by one time step, in order to include the most recent window size
many shots.

Kalman filter models can be used to track vehicle positions and velocities over
time. In the case of more than one vehicle, we propose the use of more than one
Kalman filter model simultaneously. For each of the vehicles identified, a tracker
object is created, and equipped with a Kalman filter model for that vehicle. These
tracker objects will be referred to as Kalman trackers. Each Kalman tracker must
be initialized with the position of the corresponding vehicle. Initial velocities and
positions are set to null, and are corrected as new data becomes available in each
time step.

In order to use DAS signal data to identify the positions of vehicles at a given
point of time, peaks in the signal strength must first be located. The goal of this
procedure is to separate the signals representing vehicles from background noise.
The detected peaks can then be further analyzed to infer vehicle positions.
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A clustering algorithm can be used to identify individual vehicles using the de-
tected peaks data. Many clustering algorithms provide a point, or points, repre-
sentative of each cluster. These are often referred to as cluster centers, or cluster
centroids. Cluster centroids can be excellent candidates for vehicle positions.

To track the positions of identified vehicles, the locations of cluster centers can
be used to update the Kalman trackers. If there is more than one Kalman tracker,
an optimization problem must be solved in order to associate a given cluster center
with an existing tracker. The strategy for assignment of cluster centers to trackers
is an important aspect managing more than one Kalman tracker simultaneously.

Finally, the process of reading a shot, shifting the analysis window, finding and
clustering peaks, and assigning cluster centers to trackers for trajectory correction,
can be repeated in a loop for real-time tracking of vehicle positions.

Figure 1. Flowchart of the proposed method for identifying and
tracking vehicles from DAS signals in real-time.

3. Implementation and results

In our approach, we analysed small subsets of the data collected from Fotech
instruments, to reduce the computational overhead. When comparing clustering
algorithms, we looked at vehicle trajectories for both smaller subsets of 10 shots,
and larger subsets of a few hundred shots. When using Kalman trackers to trace
out vehicle trajectories, we used circular shifting, and analyzed 5 to 20 shots worth
of data at a time. This technique is used to achieve the results in Section 3.3, where
an example implementation is provided to illustrate how our methodology can be
used to handle simultaneous tracking of several vehicles.

In preparation, we first detected peaks across the aforementioned segments of
data, as described in Section 3.1. In section 3.2, clustering algorithms are employed
to cluster the detected peaks. Furthermore, we discuss whether the resulting clusters
align with our objectives. In particular, we investigate whether the resulting clusters
effectively distinguish one vehicle from another. Using these observations, we make
conclusions about which clustering methods may be more effective for identifying
locations of vehicles from peaks in DAS signals.

3.1. Peak detection techniques. The elastic strain wave found in each shot con-
tains noise which is unnecessary for our purpose [10]. Hence, only the positions at
which a compression wave obtains a local extremum exceeding a certain threshold,
which we call a peak, were processed through the clustering methods presented in
the Section 3.2. Once we found the peaks in each shot (Figure 2), we collected these
peaks over the time period of interest (Figure 3a and 4a).

There are various peak detection methods available on Python scipy library:
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Figure 2. An example of the peaks (marked with red stars) on an
elastic strain wave

• scipy.signal.find peaks cwt,
• scipy.signal.find peaks,
• scipy.signal.argrelextrema.

In our implementation, we used signal processing scipy.signal.find peaks cwt

to find the peaks for the subsets of DAS signal data to be analyzed. This method
is based on a wavelet transformation [4]. The algorithm performs the discrete con-
volution of the dilation and translation of the Ricker wavelet function with the
raw data. We have tested various peak detection methods, including three listed
above, but a thorough comparison between the peak detection methods is beyond
the scope of this investigation, and is included in the future work for improving our
implementation.

3.2. Comparison of clustering algorithms. After collecting the peaks data, we
applied clustering techniques to partition the peaks data, in hopes of achieving
partitions representative of individual vehicles. We required that the number k be
equal to the number of cars in the data segment to be determined. The clustering
used the data for the positions and times of peaks. We employed the Python scikit-
learn library for implementing clustering algorithms [12]. One promising approach to
clustering for this DAS application is k-means clustering. Although this algorithm is
computationally intensive [6], implementing it is straightforward. The first difficulty
in applying any clustering algorithm is to obtain a priori knowledge of the number of
clusters in each section of streaming data. To overcome this challenge, we apply the
algorithm in a loop to compare the performance of the model for different numbers
of clusters. In other words, we run the algorithm for different values of k, starting at
k = 1 and increasing k by one each iteration before every re-run. The algorithm stops
when the inertia attributes of the model no longer decrease significantly (inertia is
sum of squared distances of samples to their closest cluster center). Figure 3b
depicts the result of applying k-means clustering in a loop to find the best number
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(a) The data set (b) The loop (c) k-means clustering

Figure 3. k-means clustering of the data set containing of 6 vehicles
passing the road in the same direction

(a) The data set (b) The loop (c) k-means clustering

Figure 4. k-means clustering of the data set containing 2 vehicles
passing the road in different directions

of clusters in the data set (Figure 3a). This data set represents six cars moving in
same direction. Applying k-means in a loop shows that the best number of clusters
is k = 6. Figure 3c shows that k-means algorithm successfully clusters the peak
data into six clusters. After this, the centroids of the clusters can be used for in
applying Kalman filters.

Another challenge in implementing k-means clustering in our data set is that the
algorithm does not give an appropriate number of clusters for data segments pre-
senting cars moving in different directions; it can not accurately distinguish vehicles
passing each other on the road. This happened because k-means clustering usually
cannot handle non-convex sets. By combining k-means with hierarchical clustering,
we may overcome this difficulty [9]. Figure 4 shows the result of applying k-means
in a data set with two vehicles passing other, for which it is not successful in finding
the right number of clusters. However, this might be expected, because a pair of in-
tersecting lines consists of a single connected component. More specifically, k-means
is best suited to convex sets, but a pair of intersecting, thick lines is not convex.

Another potential algorithm to use for clustering in this DAS application is Affin-
ity Propagation (AP). Unlike k-means, AP does not require the number of clusters
to be determined before running the algorithm. This method finds exemplars (mem-
bers of the input set that are representative of clusters). As an input, the algorithm
requires some parameters to be provided: similarity (affinity function), preference
and damping factor. Similarity defines how well-suited a point is to be the exemplar
for another. Here we define it as negative Euclidean distance, which is the negative
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(a) first time, using peak positions (b) second time, using center samples

Figure 5. AP clustering of the data set containing 6 vehicles passing
the road in the same direction

squared distance between the two data points. Preference represents the suitability
of each data point to be an exemplar; points with larger preference values are more
likely to be chosen as exemplars. Unfortunately, AP is very slow for a larger window
size, such as the data shown in Figure 3a, due to the computational expense of the
algorithm [13]. When examining AP, we apply it for a smaller data set. Figure 5a
shows the result of applying AP in for a small window size, when the preference
is any number between −10 and −100, and the damping factor is between 0.5 and
1. Since it gave more clusters than expected, we ran the algorithm a second time
to merge clusters together using the cluster centers, presented in Figure 5b, which
results in four clusters; this is still not representative of the number of vehicles, even
for this small time window.

Some other clustering algorithms that could be useful in this DAS application
are BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies) and
Mini Batch k-means methods. BIRCH applies hierarchical clustering on large data
sets. This method is memory efficient; it can typically find a good clustering with
a single scan of the data [17]. Mini Batch k-Means has less computational cost
in comparison to k-means, as it uses random batches of data as opposed to using
all available data [14]. The implementation of Mini Batch k-Means and BIRCH
algorithms are available in the scikit-learn library [12]. The partial fit method of
these models, included in the sklearn package, provides a way to do online clustering
for steaming data. For references about online clustering, see [3] and the references
therein. Figure 6 compares these two algorithms for the same data set as in Figure
3a.

Finally, it should be noted that for any of these clustering methods, tailoring
the similarity measurement to this specific application may significantly improve
results. For example, [7] provides a path-based similarity measure for AP. This, and
the incorporation of velocities and accelerations, are potential improvements to the
similarity measurements.

3.3. The real-time process. In this section, we provide an example to illustrate
the feasibility of the methodology described in Section 2, making use of a circular
shifting technique to mimic a real-time implementation. The proposed method was



TRAFFIC MONITORING WITH DISTRIBUTED ACOUSTIC SENSING

(a) Mini Batch k-means (b) BIRCH
(c) sub cluster centres in
BIRCH

Figure 6. Mini Batch k-means and BIRCH clustering of the data
set containing 6 vehicles passing the road in different directions

applied to a subset of DAS data consisting of five vehicles travelling along the fiber
optic cable. The vehicles do no pass each other, and travel at similar velocities. The
sample data consists of 5 seconds’ worth of DAS signals measured over a 1529 meter
length of fiber optic cable. For the particular DAS system, 5 seconds corresponds
to 500 shots. A window size of 5 shots was used for analysis.

Peaks in the DAS signals were detected using find peaks cwt, and the method
described in Section 3.1. Peaks for which the absolute value of the signal strength
was less than 10 times the signal reading median were deemed to be noise, and were
excluded from the computations.

The k-means clustering algorithm was used, with k = 5 set to match the number of
vehicles. As illustrated in Section 3.2, the k-means algorithm was effective, efficient,
and reliable. It was chosen for this implementation for these reasons, and to provide
a clear example which can be used as a starting point for further investigations. See
Section 4 for remarks on generalizing to a varying number of vehicles.

Five Kalman trackers were created, and the initial positions were set to be those
of the cluster centers found from the peaks in the first 5 shots. The simultaneous
use of more than one Kalman tracker comes with a challenge; namely, how does
one decide which cluster center corresponds to which vehicle in subsequent time
steps? In this example, the rule for deciding which cluster center should be used for
updating which Kalman tracker was based on distance, and can be summarized as
follows: If cluster center c is the closest cluster center to tracker t, and there is no
other tracker t′ which is closer to c than t, use c to correct tracker t. Otherwise, do
not correct tracker t.

Figure 7 shows the results of this implementation. The five trackers are successful
in tracing trajectories through collections of detected peaks corresponding to vehi-
cles. This shows that a clustering-based approach to DAS signal data may provide a
feasible solution for the tracking of vehicle positions and velocities. In particular, the
use of cluster centers for the simultaneous management of several Kalman trackers
was shown to be successful in this example, and the method has enough flexibility
to serve as a starting point for treatment of more complex traffic flow situations.
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Figure 7. Trajectories of five vehicles tracked simultaneously using
the proposed methodology. Detected peaks in DAS signal are plotted
in grey, and the five colours show the Kalman tracker trajectories.

4. Discussion

In Section 3.3, we successfully implemented the proposed methodology using k-
means clustering for subsets of data with simple traffic flow; specifically, for a fixed
number of vehicles moving along the length of the fiber optic cable, in one direction,
with no vehicle passing another. There are many ways in which this example can
be improved. The main area of flexibility is in the choice of clustering algorithm.
It may be beneficial to compare the performance of this tracking method when
implemented using different similarity measurements, online clustering methods,
hierarchical clustering methods, and methods which do not require the number of
clusters to be specified. The pre-processing and peak-finding techniques used may
affect which clustering algorithms are the most successful when tracking, and should
be considered in a thorough comparison. It may also be interesting to consider the
use of Hough lines instead of peaks [1].

It is possible that the most effective clustering algorithm could be one that requires
the number of clusters to be specified. A possible method for using such an algorithm
with a changing number of cars is the following: If the current number of trackers
is k, compare the results of finding k − 1, k, and k + 1 many clusters, and pick the
best result. Further investigation is required to determine a method for comparing
clustering results, and deciding which should be used.

Another clustering algorithm of interest is CURE [5]. The benefit of CURE is
that it allows for more flexibility in the shapes and sizes of the clusters, and is also
robust in the presence of outliers. This could make CURE a suitable clustering
algorithm to use for tracking, as peak detection methods can result in outliers.

When vehicles pass each other, the trajectories intersect, appearing as the crossing
of lines of peaks in DAS signal. The algorithm for correcting trackers provided in
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Section 3.3 does not include logic to consistently achieve accurate tracking in this
situation. A potential improvement to the algorithm would be to weight corrections
to trackers more lightly when approaching an intersection of trajectories.

It is also necessary to allow for the creation and deletion of trackers. This would
allow the method to be applied to a situations with a varying number of vehicles.
One possible approach is the following: If a cluster center is not assigned to a tracker,
create a new tracker starting from that position. If a tracker is not updated for a
specified number of iterations, delete the tracker.

5. Conclusion

Among the new techniques rising with the smart city trend, DAS technology pro-
vides a feasible solution for monitoring of traffic and transportation. In this work,
we investigated a methodology for identifying positions of vehicles from DAS signal
data, and tracking the positions and velocities of vehicles over time. The method
for identifying positions was based on the application of clustering algorithms in the
data mining literature to peaks in DAS signal, and the method for tracking the po-
sitions was based on the simultaneous use of several Kalman filter models. Peaks in
signal data were detected using a standard signal processing tool based on a wavelet
transform, and low intensity peaks were excluded as noise. The performance of var-
ious clustering algorithms was compared for a subset of peaks. k-means clustering
was used to successfully identify and track five vehicles, in the case where no vehicle
passes another. The implementation of the proposed approach showed how several
Kalman filter models can be managed simultaneously, by using cluster centers to
correct the trackers’ trajectories. This investigation has provided the groundwork
for the creation of a tool that uses DAS signals to locate and track individual ve-
hicles. The method offers flexibility in the specific implementation, and has lead
to many ideas for further investigation. In particular, the comparison of clustering
algorithms suggested that Mini Batch k-means clustering can be applied to reduce
computational cost of the implementation provided for k-means. We hope that this
method will be improved upon, and lead to a new application of DAS technology to
real-time traffic monitoring.
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AUTOMATED RECOGNITION OF ROAD LINES IN AERIAL IMAGES

CARLOS CONTRERAS, KERAN LI, YI SUI, LI WANG, TINGZHOU YU, AND JUNJIE ZHU

Abstract. Training of object detection models requires a large number of images with identification of the
regions of interest. Currently, the selection of regions of interest is done manually, which could be inefficient

and inaccurate. In this project, we developed an automated recognition and labeling tool for road lines in
aerial road and parking lot images, based on image processing techniques and unsupervised machine learning

methods. The tool we created here contains three major steps, including color filtering, edge detection, and

objects recognition and labeling. We demonstrate how this tool works by presenting an example where the
yellow parking lot lines are successfully identified and labeled. We conclude this project with a summary of

future work could be done to improve this tool.

1. Introduction

Identifying road lines and marks is an important task in monitoring traffic and parking lot occupancy.
For instance, determining the real-time occupancy percentage of a parking lot. One of the challenges here
is to identify objects in the images, such as yellow lines to delimit parking spaces. This process can be done
manually using computing vision programs, although this is not time- efficient and robust.

Machine learning methods can help automate the recognition process. If objects were previously classified
for some images, we could use supervised machine learning to classify the same objects in different images. In
order to obtain a set of images with identified objects, such as yellow lines, we can use unsupervised machine
learning in combination with image processing techniques. The difficult task is to distinguish yellow lines
from other yellow marks (such as handicap marks and no parking yellow stripes) and yellow patterns in the
ground or vehicles. The goal of this project is to identify yellow and white lines in images of parking lots
and roads using image processing techniques and unsupervised machine learning.

2. Methods

In this section, we introduce the method we used for automated road lines recognition. The method
contains 3 main steps, including color filtering, edge detection, and Hough line detection and shape classifi-
cation with box labeling. Note that we only mention yellow line recognition here for demonstration purpose;
however, the method could be applied to any color line recognition. We implement this method on Python
with the help of various libraries, such as OpenCV [1], Scikit-Learn [7], and Pillow [3]. We will present some
of the results in Section 3.

2.1. Color Filtering. Since our goal is to recognize the yellow lines, it would be beneficial to identify all
yellow pixels first. We select a standard RGB (Red, Green, Blue) value for the yellow color and look for all
pixels in the images with RGB values close to that of the standard yellow. Here are some methods we have
attempted.

2.1.1. HSV Filter. One way to extract the yellow pixels is to convert the RGB values to HSV (hue, saturation,
value), and we identify yellow pixels with predefined range of hue, saturation, and value/brightness.
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2.1.2. Color Quantization with K-Means. K-Means is an unsupervised machine learning algorithm that
groups data into clusters. Given a hyper-parameter K, K-Means can assign rows of data to K clusters, such
that each row is assigned to its closest cluster center in Euclidean space, and each cluster center is the mean
of data assigned to it.

We applied the K-means algorithm from Scikit-Learn to RGB values of the pixels from all images. To
extract the yellow pixels, we only keep the pixels that are in the same cluster as the standard yellow.
Compared to the HSV filter, we did not need to specify the range of yellow, which allows the potential that
pixels with noise can still be classified as yellow.

2.1.3. Color Quantization with DBSCAN and HDBSCAN. DBSCAN (Density-based spatial clustering of
applications with noise) and HDBSCAN (Hierarchical density-based spatial clustering of applications with
noise) are two other clustering algorithms. Given a hyper-parameter ε and min samples, DBSCAN declares
two pixels to be in the same cluster if their distance is less than ε, and we ignore clusters with less than
min samples data points. Compared to K-Means, not every data point needs to be in a cluster, and
DBSCAN ensures that pixels with similar values are in the same cluster. HDBSCAN is an improvement of
DBSCAN.

However, the run time of these two algorithms is much higher than K-Means. We adapted by resizing
the images to 224 × 224. Also, other pixels are in the same cluster as the standard yellow. Especially
with resizing, the RGB values of the pixels space out evenly in the color space, and there is not a large
gap between the cluster of yellow pixels and other pixels. Thus, these two algorithms do not perform well.
Setting ε = 5.3, they excluded almost all pixels. If ε = 5.4, they included most of the pixels, so they did not
help with extracting the yellow pixels only.

2.1.4. Color Quantization with Gaussian Mixture Models. We also applied Gaussian Mixture models to study
the color quantization on the images. The Gaussian Mixture model is a probabilistic unsupervised model,
and models are learned by using the maximum likelihood estimates (MLE). Given a pixel K-means would
classify it as one color only, where the mixture of Gaussian could say with certain probability it is yellow,
and with certain probability chance it is green, allowing us the view the color clustering with uncertainty.

We implemented the Gaussian Mixture Models from Scikit-learn with co-variance types “tied” and “diag”
and different number of components. Type “tied” showed better results for the image set we have. To identify
the yellow pixels from the parking lines, we changed the color modes to RGB for images and follow the same
procedures as K-means. We compared the results from K-means and Gaussian Mixture models, and see
that Gaussian Mixture models can capture more relevant yellow parking lines pixels from the shadow see
Figure 5, which is consistent with our expectations. However, Gaussian mixture was not able to solve the
problem with shadow completely.

2.2. Edge Detection. Based on the color clustering information, we can now get a masked image with only
yellow objects left and then we can move on to do edge detection. To obtain the best edge detection result,
we first change the masked image to be grayscale and then apply a Gaussian filtering [8, Section 3.1] to
remove noise in the masked image. Following this, Canny edge detection [2] is applied to find the edges for
the yellow lines we are interested in. Note that to apply Gaussian filtering, we need to specify the size of the
kernel to be used. Moreover, for Canny edge detection, we also need to specify two threshold values, minVal
and maxVal, to classify edge lines and non-edge lines. The value of these parameters used in our experiments
will be specified in Section 3. For more information on Canny edge detection along with Gaussian filtering
and how to perform it on OpenCV in Python, see [9].

2.3. Hough Line Detection, Bounding Boxes and Shape Classifier. Upon obtaining the Canny edge
detection result, we can identify objects by creating either line detection based on Hough transform [8,
Section 7.4.2] or the bounding boxes based on contours.

Experiments presented in Section 3 apply the probabilistic Hough transform function (HoughLinesP) [6]
in OpenCV for line detection, and then the detected lines are used as a mask over the original image. Note
that, in order to apply the probabilistic Hough transform, we need to specify the values of threshold, the
minimal line length, and the maximum line gap. The values used in our experiments will be specified in
Section 3. For more information on how to perform Hough transform using OpenCV, see [9].

Bounding boxes are obtained using firstly the function findCountours to obtain contours delimiting the
detected edges (given by delimiting point), and secondly the function minAreaRect to obtain the smallest
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rectangle that encloses each contour (given by the corner point of the rectangle). This gives a number of
bounding boxes enclosing each of the regions detected in the previous steps.

Note that those rectangles will include lines as well and other identified objects, which are not lines. To
distinguish lines from non-lines objects, we classify them based on geometric properties of the bounding
boxes using the function boundingRect. In particular, we compute the maximum length and aspect ratio
(the longest side over the shortest side) of the bounding box since lines will be long and thin (large aspect
ration and maximum side). We then select the shapes with aspect ratio largest than 4. Alternatively, we
can use clustering methods, such as hierarchical clusters or K-means, to classify long and thin rectangles
based on their geometrical properties.

3. Results

In Section 2, we introduced the method we used for automated line recognition. Now we are ready
to present the results for some experiments we have done. All experiments presented in this section are
performed on the resized 512 by 512 parking lot image shown as Figure 1. Unless specified, we worked
on the standard RGB color space with the reference yellow color taken to be (210, 200, 0). If the color
quantization is performed, it is always done on all the data images we have. Moreover, a 7 by 7 kernel
for the Gaussian filter is applied before Canny edge detection. The minimal and maximal value used in
Canny edge detection are 150 and 280, and the threshold, the minimal line length, and maximum line gap
for Hough line detection are taken to be 20, 10, and 10 respectively. Finally, it is worth pointing out that
all experiments are performed on Python version 3.7.7 with OpenCV version 3.4.2.

Figure 1. Resized 512 by 512 parking lot image.

In the first experiment, we apply a fixed range yellow color filter defined in the HSV space. Here, we
take the lower bound of the yellow filter to be (22, 60, 140) and the upper bound of the yellow filter to be
(60, 255, 255). Shown as Figure 2, with applying this color filter, we are able to keep only the yellow objects
in the parking lot in the masked image. Following by Canny edge detection and Hough line transform, we
can detect the yellow lines in the parking lot accurately (shown as panel (c) of Figure 2). However, a clear
drawback for this approach is that we need to predefine a yellow filter in the HSV space, which can be hard
to determine and have dependence according to the image. This motivates us to do the next trial, which
applies color quantization to filter out the color other than yellow.

In this experiment, we apply color quantization with K-means clustering of group K = 5 in order to filter
out the color other than yellow. The corresponding result is shown in Figure 3. In Figure (a), we see that, in
addition to the yellow lines in the parking lot, the sidewalk, cars and some other non-yellow objects remain
in the masked image. It leads to a noisy Canny edge detection result as shown in panel (b), so that we end
up with a very inaccurate detection of the yellow lines of the parking spots. It suggests us that K = 5 may
be too small for the yellow color filtering, and a bigger number of K should be applied in the clustering to
see whether it can improve the result.

Finally, we present the result when either K = 6 for K-means or 5 components for Gaussian mixture
model is applied for the color quantization in Figure 4. Here, for Gaussian mixture model, we apply the
“tied” co-variance. Comparing the K-means with Gaussian mixture model, we see that, by applying either
of the clustering method, yellow parking lines can be detected accurately. However, we have used one less
cluster group for Gaussian mixture model compared to K-means in this example. After obtaining the edge
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(a) (b) (c)

Figure 2. Result for a fixed range yellow filter in HSV. (a) Color filtering result, (b) Canny
edge detection result, (c) Hough line detection result.

(a) (b) (c)

Figure 3. Result for K-means with K = 5. (a) Color filtering result, (b) Canny edge
detection result, (c) Hough line detection result.

detected image, we can then also apply the shape classification method (described in Section 2.3) to label
the yellow lines we are interested in with boxes.

(a) (b) (c) (d)

Figure 4. (a) color filtering results, (b) Canny edge detection results, (c) Hough line de-
tection results, (d) box labelling results. Results for K-means are shown on the top and for
Gaussian mixture on the bottom.
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4. Conclusion and Future Work

In this work, we use unsupervised machine learning methods and image processing techniques to identify
yellow and white lines in aerial images of roads and parking lots. The general pipeline consists of the following
sequential steps:

(1) Color quantization. Use unsupervised machine learning (K-means or Gaussian mixture models) to
classify colors into clusters. The clustering can be applied to a number of images concatenated
together, in which case a larger spectrum of colors is considered and the classifier can be saved for
future use.

(2) Color filtering. Keep only yellow (white) pixels based on the color clusters. The output is a copy of
the original image (or transformed color model) where all pixels not belonging to the cluster have
been removed. This step assumes that all yellow (white) pixels of interest are very similar.

(3) Image smoothing. Apply a filter to eliminate isolated or faint pixels that remain after the color filter.
(4) Edge detection. Apply Canny edge detection to identify all enclosed regions that remain after color

and smooth filters. The output is a binary image delimiting all filtered pixels.
(5) Contours. Identify the contour enclosing each of the group of pixels that has been edge detected.

The output is a list of contour points delimiting each group of filtered pixels.
(6) Bounding boxes. Determine the minimal rectangle that encloses the contour. The output is a list of

four (corner) points for each group of filtered pixels.
(7) Shape recognition. Use unsupervised machine learning (hierarchical clusters or K-means) or heuristic

rules (aspect ratio larger than four) to classify and select those rectangles that are thin and long.
The output is a subset of the bounding boxes.

(8) Labeling. Identify yellow (white) lines by plotting bounding boxes over the original image.

We believe the pipeline above can be applied outside the data set that we considered. However, more
experiments would be required with images including curved or angled road lines, etc. From our experiments
with the available data set, we identified a number of issues that we couldn’t address due to time constrains.
These issues and potential solutions/improvements are explained in the rest of this section.

4.1. Future Work.

4.1.1. Shadow. Shadow is the main obstacle in this project. For example, from Figure 5 (b) we can see the
K-means clustering with Hough line detector cannot find all the yellow lines in the shadow area. This is
because K-means can only pick up one yellow color while there is an obvious color difference between the
normal yellow color in the bright area and dark yellow color in the shaded area. This can be partially solved
by Gaussian Mixture model as shown in Figure 5 (c), in which dark yellow color in shaded area is recognized
as the normal yellow color in the bright area with a certain probability. However, we can see some yellow
lines in shaded area are still missing from line detection.

(a) (b) (c)

Figure 5. (a) resized original image, (b) K-means result, (c) Gaussian Mixture model result.

One possible way to address the shadow issue is to modify the part of the image inside the shadow area
while keeping the part of the image outside of the shadow unchanged. We tried two different types of
modifications, to increase the brightness of the shadow area by a certain value, or to modify the RGB color
values of the shadow area and make them closer to the ones in the bright area. Both methods start with
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removing the texture of the image by a mean shift filter. Then threshold the image and the shadow area
can be picked up. Now change the color space of the shadow area from RGB to HSV so we can increase the
brightness of the shaded area. (Or we can multiply the RGB color values of the shadow area to make the
shadow area and the bright area have the same means of color values). Finally, we combine the images of
the modified shadow area with the normal bright area to obtain the output. We can also use the mean shift
filter again or inpainting tool to make the gap between the shadow area and bright area smoother. Figure
6 shows the result of brightening and color modification (the white spots inside shadow in panel (c) come
from small components removal after thresholding the original image, which is optional).

Another way to address with shadow parts is to apply the Homomorphic filter [4] to all images in the image
process procedures, in order to improve the light exposure. This part is done before the color quantization.
To be more specific, we first changed the color modes to HSV. After that, we applied the Homomorphic
filter on the low energy frequency on the brightness V channel, because the shadow part is related to the
low energy frequency compared to the non-shadow parts. Then, we shifted the mean value of the V channel
of the isomorphic filter images back to the original images. We can see some results in Figure 7.

Together with other tools, one of the possible procedures to detect all lines in image with shadow is

(1) Shadow Modification
(2) Color Quantization
(3) Line Detection

where we can change the order of the first two steps to compare the performance.

(a) (b) (c)

Figure 6. (a) original image, (b) brightened shadow, (c) color modified shadow.

(a) (b) (c)

Figure 7. (a) Homomorphic filtered image (b) Color filtered image (c) Line detection image
with Homomorhpic filter

4.1.2. Unwanted White Lines. When detecting white lines on roads, usually curbs are also detected at the
same time. This creates problems if we want to distinguish white dash lines or marks in the middle of roads
from curbs. As an example, Figure 8 (b) shows curb affecting the detection of white dash lines if we only
combine K-means clustering with Hough line detection. Figure 8 (c) shows if we apply one iteration of mean
shift filter before K-means clustering, the influence of curbs becomes much smaller. It leaves us future work
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to do with further investigation on how to properly apply mean shift filter to only detect the white dash
lines in the middle of the road.

(a) (b) (c)

Figure 8. (a) original image, (b) direct K-means result, (c) mean shift filtering before
K-means result.

4.1.3. Discontinued Lines. Some images have discontinued lines due to washed out paint. In this case, two
or more objects are identified which may be filtered out in the shape recognition step. We think that such
lines can be reconstructed using machine learning based on complete lines present in the same image.

4.1.4. Shape Recognition. Currently, the shape recognition uses a fixed number of two clusters to classify
lines from non-lines. However, this leads to sub-classifications of lines when there are only lines in the image,
and misclassification of non-lines as lines when there are too many non-line objects in the image. We suggest
using an unsupervised machine learning method with a variable number of clusters.

4.1.5. Automated Parameter Selection. Recall that the goal for this project is to create an automated recog-
nition tool for road lines. When the color filtering step could be done automatically through machine learning
techniques, we should not forget the fact that there are many parameters in this method which need to be
pre-selected, such as the number of groups in clustering, the minVal, and MaxVal threshold in Canny edge
detection, and three parameters in Hough line detection. Moreover, in the newly proposed shadow modifi-
cation method shown as Figure 6 (b), we also need to manually increase the HSV brightness value. Future
work includes using machine learning to automate optimal parameter selection.
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HOUSING PRICE PROJECT REPORT

DANIEL DI BENEDETTO, LEIMIN GAO, YIWEI HUANG, NEHA SHARMA AND
DONGYING WANG

1. Introduction

The real estate sector is an important industry with many stakeholders ranging
from regulatory bodies to private companies and investors. Among these stakehold-
ers, there is a high demand for a better understanding of the industry operational
mechanism and driving factors.

Today there is a large amount of data available on relevant statistics as well as
on additional contextual factors, and it is natural to try to make use of these in
order to improve our understanding of the industry. Notably, this has been done in
Zillow’s Zestimate [4] and Kaggle’s competitions on housing prices [2].

In some cases, non-traditional variables have proved to be useful predictors of
real estate trends. For example, in [3] it is observed that Seattle apartments close
to specialty food stores such as Whole Foods experienced a higher increase in value
than average.

This project can be considered as a further step towards more evidence-based
decision making for the benefit of these stakeholders. The project focused on assess-
ment value for residential properties in Calgary between 2017-2020 based on data
from [1]. The aim of our project was to build a predictive model for change in house
prices in the year 2021 based on certain time and geography dependent variables.

The main steps in our research were the following.

• Exploratory Data Analysis (EDA).
By conducting explanatory data analysis, we obtain a better understanding
of our data. This yields insights that can be helpful later when building a
model, as well as insights that are independently interesting.

• Feature Selection
In order to avoid overfitting issues, we select 20(according to PCA [12])
variables out of the original 36 by using methods ANOVA [9], LASSO [14],
elastic net [15], forward feature selection, backward feature selection.

• Modeling
We apply Decision Tree [7], Random Forest [8] and Xgboost [6] models for
prediction of the percentage change of the housing prices.
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• Exploration of reasons for misclassification in model
We then go back to the original data to find out why some samples are mis-
classified by our model.

In this report, we describe our approach to these steps and the results that we
obtained.

2. Exploratory Data Analysis

Figure 1. Housing prices for 2017-Calgary

In order to understand our data, we first perform exploratory data analysis. This
will provide us with insights that will be useful in building prediction models, as
well as insights that may be of interest to stakeholders. As part of the Exploratory
Data Analysis we aim to:

• Look into the relationship between each variables and annual house price
percentage change, and identify any patterns. For example, between the
year of construction of a house and its annual percent price change.

• We will also analyse relationships between the features. This may reveal that
certain features are redundant and this would help the subsequent analysis.

Figure 2. Housing prices index -Calgary

As part of the EDA, we first looked at the mean percent change of the housing
prices from 2017-2020 for each FSA whose data is given. Figure 2 suggests that on



HOUSING PRICE PROJECT REPORT

an average there was positive change in prices in the Year 2018.
In order to analyse our features more carefully, we also looked at the correlation of
various features of the houses.

Figure 3. Correlation of Features

Figure 2 gives us an insight on how parameters are correlated with each other.

3. Methodology

3.1. Feature selection. Our data has 36 features in total. If we use all of them
in our prediction model, the model will have a risk of overfitting. Therefore, we
decide to remove some unimportant features. We choose a dimensionality reduction
algorithm called Principal Component Analysis (PCA) as the method to estimate
how many components are needed to describe the data. The optimal number of
features for the prediction can be determined by looking at the cumulative explained
variance ratio as a function of the number of components.

This curve quantifies how much of the total, 36-dimensional variance is contained
within the first n components. For example, we see that with the digits the first
10 components contain approximately 90% of the variance, while you need around
25 components to describe close to 100% of the variance. Here we see that our
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Figure 4. PCA Analysis

five-dimensional projection loses a lot of information (as measured by the explained
variance) and that we would need about 20 components to retain 98% of the variance.

By using five different feature selection methods: ANOVA, LASSO, ELASTIC
NET, FORWARD FEATURE SELECTION, BACKWORD FEATURE SELEC-
TION, we were able to select 20 features out of the initial 36 features as a result of
overlapping features that we observed in each feature selection algorithm. Those 20
features are: saf4; saf5; mr5y; Inflation; pop1; pop2; inc3; own3; lab1; walk score
comm; Age; saf2; saf3; pop3; pop4; inc1; inc2; own2; lab2; vacancy rate.

3.2. Percent Change price prediction. The percent change price can be divided
into four different groups: [−0.12,−0.06), [−0.06, 0), [0, 0.06) and [0.06, 0.12]. In this
section, we are going to consider our problem as a classification problem.

Based on the selected features, we applied three different Machine Learning algo-
rithms: Decision Tree, Random Forest and XGBoost, on the training data and then
used the testing data to check the accuracy, which equals to the number of samples
that predicted in the right group divides the total sample size of our testing data.
Here is the table of the accuracy rate:

Method Accuracy Rate
Decision Tree 66.8%

Random Forest (with 1000 estimators) 68.1%
XGBoost 69.7%

Since XGBoost model is interpretable and performs best on the accuracy rate,
we use it as our prediction model.

The above tree plot gives an example on how does an XGBoost model arrive at
its final decision. This plot also shows the conditions on the node that splits the
tree.

After getting an XGBoost model, we can examine the importance of each feature
within the model by counting the number of times each feature is split on across
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Figure 5. XGboost Decision Tree

all boosting trees in the model. The order of the importance of different features is
plotted as a bar graph:

Figure 6. Feature Importance Bar Plot

From this plot, we can see that Age has the highest importance and Inflation
has the lowest importance.

Next, we use the confusion matrix to help us visualize the performance of this
XGBoost model:
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Figure 7. Confusion Matrix Results

In the above matrix, each row represents the instances in an actual group while
each column represents the instances in a predicted group. It is every easy to see
how many samples are mislabeled by this model. Take group [0.06, 0.12] as an
example, the actual size of that group is 133, 53 of them are predicted correctly in
the group [0.06, 0.12] while 80 of them are mislabeled in the wrong groups: 39 cases
are mislabeled in group [0, 0.06); 39 cases are mislabeled in group [−0.06, 0) and 2
cases are mislabeled in group [−0.12,−0.06). The above matrix shows that most
cases in group [−0.06, 0) can be predicted correctly by this XGBoost model, but the
mislabeling rate for other three groups is not low, especially for group [−0.12,−0.06).
Therefore, our next step is to find the main reasons for those mislabeling cases.

4. Exploration of reasons for misclassification in model

We focus on finding the reasons why some houses that are supposed to appear
in group [−0.12,−0.06) are in group [−0.06, 0) and houses supposed to appear in
[0, 0.06) appear in [−0.06, 0). Thus, we could check datum of significant factors and
find out why misclassification occur. Why this is important—we want to find out
why the predicted percentage change of price for some houses is exceptionally low
or high, which is important to basically every stakeholder. The following is a screen
shot of our dashboard and the dots on the map are some selected points from our
table.
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Figure 8. Some houses with exceptionally high/low percent change

For further information of other properties, please refer to the links in footnotes12

After that, we count the frequency of each significant features that appears, and we
get the following graph

Figure 9. Frequency of Significant Features in Outliers

From figure 9,we could see that inc1 and pop1 are the most important factors
making some houses that are supposed to appear in group [−0.12,−0.06) are in
group [−0.06, 0). Also, in1 and inc3 are the most important factors making houses
supposed to appear in [0, 0.06) appear in [−0.06, 0).

5. Communicating our results

Given that our project was motivated by practical interest to stakeholders, we
aim to publicly deploy a dashboard presenting our main results. This part of the
project is still work in progress; we are currently working on a prototype in Power

1https://github.com/yiwei14/BCFA-yiwei-/blob/master/misclassication0_1.csv
2https://github.com/yiwei14/BCFA-yiwei-/blob/master/misclassication2_1.csv
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BI (see Figure 10), and we will then build the dashboard using Plotly Dash since 
this allows for easy public deployment.

Figure 10. Dashboard prototype

Much of our data can be naturally viewed on a map, and by doing this many
properties of the data can be seen easily. Specifically we place the set of data points
on a map of Calgary using the coordinates of each house. By colouring these points
according to the percent change in price of the corresponding house, the user can
then visually identify geographical patterns.

The dashboard3 will be interactive, giving the user the ability to view our results
from various perspectives. For example, the user will be able to select a geography-
dependent variable of interest to them, and to view the map colour-coded according
to this feature with the data points overlaid. Different stakeholders may be inter-
ested in different variables, and these interactive features allow each user to choose
how they visualise the data.

In a separate section of the dashboard, we will have our predictive model. In this
section, the user test our model on new data points and the model will output a
prediction for the percent price change of that house in the year 2021. This allows
the user to explore how house prices would react in various potential scenarios, and
we believe this could be helpful for future decision making.

6. Summary

By analysing historical data for house prices in Calgary along with various rele-
vant features, we established some interesting patterns and trends. Using machine

3
 https://youtu.be/DXC6p8ImGns
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learning techniques, we were then able to identify a subset of the original features
that are in a sense sufficient to describe our data.

Having selected the most important features, we then trained an XGBoost model
for change in house price prediction, which classified samples into one of four cat-
egories. This model gave an accuracy rate of 68.7 on a test set that we had kept
separate during development. This model can therefore be used to predict, for ex-
ample, which type of house within Calgary is likely to increase and decrease in price
in the year 2021 based on various scenarios.
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Appendix

Selected Varialbes Explanation
Age Construction Year
inf1 inflation
inc1 Median total income in 2015

among recipients ($)
inc2 Number of employment in-

come recipients aged 15 years
and over in private households

inc3 Median employment income
in 2015 among recipients ($)

lab1 Labor Participation rate
lab2 Unemployment rate
mr5y mortgage rate 5 year
own2 Total - Owner households in

non-farm, non-reserve private
dwellings, % of owner house-
holds spending 30% or more
of its income on shelter costs

own3 Total - Tenant households in
non-farm, non-reserve private
dwellings, % of tenant house-
holds in subsidized housing

pop1 Population, 2016
pop2 Total private dwellings
pop3 Private dwellings by residents
pop4 Total - Distribution
saf2 Break and Enter Commercial
saf3 Break and Enter - Dwelling
saf4 Break and Enter - Other

Premises
saf5 Commercial Robbery
vacancy rate Community vacancy rate
walk score comm Community walk score
transit score comm Community transit score



COMPRESSING THE TRANSACTION DATA OF BLOCKCHAIN
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Abstract. Since its inception in 2009, the Bitcoin blockchain size has grown in
size to more than 295 GB and continues to grow by approximately 50 GB per
year. The decentralized, trustless framework of Blockchain requires participating
nodes to store the entire blockchain data. This keeps smaller computing devices
from participating fully in the network.

In this paper, we present methods to compress the blockchain in a lossless
fashion. Our main observations rely on finding redundancies in the Bitcoin trans-
action data which can be leveraged to decrease the blockchain size. We are able
to achieve a compression rate of approximately 20% by applying various compres-
sion schemes in concert. Further compression might be possible by using generic
compression algorithms on top of our compression scheme.

1. Introduction

Bitcoin, the most famous cryptocurrency, was first introduced in Satoshi
Nakamoto’s white paper in 2008 [Nak08Nak08]. Philosophically, the idea is to have a
peer-to-peer network of electronic cash without a centralized financial institution.
In this decentralized system, we can operate (mostly) anonymously but we cannot
trust anybody.

Nak08

Blo

Figure 1. From [Nak08]

However, participating fully in the Bitcoin network remains inaccessible to most 
people. To verify the history of transactions, a node needs almost 300 gigabytes 
(GB) to store the blockchain [Blo]. To help “mine” the next block in the blockchain, 
thereby confirming new transactions, substantial computing power is needed. Many 
“wallet” apps allow users to trade in Bitcoin on the network without requiring large 
amounts of storage space and CPU power, but they require the user to trust in third 
parties, violating Bitcoin’s trustless model.
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The Divi Project [DivDiv] is a blockchain-based cryptocurrency and smart wallet
that seeks to make the cryptocurrency market accessible to all. It offers the first
and only genuinely one-click masternode deployment and five tiers of affordability.

The motivation behind our project is help improve this inaccessibility. The origi-
nal problem was posed by Germàn Luna from the Divi Project. We hoped to answer
the following questions:

• Determine to what extent a transaction graph can be compressed (for later
decompression) or what obstructions exist to its compression.
• What compression ratio can we achieve for an ordered sequence of crypto-

graphic hashes?

These questions were intentionally left vague to allow us the freedom to explore
and develop the project ourselves. We explored many options but in the end decided
to look at techniques and places to compress transaction data since they carry the
bulk of the storage strain.

For the purposes of our project, we worked on Bitcoin transactions, though we
expect our methods to be applicable to other cryptocurrencies, including the Divi
Project, as well.

1.1. Anatomy of the Bitcoin Blockchain. We can think of the blockchain as
the ledger. It consists of a linked list of blocks, chronologically ordered, and each
block contains a list of transactions. Besides transaction data, a block also contains
some metadata regarding the block itself. In detail, the components of the block
are as follows.

• The size of the block in bytes.
• The block header, which consists of:

– The version number of the block.
– The hash of the header of the previous block in the chain.
– The Merkle root of the transactions in this block. This is a combined

hash of all of the transactions.
– A timestamp indicating approximately when the block was mined.
– The target (also called “bits”). The smaller the target, the more difficult

the block is to mine
– A nonce. A value placed in the header so that the header’s hash is

smaller than the target.
• The transaction count, i.e. the number of transactions in the block.

Figure 2. From [TS16TS16]



• A list of transactions.

To mine a new block, a miner collects a number of transactions into a list and
computes their Merkle root [Mer80Mer80]. The Bitcoin protocol dictates what the target
value should be. The miner then iterates over several nonce values until one is found
that causes the block header’s hash to be lesser than the target value. It takes the
entire network of miners working together about 10 minutes to mine a block; if
miners work too fast or too slow, the Bitcoin protocol adjusts the target to keep
this time around 10 minutes.

Note that a block header depends on the hashes of the blocks before it, which
in turn depend on the transactions in those blocks. Therefore editing a previous
transaction requires recomputing all subsequent block headers. Meanwhile, the
mining network will be adding new blocks. Someone maliciously editing transactions
will not be able to catch up unless they have more CPU power than the rest of the
network combined.

1.2. Anatomy of a Transaction. Each block consists of one or more transactions.
The first transaction in a block is the coinbase transaction, which rewards miners
with BTC when adding a new block to the chain. Subsequent transactions reflect
people sending money to one another. A transaction contains the following data in
this order:

• The version number, either 1 or 2. Version 2 reinterprets the sequence
numbers, below.
• A flag that, if present, is always equal to 1 and indicates that input script

signatures are to be found in the witness section below11.
• The input count, or number of inputs in the transaction.
• Several inputs, the number of which must match the count above. Each

input in turn contains the following data:
– The previous transaction hash, the hash of the transaction whose output

this input will spend.
– The index of the output within that transaction, since a transaction

may have multiple outputs.
– The length of the script signature to follow.
– The script signature, a script that, when combined the output’s script

public key, must evaluate to true in order to spend the output.
– The sequence number, related to when a transaction becomes final.

• The output count, the number of outputs in the transaction.
• Several outputs, each of which contain the following data:

– A value, the amount of bitcoin to be transferred.
– The length of the script public key to follow.
– The script public key, a script that accepts an input and evaluate to

true or false. Only the intended recipient should be able to produce the
input that causes it to evaluate to true.

1“Segregated witness” (or “SegWit”) is an upgrade to Bitcoin to address transaction malleability
and block size limits. See [LLWLLW]
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• A list of witnesses (if the flag above was present) equal in number to the
number of inputs. For each witness we have the number of items to push
onto the stack (when evaluating scripts) followed by those items preceded
by their lengths.
• A lock time, related to when a transaction becomes final.

1.3. A Raw Transaction. A transaction appears on the Bitcoin network as a
serialized sequence of bytes. Here, is an example of one such serialized transaction,
written in hexadecimal:

020000000001020df23cb58292fa49a1c14083e74b8f79d5dee5e32f75a96798438e

3be32ab68b0100000017160014b3026ad925e5c05d901493a733edfac535413f97fe

ffffff11e522fdf84b31800d1504d88b0bcd2fa36dcf83d3304222cc1ada77bd9b9d

1b00000000171600141ab4829400dd414ef49069b984d542847fb06f65feffffff02

808417000000000017a914d084a31c88c447cf6600b3cef10c63514bc0a91c878020

13000000000017a9148becb7c6ba1a3cde90cfa91dd28d3143c0c412428702473044

022054b3e206d43deb741f2e581d312bec9739d55c1fe8340a53be631a8fc818a269

022060fdec6eb9ef9bd9f0aadd0175018853670ad5f3cc7b33dd42668d31c82b9fbd

01210285687bd88db3039d5878e120a28b4f62e4726a2c08638d9181fa9233a20acb

4a0247304402203cea8cf98b019bc55c6d92c571b86c9a2bf9430cd340a487a7ffea

75e14b3ff602204c16854d229b883ee1009d961727d03479e917e675efa4b6331583

d2b3e66b7c01210268aded79b39ba3fd5dae2c335cfcaa676c73c7679ab1fd424fe6

748a079fe427c2dd0900

A transaction in this format is called a raw transaction. Reading left-to-right, all
of the data from § 1.21.2 appear in order. If one knows the size in bytes of each piece
of data, one may extract the meaning from the raw bytes. For instance, the first 4
bytes always correspond to the transaction version number. If the next byte is 00,
then it is followed by 01, indicating the flag 0001 is present. Otherwise, if the next
byte is non-zero, it belongs to the input count (which is necessarily non-zero). If the
flag is present, it is then followed by the input count. The raw transaction above is
parsed in full in Table 11 on next page.



Table 1: A parsed transaction

Version 02000000

Flag 0001

Input count 02

Input 0

Prev. hash
0df23cb58292fa49a1c14083e74b8f79
d5dee5e32f75a96798438e3be32ab68b

Prev. index 01000000

Script length 17

Script sig.
160014b3026ad925e5c05d901493a733
edfac535413f97

Sequence no. feffffff

Input 1

Prev. hash
11e522fdf84b31800d1504d88b0bcd2f
a36dcf83d3304222cc1ada77bd9b9d1b

Prev. index 00000000

Script length 17

Script sig.
1600141ab4829400dd414ef49069b984
d542847fb06f65

Sequence no. feffffff

Output count 02

Output 0
Value 8084170000000000

Script length 17

Script pub. key
a914d084a31c88c447cf6600b3cef10c
63514bc0a91c87

Output 1
Value 8020130000000000

Script length 17

Script pub. key
a9148becb7c6ba1a3cde90cfa91dd28d
3143c0c4124287

Witness 0

Item count 02

Item 0
Length 47

Data

3044022054b3e206d43deb741f2e581d
312bec9739d55c1fe8340a53be631a8f
c818a269022060fdec6eb9ef9bd9f0aa
dd0175018853670ad5f3cc7b33dd4266
8d31c82b9fbd01

Item 1
Length 21

Data

0285687bd88db3039d5878e120a28b4f
62e4726a2c08638d9181fa9233a20acb
4a

Witness 1

Item count 02

Item 0
Length 47

Data

304402203cea8cf98b019bc55c6d92c5
71b86c9a2bf9430cd340a487a7ffea75
e14b3ff602204c16854d229b883ee100
9d961727d03479e917e675efa4b63315
83d2b3e66b7c01

Item 1
Length 21

Data

0268aded79b39ba3fd5dae2c335cfcaa
676c73c7679ab1fd424fe6748a079fe4
27
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Lock Time c2dd0900

We note that many of the integer values in Table 11 (namely the version number,
sequence numbers, indices, values, and lock time) are stored in little-endian format,
meaning the least significant byte appear first. As such, 8084170000000000 would
be read as the hexadecimal number 0x178480, or the decimal number 1541248,
indicating a transfer of 0.01541248 BTC.

2. Compression

2.1. Addresses. Addresses in Bitcoin take the form of ECDSA (Elliptic Curve Dig-
ital Signing Algorithm) private key-public key pairs, on the elliptic curve Secp256k1.
A private key is a randomly chosen 256-bit integer. The associated public key is ob-
tained by multiplying the curve’s standardized base point by the private key. Thus
the public key consists of the x and y coordinates, each 32 bytes, of a point on
the elliptic curve and can be used as a public address to which Bitcoins may be
sent. However, advancements in quantum computing may lead to private keys be-
ing recoverable from public addresses using Shor’s Algorithm. Bitcoin users now use
20-byte hashes of public keys, rather than the public keys themselves, as addresses.

Addresses appear in transaction scripts. For maximum privacy, a new address
should be used for each transaction. Bitcoin software can generate and manage a
multitude of addresses for the user. However, through our analysis we have found
that some addresses have been reused in more than 50,000 transactions. Moreover,
fewer than 232 addresses appear in the Bitcoin blockchain, so that we can store
addresses in a table and refer to them instead by a 4-byte index into this table.
This saves us space as long as addresses are reused sufficiently often. Indeed, we
find this to be the case.

We estimated the number of times an address is reused in the blockchain based
on a sample of addresses. We queried https://sochain.comhttps://sochain.com for the number of
transactions involving a list of 74,591 addresses. Table 22 shows part of the data.
The addresses are sorted lexicographically. We can see the first address was used
55,417 times in the sample, while the next two addresses were used 313 and 136
times, respectively.

Address Frequency
1111111111111111111114oLvT2 55,417

11112BvbV6fY4Y5rghDB1vnJtLGSjoB2n 313
1111VHuXEzHaRCgXbVwojtaP7Co3QABb 136
1111vP5eq5RCmRBeMwJGFW65owVtb3nM 67

11121FrRst9KCVrdM8SqLRzAFw3b1woSno 1
. . . . . .

12pPUDiYU7JWejK6gT2Rr9NxS5QsGcF78f 6
12pPup7Pe1XGhpCLWHeGm9D9KBjLG4mvQv 1

Table 2. Address reuse frequency

https://sochain.com


Table 33 groups addresses by the number of times there were reused. We can see
that there were 53,967 addresses that were used exactly once each; 2,277 addresses
that were used exactly twice each; 1,117 addresses used exactly three times teach;
and so on. We found that the most frequently appearing address was reused 59,887
times in the sample. Furthermore, 72% of addresses were used only once while 28%
of addresses were reused.

# of uses # of addresses % of sample
1 53,967 72.0021%
2 2,277 3.0379%
3 1,117 1.4903%
4 892 1.1901%
5 839 1.1194%

. . . . . . . . .
20,931 1 0.0013%
26,484 1 0.0013%
32,269 1 0.0013%
55,417 1 0.0013%
59,887 1 0.0013%

Table 3. Addresses by reuse frequency

If this sample is representative of the whole blockchain, then given that there
are approximately 1.5× 109 outputs [BitBit], we can estimate the number of addresses
as follows. Let x be the number of addresses in the Bitcoin blockchain. Then out
of all the outputs 0.720021x are the number of addresses appearing exactly once,
0.030379x are the number of addresses appearing exactly twice, and so on. We solve
for x in

x (1× 0.720021 + 2× 0.030379 + 3× 0.014903 + . . . + 59887× 0.000013) = 1.5×109

and find that there are approximately x = 42, 943, 936 distinct addresses appearing
in the blockchain. This is much fewer than 232 addresses, so we can store these
addresses in a table and refer to them by a 4-byte index instead. Implementing such
a table would cost 4x bytes, about 819 MB. However, replacing 20-byte addresses
by 4-byte indices saves us 16 bytes per output, approximately 22.4 GB. The net
savings are about 21.6 GB.

2.2. Transaction Hashes. Each transaction input refers to an unused output of
an earlier transaction through the corresponding 32 bytes transaction hash (TXID).
Therefore, transaction hashes will appear multiple times in the blockchain. Using
data from [BitBit] and [TotTot], we find that there are approximately 1.4 × 109 inputs
(or spent outputs), but only about 6.0× 108 unique TXIDs. Therefore the average
TXID is used 2.3 times.

Similar to § 2.12.1, we can store TXIDs in a table and refer to them instead by a
4-byte index. Implementing this table would cost 32 bytes per unique TXID, about
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17.9 GB. However, we save 28 bytes per input, about 36.5 GB in total. The net
savings are about 18.6 GB.

It is also worth mentioning that transaction hashes have a kind of “recursive
structure” that can be exploited for further compression later on. Namely, since
hashing is a deterministic operation and transactions depend on previous transac-
tions’ hashes, a different kind of lookup table might be possible where some hashes
are stored and others are derived at decompression time by hashing decompressed
data.

2.3. Scripts. A script is a list of instructions (also called script words, opcodes,
or commands). It is a stack-based language processed from left to right. Every
transaction input and output contains a script. In order for an input to spend an
output, the input and output scripts are combined into one script, then evaluated.
The spending is permitted if the script executes without error and leaves the value
“true” on the stack.

Most scripts follow one of a few standardized forms, the most common of which
is Pay to Public Key Hash (P2PKH). In P2PKH, the input script pushes a digital
signature and public key onto the stack while the output script hashes the public
key, compares it to an expected values, then verifies the signature.

In a script, data to be pushed to the stack is generally enclosed in angle brackets
<> and data push commands are omitted while non-bracketed words are opcodes.
For the sake of clarity, we include length of the script (lenScript) as well as push
commands (PUSHBYTES) here. We now list five of the most common standardized
scripts appearing in Bitcoin transactions, as well as how they appear in encoded in
a raw transaction. Besides these five types, there are also multi-signature scripts
(MULTISIG), unspendable outputs (OP RETURN), and non-standard scripts.

PUBKEY
lenScript PUSHBYTES[65] <pubKey> OP CHECKSIG

4341<pubKey>ac

P2PKH

lenScript OP DUP OP HASH160 PUSHBYTES[20] <pubKeyHash>
OP EQUALVERIFY OP CHECKSIG

1976a914<pubKeyHash>88ac

P2SH
lenScript OP HASH160 PUSHBYTES[20] <scriptHash> OP EQUAL

17a914<scriptHash>87

P2WPKH
lenScript OP 0 PUSHBYTES[20] <pubKeyHash>

160014<pubKeyHash>

P2WSH
lenScript OP 0 PUSHBYTES[32] <witScriptHash>

220020<witScriptHash>

Table 4. Standard scripts

From Table 44, we observe that these five standard scripts have fixed formats
except where the public keys may vary. For instance, a P2PKH script is always
26 bytes, starts with the bytes 1976a9a4, and ends with the bytes 88ac. One can
replace this with a single byte that indicating it is a P2PKH script, followed by



Script type Compressed script Bytes saved
PUBKEY 00<pubKey> 2
P2PKH 01<pubKeyHash> 5
P2SH 02<scriptHash> 3
P2WPKH 03<pubKeyHash> 2
P2WSH 04<scriptHash> 2
Other 05<script> -1

Table 5. Compressed scripts

the 20-byte hash, which may vary from script to script. We can do likewise for the
other standard script types. Table 55 summarizes how we may compress these scripts.
There is a drawback in that we would be required to reserve a byte to indicate if a
script is not of one of these five handled types, followed by the uncompressed script.
This costs us one byte per unhandled script, but this cost is offset by the fact that
these unhandled types are far outnumbered by the others.

The savings in Table 55 are per output with a script of the given type. Using data
from [BitBit], we compute the expected total savings by multiplying the per-output
savings by the number of outputs with the given script type. For instance, at the
time of writing, there are 1,044,567,464 P2PKH scripts, so that we can save 4.86 GB
compressing P2PKH scripts alone. There are 46,788,036 scripts not of the above
five types, costing us about 44.6 MB with our compression scheme. Putting it all
together, we expect a net savings of 5.91 GB.

2.4. Version Number, Flag, Lock Time, and Sequence Numbers. Each
transaction has a version number, stored in 4 bytes. However, there are presently
only two transaction versions: version 1 and version 2. The transaction version
can therefore be represented by a single bit until such a time as a new version is
created. Compressed data must be written in whole bytes at a time to file, but we
observe that there is other information in a transaction that can also be represented
by a single bit — namely the flag and information pertaining to the lock time and
sequence numbers — and we collect these all into one byte together.

A transaction sometimes includes a flag that, if present, takes 2 bytes and is always
equal to 0x0001. This flag is used to indicate whether the transaction includes
any witness data (used in scripts such as P2WPKH and P2WSH). As this can be
represented by one bit, we store this in the same byte as the transaction version
number.

Each transaction has a 4-byte “lock time” and each input has a 4-byte “sequence
number”. The lock time and sequence number relate to when the transaction be-
comes final. The lock time is usually assigned the minimum value 0x00000000 while
the sequence numbers are usually the maximum value 0xffffffff. We use one bit
to represent whether the lock time is zero or not and store this bit with the version
number and flag. We write the lock time to the compressed file only when it is
non-zero. Similarly, we use one bit to represent whether all sequence numbers are
maximal or if one sequence number is non-maximal. If they are all maximal, then we
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do not write them to the compressed file. Moreover, if the sequence number is not
maximal, then we also observe that it is usually some number close to 0xffffffff.
Indeed, we notice that the sequence number is usually between 0xffffff00 and
0xffffffff. These we can represent with a single byte by storing instead their
distance from 0xffffffff.

In total, we save

• 3 bytes per transaction by compressing the version number down to 1 byte.
• 2 bytes per transaction with the flag present.
• 4 bytes per transaction with a lock time of 0x00000000.
• 4 bytes per input in a transaction in which all sequence numbers are 0xffffffff.
• 3 bytes per input in a transaction in which all sequence numbers are between
0xffffff00 and 0xffffffff, inclusive, but where some sequence numbers
is strictly below 0xffffffff.

Based on a sample of 261, 003 transactions between August 17 and 18, 2020, we
find that

• 20% of transactions had the flag present.
• 76% of transaction had a lock time of 0x00000000.
• 68% of inputs were in transactions where all sequence numbers are 0xffffffff.
• 31% of inputs were in transactions with a sequence number below 0xffffffff,

but where all sequence numbers are no less than 0xffffff00.

If this sample is representative of the transactions in the blockchain, then given
that there are now more than 560 million transactions and 1,380 million inputs (or
spent outputs) [BitBit], we can expect to save at least

560 (3 + 2× 0.20 + 4× 0.76) + 1, 380 (4× 0.68 + 3× 0.31) = 8, 643.4

8,643.4 million bytes, or about 8.05 GB.

2.5. Values. Each output in a transaction includes a “value” that represents the
number of satoshis (100 millionths of a bitcoin) being transferred to the output
address. This value is stored as an 8-byte signed integer, allowing up more than
9 × 1018 satoshis to be sent. However, Bitcoins protocols dictate how new coins
enter the system and place a hard limit of 2.1 × 1015 satoshis. An 8-byte value
allows one to send more satoshis than can ever exist. Of course, we also find that
most of the values being sent are much smaller than even 2.1 × 1015 and the vast
majority fit in a 4-byte unsigned integer. Hence, one approach to compressing the
blockchain is to put these values in a data structure whose size is adaptable as
needed.

We queried 54, 947, 133 outputs from the Bitcoin blockchain to gather statistics
on the sizes of values being sent. We found the following.

(1) 45,402,811 values (82.6%) are larger than 2 bytes.
(2) 23,631,735 values (43.0%) are larger than 3 bytes.
(3) 2,600,279 values (4.7%) are larger than 4 bytes.
(4) 18,532 values (0.03%) are larger than 5 bytes.
(5) No values are larger than 6 bytes.



Figure 3. Proportion of values that can be covered by each data size.

We can see that over 95% of the values can be covered by 4-byte unsigned inte-
gers. Even for 3 bytes, 57% of the data can be covered. We propose the following
strategies:

(1) Encode the values with 2 kinds of data types: 4 bytes and 8 bytes unsigned
integers. In this case, we need one extra bit as flags for decompression
indication.

(2) Encode the values with 4 kinds of data types: 3 bytes, 4 bytes, 6 bytes and
8 bytes unsigned integers. In this case, we need two extra bits as flags for
decompression indication.

(3) Encode the values with 4 kinds of data types: 2 bytes, 3 bytes, 4 bytes and
8 bytes unsigned integers. In this case, we need two extra bits as flags for
decompression indication.

(4) Encode the values with 8 kinds of data types: 1 byte, 2 bytes, . . ., 8 bytes
unsigned integers. In this case, we need three extra bits as flags for decom-
pression indication.

Assuming this sample is representative of the transactions in the blockchain, then
given that there are approximately 1.5 × 109 total outputs [BitBit], we can expect to
save

• about 5.5 GB of data if we use method 1;
• about 6.5 GB of data if we use method 2;
• about 6.4 GB of data if we use method 3; or
• about 6.4 GB of data if we use method 4.
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It seems that method 2 is the best among these approaches, which could give us
an approximate 2% compression rate, based on the fact that the size of the current
Bitcoin blockchain is about 300 GB.

3. Implementation

We have created a toy implementation of some of the compression schemes de-
scrived in § 22, available at http://github.com/emmacneil/btcompresshttp://github.com/emmacneil/btcompress. The
blockchain, when downloaded, is split up into multiple .dat files, approximately
128 MB each. Our toy implementation compresses and decompresses a single .dat
file at a time. It implements compression of transaction hashes, version numbers,
flags, lock times, sequence numbers, and values as outlined in § 2.22.2, § 2.42.4, and § 2.52.5.
Due to time constraints, we did not implement compression of addresses and scripts
as in § 2.12.1 and § 2.32.3.

We were able to compress the 128 MB file down to 117 MB, 91.4% of its original
size. Of course, by implementing the rest of the methods described in this paper,
we would bring that figure lower. We note also that the results are dependent on
the choice of .dat file. Files corresponding to early blocks in the blockchain have
proportionately fewer transactions and would yield worse results. Conversely, by
compressing a single file at a time, we cannot take full advantage of the repetition
of hashed values. By compressing multiple files at a time, we could achieve better
results.

4. Conclusion

In § 22, we analyzed the repeated or redundant patterns in the Bitcoin blockchain.
We then discussed approaches to compression based on those patterns. The com-
pression rates we can get from each of those approaches are summarized in Table 66.
If applied to to the whole blockchain, we expect a savings of about 58.1 GB, a com-
pression rate of approximately 19.6%. In section § 33, we implement a few of the
methods from § 22 to a portion of the blockchain and achieve a compression rate of
8.6%.

Patterns Sections Compression Amount Compression Rate∗

Indexing Repeated Addresses 2.12.1 21.6 GB 7.3%
Indexing Repeated Transaction Hashes 2.22.2 16.0 GB 5.4%
Indexing Scripts 2.32.3 5.9 GB 2.0%
Version Number, Flag, Lock Time, and Sequence Numbers 2.42.4 8.1 GB 2.7%
Compressing Redundant Values Data Type 2.52.5 6.5 GB 2.2%
Overall 58.1 GB 19.6%

∗ Compression rate is obtained as dividing the compression amount by the
total block size 295 GB by the time of Aug 25, 2020 [BloBlo].

Table 6. Separated Compression Efficiency Achieved by Each Approach

Our methods of compression are applicable not only to the Bitcoin blockchain, but
also other cryptocurrencies such as the Divi Project where transaction data includes
repeated values and values represented by more space than is needed. Our methods

http://github.com/emmacneil/btcompress


may also be applied to data analyses that do not require the entire blockchain data.
We consider the case of an analyst who wishes to study the graph structure of the
blockchain’s transactions and may be interested in storing transaction hashes and
addresses of senders and receivers, but not scripts and version numbers. Applying
some of our compression methods may mean the difference between their data fitting
in RAM or not, which would greatly speed up the analysis.

5. Future Work

There are still more simple analyses that can be done. The witness section of a
transaction may contain compressible data, but we have not explored this, due in
part to not understanding what data was contained within until late in the project.
Indeed, the witness section contains addresses and hashes much like input script
signatures.

An output script typically contains a hashed value. An input that spends it has
in its script the unhashed value. The former can be derived from the latter, meaning
that we do not need to store both. A full analysis of how much can be saved has
not been done.

In § 2.32.3, we focused on compressing output scripts. A P2SH output script may
correspond to an input whose script, in turn, contains a P2PKH script. That is, for
some input scripts, the methods of § 2.32.3 may be applicable.

Some output scripts may be classified as OP RETURN scripts. These outputs are
unspendable. It is possible to mark some bitcoins as permanently unspendable, a
way of burning digital money. However, an OP RETURN script usually comes with
a value of 0 BTC, while the script itself contains metadata written in plain English,
Chinese, or some other language. Natural plain text can be compressed effectively
using variable-length encoding algorithms such as Huffman Coding, another avenue
for compressing the blockchain. However, OP RETURN scripts are only a small
minority of outputs (about 3%), and we expect such compression to save hundreds
of megabytes out of 295 GB.

We have focused primarily on exploiting the particular structure of Bitcoin’s file
format to achieve compression. We have proposed, among other things, to place
frequently reused values such as transaction hashes and addresses into lookup tables.
These tables, in turn, may be amenable to further compression by more general
compression algorithms. This returns us to one of the original questions posed to us:
“What compression ratio can we achieve for an ordered sequence of cryptographic
hashes?” One could analyze how different generic compression algorithms perform
on a sequence of hashes and whether reordering the hashes impacts the results.

Finally, even if we could achieve a compression ratio of 50%, the compressed block
chain would still be over 100 GB in size, too large for small devices with storage space
constraints. One might ask whether a cryptocurrency can be designed that allows
even small devices to participate as full nodes on the network, requiring a blockchain
on the order of at most a few gigabytes. We wonder whether a new cryptocurrency
model can be defined whereby individual nodes can independently verify the validity
of transactions without storing the entire history of transactions or depending on
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third parties. Perhaps an imaginative application of concepts such as zero-knowledge
proofs, cryptographic set membership testing, homomorphic encryption, and Bloom
filters would permit such a scheme.
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THORON DETECTION IN RADON SOURCES

EDWARD TIMKO, STEPHEN STYLES, AND LIAM WRUBLESKI

Abstract. The detection of radon levels is important for reducing home and 
workplace exposure to ionizing radiation. For the detector under consideration,
this detection is done by counting the number of alpha decays in any given time
period, and a single measurement cannot distinguish between the different iso-
topes of radon that may be present. In this paper, we present a method to 
approximate the relative amounts of radon-222 and radon-220 in a particular 
sampling sequence by performing a linear regression to the theoretical expected
count rate from each of these isotopes.

1. Problem Statement

Residential radon (Rn) progeny exposure is “the leading cause of lung cancer in 
non-smokers, and the second leading cause of lung cancer in smokers” [1]. Ura-
nium (U) and thorium (Th) in the soil eventually decay into radon, which can then 
seep into basements and low-lying areas of the house. The two main radon iso-
topes are Rn-222, which is part of the U-238 decay chain, and Rn-220, also called 
thoron, which is part of the Th-232 decay chain. There is currently much interest in 
the Rn-220 contribution to radon progeny exposure, which has so far been largely 
ignored. Though Rn-220 has a relatively short half life and usually decays before 
it reaches the living areas in a house, its radioactive progeny can still pose a problem.

Radon is chemically inert, and is most often detected by its decays. Environmen-
tal Instruments Canada (EIC) produces a Radon Sniffer [2], which is used by radon 
mitigators and building scientists to find radon entry points. The sniffer works by 
pumping air through a filter that removes all radon progeny, after which it is passed 
into a detector that counts alpha particle emissions from the decaying particles. The 
detector only counts the total number of alpha decays in a given period, so it cannot 
distinguish between Rn-222, Rn-220, or their progeny without further processing. 
Currently, these sniffers assume the only radon species present is Rn-222.

The problem we were presented with was to determine a sampling scheme and 
algorithm that can reliably determine the approximate amounts of Rn-220 and Rn-
222 in any particular radon-containing sample of air, given the existing capabilities 
of the sniffer.

2. Method

2.1. Primer on Radioactive Decay. The nuclei of some atoms can randomly and 
spontaneously decay. Such atoms, and the substances they comprise, are said to be 
unstable, or radioactive. Nuclear decay is accompanied by the emission of a particle.
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There is a variety of particles that can be emitted on decay, but here we are only
concerned with two : alpha (α) particles and beta (β) particles. The type of particle
emitted in the decay is called the mode of that decay. Alpha or beta decay change
the nuclear species (i.e. the number of protons and neutrons) of the given nucleus.
Another common mode of decay is gamma decay, but this does not alter the nuclear
species, and for this and other reasons it does not play a part in the problem at
hand. The nuclear species of an atom is also known as that atom’s nuclide.

When an atom decays, the result may also be unstable. A sequence of such decays
form what is known as a decay chain, where an unstable substance A decays into an-
other unstable substance B, which itself decays into substance C, etc. These decay
chains continue until a stable nuclide is reached. An important quantity describing
any radioactive substance is its half-life t1/2, which is the amount of time over which
a given particle of the substance has a 50% probability of having decayed. Equiva-
lently, it is the time by which 50% of the substance is expected to have decayed.

The last point to make is that the probability of decay for each atom in any
interval of time depends only on the length of that interval (i.e. the decay process
is memoryless). It does not depend on how long that atom has existed overall, nor
does it depend on the atoms around it. As such, mixing different radioactive sub-
stances does not change their individual behaviour. From the memoryless property
of the process, it follows that the time it takes for a given atom to decay follows an
exponential distribution, while the number of decays in a given period from a large
amount of a pure radioactive substance approximately follows a Poisson distribution.

2.2. Modelling Expected Values. Suppose at time 0 you have a collection of
N(0) radioactive atoms, all of a single nuclide. On average, the number N(t) of
atoms you expect to find remaining at time t is given by

N(t) = N(0)e−λt,

where λ, called the decay constant of the nuclide, is related to the half-life t1/2 by
λ = ln(2)/t1/2. The decay rate of this collection of atoms at time t is λN(t).

Before we proceed, a word about units. Radioactive quantities are frequently
described not by mass or number of particles but in terms of activity, which in
the equation above is the quantity λN(t). Activity carries units of decays per unit
time. The most common units of activity in the applications being considered are
becquerels (Bq) and picocuries (pCi). By definition, 1 Bq is 1 decay per second,
and 1 pCi is equivalent to 0.037 Bq. In the context of radon mitigation, quantities
are usually described in activity per volume, and the units are becquerels per cubic
metre (Bq/m3) and picocuries per litre (pCi/L). One finds that 1 pCi/L is equal to
37 Bq/m3.

As mentioned before, the progeny of a radionuclide can also be radioactive, result-
ing in so-called decay chains. The word “chain” may be somewhat misleading, as
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some radionuclides can decay in more than one way. For example, Bi-212 decays by
alpha emission into Tl-208 with a probability of 33.7%, and decays by beta emission
into Po-212 with a probability of 66.3%. The decay series which are relevant to this
project are those of U-238 and Th-232, the relevant portions of which are illustrated
in Figure 1.

As can be seen from Figure 1, many of the alternative decay branches occur only
with small probability. Because these routes are improbable in most cases and so
will contribute little to the decays seen by the detector, we neglect them in the
model. Additionally, as Po-212 has a half-life of only 0.3µs and the beta decay from
Tl-208 is not seen, we neglect the different decay paths from Bi-212 and assume
that Bi-212 decays directly to Pb-208 by alpha emission. Normally, we end a chain
at a stable nuclide where it will no longer decay. However for Rn-222, we stop the
decay at Pb-210 as it’s half-life is 22 years, which can be considered stable for our
model. More precise values for these decay chains can be obtained from NuDat[3],
but does not significantly change the model. As a consequence, the decay chains we
consider in our model are linearly ordered.

222Rn
(3.825 d)

218Po
(3.05min)

214Pb
(26.8min)

214Bi
(19.7min)

214Po
(150µs)

210Pb
(22 y)

218At
(1.3 s)

210Tl
(1.32min)

α

α

β

β
α

β
0.03% α

α
0.04%

β

(a) Rn-222 Decay Chain

220Rn
(54.5 s)

216Po
(0.158 s)

212Pb
(10.6 h)

212Bi
(60.5min)

212Po
(0.3µs)

208Tl
(3.1m)

208Pb
(stable)

216At
(300µs)

α

α

β

α
β

0.013%

β
66.3%

α
33.7%

α

β

≈ α

(b) Rn-220 Decay Chain

Figure 1. Decay series for Rn-222 and Rn-220, respectively. These are based on [4, Chapter
15]. The effective linear chains are indicated in bold.

Consider a (linearly ordered) decay chain X0 → X1 → . . . → X` in which the
decay constant of Xj is λj for j = 0, 1, . . . , ` − 1, and X` is stable. We assume
throughout that λ0, λ1, . . . , λ`−1 are distinct and positive. Starting at time 0 with a
collection N0(0) atoms of X0, N1(0) atoms of X1, etc., let N0(t), N1(t), . . . , N`−1(t)
denote the expected number of atoms of the respective type in the given decay chain
remaining at time t. When 0 < j < `, the number Nj(t) can change over time either
by the decay of an atom of type Xj into one of type Xj+1 (decreasing Nj(t) in the
process) or by an atom of Xj−1 decaying into an atom of Xj (thereby increasing
Nj(t)). The time evolution of the ensemble is thus described by the following system
of ordinary differential equations:

dN0

dt
= −λ0N0,

dNj

dt
= −λjNj + λj−1Nj−1 (0 < j < `).
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Compare with Equation (5) in [4, Chapter 15].

Recall that the detector does not measure the number of atoms remaining Nj(t)
but instead decay counts, the expected number of which in an interval (s1, s2] is
given by a sum of expressions of the form

∫ s2
s1
λjNj(s)ds. Nevertheless, it will be in

our interest to solve for Nj first. The solutions of the system are provided by the
Bateman Equation [5] when N1(0) = · · · = N`−1(0) = 0:

Nj(t) =
N0(0)

λj

j∑
r=0

 j∏
q=0,q 6=r

λq
λq − λr

λre
−λrt.

Thus the number of decays by atoms of the j-th type in the time interval (s1, s2] is

(2.1){Eq:jthCount}
∫ s2

s1

λjNj(s)ds = N0(0)

j∑
r=0

 j∏
q=0,q 6=r

λq
λq − λr

 (e−λrs1 − e−λrs2)

Since our detector only detects alpha decays, the number of counts we expect to see
in the time interval (s1, s2] is given by∑

j α-decays

∫ s2

s1

λjNj(s)ds.

As each of these expressions shares the same independent variable N0(0), we may
determine the total counts expected from this decay chain in any fixed interval as
some function of only N0(0), provided we are working with a single decay chain.
For the problem under consideration, we must work with two. The decay chains for
Rn-222 and Rn-220 do not intersect, and thus the total counts from a collection of
both of these isotopes of radon is the sum of the counts from the individual decay
chains. In particular, the expected total number of counts in a time interval (s1, s2]
from an initial mixture of N222(0) atoms of Rn-222 and N220(0) atoms of Rn-220 is
given by an expression of the form

N222(0)

∫ s2

s1

f222(t)dt+N220(0)

∫ s2

s1

f220(t)dt,

where f222 and f220 are functions derived from (2.1). This indicates that linear
regression will provide an effective means of extracting the coefficients to determine
the quantities of Rn-222 and Rn-220 present in a given sample.

Using the expected number of decays and the observed counts, we use a linear
regression model to estimate our initial amount of each isotope. Letting P be the
total number of sampling periods, we fit the model:

yi = N222(0)x222i +N220(0)x220i + εi

where yi is the number of alpha particle decays observed in the time interval
(si−1, si], x222i =

∫ si
si−1

f222(t)dt, x220i =
∫ si
si−1

f220(t)dt, si denotes the end of sample

period i, for 1 ≤ i ≤ P , and s0 denotes the beginning of sample period 1. Note that



THORON DETECTION

the errors ε1, . . . , εP are random but not independent of one another.

2.3. Simulating Experimental Values. In order to design the optimal sampling
scheme, we must be able to evaluate the effectiveness of the linear regression model
for any particular scheme. Determining this analytically is not straightforward, as
the counts in any particular period are random and depend on the state underlying
the counts in the previous period, as well as the length of each period. Even for a
single particle, the time at which it decays into any other particle in the chain is
the sum of random variables from several exponential distributions with different
parameters. Therefore, we elected to evaluate the effectiveness of a scheme over test
data, which we generated. We also narrowed the scope of sampling schemes under
consideration to schemes where counts are reported at fixed times, over a fixed du-
ration of time, where the contents of the cell are held constant over that duration.
This sampling scheme does also require that we consider a time offset in order to
account for the time it takes to fill the chamber, or else we would underestimate the
Rn-220. Phrased in terms of the previous section, si = Ts · i + Tf for 0 ≤ i ≤ P ,
where Ts is time of the sampling period and Tf is the time taken to fill the chamber.

This differs from the typical method used by radon mitigators in the field, which
is continuous sampling of some number of environments, interspersed with flushing
periods. However, based on our early results, we do not believe that this is a viable
scheme to determine the relative amounts of Rn-220 and Rn-222, as the half-lives are
too different and variations during pumping are not well understood. This change
in procedure is a reasonable compromise, as in most circumstances knowing the Rn-
220 concentration isn’t necessary, and in those situations where it is the sampling
scheme we propose is acceptable.

Generating test data for a sampling scheme of this type is relatively straightfor-
ward, but as the random processes involved are complicated, the best method we
were able to come up with is not particularly efficient, having time complexity of
O(N · `), where N is the number of particles in the chain at time t = 0 and ` is the
length of the chain. We assume that at time t = 0, for a given decay chain, that
only the substance at the head of the chain is present. Then, for each particle of
that substance, we sample the particle lifetimes, which is the time that particle will
take to decay from each substance in the decay chain to the next substance. Then
the time at which that particle decays into each substance is the cumulative sum of
the particle lifetimes up to that point. Using these decay times for the particles, we
can then count how many alpha decays occur in each sampling period, which gives
us the observed count for that sampling period.

2.4. Model Visualization. To demonstrate the relationship between the expected
counts and the generated count data, we graph the expected count rate and a cor-
responding sample run for a series of concentration levels in Figure 2. Homeowners
are advised to take action if the radon activity is greater than 4 pCi/L in air [6],
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sub-slab measurements can be on the order of 100 pCi/L, and the largest value that
Environmental Instruments Canada has reported to us was around 8000 pCi/L. By
showing these values, we can see the amount of variation implicit to this problem,
and note that higher activities make it much easier to determine the amounts of
Rn-222 and Rn-220.

(a) Activity level of 4 pCi/L

(b) Activity level of 100 pCi/L (c) Activity level of 8000 pCi/L

Figure 2. Sample runs and expected values for various mixtures of Radon isotopes (blue:
pure Rn-222, red: Rn-222/Rn-220 mixture, green: pure Rn-220; dashed: expected counts,
continuous: observed counts)

3. Parameter Estimation

3.1. Grid Search. To find the sampling time and sampling period which minimize
the variance in the estimates, we run a grid search that calculates multiple regres-
sions on a fixed set of concentrations. Running a new sample set of decays for each
regression is done to avoid over-fitting the model to a training set of data. From
here, we calculate the mean and standard deviation of the estimated coefficients for
various combinations of the sampling time and period to find appropriate values,
attempting to minimize both the error relative to the true concentration, and the
standard deviation in the estimates. With any sampling time below 90 seconds, we
were not able to see a separation between the Rn-222 and Rn-220. When we sample
for longer, our estimates start to level off in accuracy and increased time is no longer
needed. From figure 3 we see that the standard deviations level off at approximately
5 minutes duration and are mostly independent of sampling period.
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For each potential sampling time and period, the actual model with which es-
timations can be made takes the form of the 2 × P matrix described by the left
pseudo-inverse of X, (XTX)−1XT , where the P × 2 matrix X =

[
x222 x220

]
is

formed using the values for x222 and x220 determined using the grid search, and
when given a sample vector y, the estimated amounts N̂222 and N̂220 are deter-
mined by [

N̂222

N̂220

]
= (XTX)−1XT y

(a) Standard deviation of 25 different linear regression estimates for radon

(b) Standard deviation of 25 different linear regression estimates for thoron

Figure 3. Standard deviation in estimated values over varied sampling parameters
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3.2. Results. After tuning our sampling parameters, we requested and received
data on different radon and thoron sources from EIC. Using this data, we fit our
linear regression model and solve for our initial concentrations of Rn-222 and Rn-
220. Using those estimates rounded up to the next whole number, we then solve
for what the expected number of alpha decays would be over our 5 minute interval
and generate test data for the same amount of each nuclide. The following graphs
highlight the accuracy of our model.

From figures 4 (a)-(d), we see that our model can predict the radon levels for a
typical basement as well as the extreme cases where we are measuring high con-
centrations of Rn-220. These measurements where done all in the same day so the
progeny of the previous test would be included in each subsequent test, therefore
causing more error into our model. Although our predictions appear to be fairly
accurate, they rely on the assumption that our radon sniffing chamber is empty.
This progeny remaining in the sniffer will cause our model to overestimate the true
values and a correction to the alpha decay count could increase the effectiveness of
our model.

(a) First Radon Sample (b) Second Radon Sample

(c) Third Radon Sample (d) Thoron Sample

Figure 4. Observed and Predicted Values of Radon Samples

3.3. How to use the results. Overall, based on the efficacy of our model on these
sample data, and in consultation with Environmental Instruments Canada, we have
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selected a sampling period of 3 seconds, over a total duration of 5 minutes. The
particular sampling schedule is as follows:

(1) Flush the cell for 90 seconds (this is probably an overestimation of the time
required).

(2) Pump air from the spot to be sampled into the cell for 90 seconds (this is
also probably an overestimation of the time required).

(3) Stop the pump, to let the sample be measured. Counting for this sequence
should begin here.

(4) Let the sample sit for 5 minutes, reporting counts every 3 seconds.
(5) Take the reported counts as a 100 element column vector.
(6) Multiply this vector by the 2×100 matrix (XTX)−1XT , where X is the 100×

2 matrix
[
x222 x220

]
, using x222 and x220 determined from the solutions to

the Bateman equations over the intervals (Python code to generate each
of x222, x220, X, and (XTX)−1XT is available on the project’s GitHub
repository)[7]. Note also that:
• the values x222 and x220 also need to account for the delay of pumping

(in this particular setup, this can be done simply by computing the
solutions for the first 130 intervals, and ignoring the first 30); and
• this matrix is constant for a given sampling schedule, and does not need

to be recomputed each time.

(7) This gives the 2-element column vector
[
N̂220 N̂222

]T
, which estimates the

number of particles of each isotope that were in the chamber at the beginning
of pumping (under the various assumptions of the underlying physics within
the chamber).

(8) Assuming that λ is given in s−1, the absolute activity of each can then be

determined in Bq as λN̂ , and the volumetric activity can then be determined
using the volume of the scintillation cell.

4. Further Research

Further analysis could be done on the model to consider various constraints. A
non-negative least squares regression would constrain the estimated amounts of each
isotope to be positive. In our experimentation with this model, it tended to remove
one of the covariates and predict either pure Rn-222 or pure Rn-220. Other re-
gression methods such as Poisson regression or negative binomial regression could
be considered to account for the discrete output, however when we compared our
results to a normal Q-Q plot, the model fairly accurately followed a normal distri-
bution, so these other methods may be unnecessary. Adding a correction term to
the alpha decay count to account for the progeny left in the chamber could also
increase the accuracy of the model.

To speed up the optimization, instead of considering a new dataset for each re-
gression we could consider a fixed number of data sets for training. This would allow
us to reduce the computation time, allowing us to check a finer grid of parameters.
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Grid search is not a particularly effective method of finding the optimal configu-
ration, so another optimization algorithm may be useful. The reason this was not
done here is that the optimization variables include the sampling period and du-
ration, and as these determine not only the distributions of the random variables
under consideration, but also the constants used in any optimization model, this
makes creating an analytic model which can be given to a solver very difficult. Sto-
chastic methods using randomly generated data are better suited to this task, but
still encounter issues.

Developing a model which determines the amount of each nuclide over time when
the chamber is being filled from a source of particular concentration may allow this
model to use additional data from the fill period or the purge period, and may also
allow it to be extended to continuous sampling.

The relative error in the amount of Rn-220 is quite high. To achieve activity
commensurate with that of Rn-222, one requires much lower concentrations of Rn-
220, so the relative variability in counts per period is much higher. There may be
heuristic methods of determining whether there is Rn-220 that could supplement this
model, which may reduce the error caused by this, but we do not consider them here.

Due to the aforementioned inefficiency, the method we used for generating random
data is only viable for relatively small numbers of particles (N � 10, 000, 000). For
numbers of particles greater than this, another method should be developed. We
sidestepped this issue by running trials in parallel, but this solution will not work
for significantly larger numbers of particles.

5. Conclusion

Using the 90 second procedure of continuous sniffing, we were able to measure
how much Rn-222 is in our measurements. However, using this same sample scheme,
we were unable to consistently differentiate between data obtained by measuring
pure Rn-222 and that obtained from a mixture of Rn-222 and Rn-220. As such, we
evaluated different sampling times and periods in which to most accurately estimate
the quantity of each radon isotope. With this new sampling scheme of 3 second
samples counted over a time of 5 minutes, we developed an algorithm by which the
amount of Rn-220 in a sub-slab measurement of radon isotopes can be estimated
through a linear regression model. In tandem with existing methods, this can be
used to assist radon mitigators in making mitigation decisions by ensuring they have
as much information as possible about the situation, without drastically increasing
the time for each test.
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