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The Pacific Institute for the Mathematical Sciences 
(PIMS) sponsors and coordinates a wide assortment 
of educational activities for the K-12 level, as well 
as for undergraduate and graduate students and 
members of underrepresented groups. PIMS is 
dedicated to increasing public awareness of the 
importance of mathematics in the world around us. 
We want young people to see that mathematics is a 
subject that opens doors to more than just careers 
in science. Many different and exciting fields in 
industry are eager to recruit people who are well 
prepared in this subject.

PIMS believes that training the next generation 
of mathematical scientists and promoting 
diversity within mathematics cannot begin too 
early. We believe numeracy is an integral part of 
development and learning.

For more information on our education programs, 
please contact one of our hardworking Education 
Coordinators.
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Welcome to Pi in the Sky!

Pi in the Sky is available online at  
www.pims.math.ca/resources/publications

Solutions to Math Challenges at the end of this issue 
will be published Pi in the Sky Issue 20. See details 
on page 26 for your chance to win $100!

The cover image, Enigmatic Plan of Inclusion II, 
is the second in a series of images by the artist, 
Conan Chadbourne, exploring the structure of 
the icosahedral group. That is, the collection of 
symmetries of an icosahedron. The panels depict 
the subgroups of the icosahedral group, 
i.e. some special subsets of the 
group. The images received 
the Mathematical Art 
Exhibition Award 
from the American 
Mathematical 
Society in 
January, 2014. 

Conan Chadbourne holds a B.A. in Mathematics 
and Physics from New York University and lives in 
San Antonio, Texas, where he works as a freelance 
graphic designer and documentary film producer.  
www.conanchadbourne.com

A Note on the Cover
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If I ask you what the product  
of 13 and 7 is, you will answer immediately: it is 
91. And what if I ask you how you got it? I am 

pretty sure you are going to laugh at me, because the 
question is too trivial.

	 13
                                      x	  7  
	 91

Now, consider it is 2000 BC in Egypt and I ask you 
the same question. Will the answer of “how” be the 
same? It makes you think twice, doesn’t it?

Ancient Egyptians were quite advanced in 
mathematics and knew how to multiply two numbers, 
but they used alternate methods of multiplication 
than we do today.

For example, to multiply two numbers such as 13 
and 7, Egyptian scribes first identified which number 
to use as the multiplier and which number as the 
multiplicand. In this instance, let’s use 13 as the 
multiplicand and 7 as the multiplier.
 
The next step is to write these numbers in columns, 
with the multiplier in the second column and 
doubled in each row. In the first column, write the 
numbers 1, 2, 4, 8, 16, 32, 64, … until you exceed 
the multiplicand. Here the multiplicand is 13, so we 
would write 1, 2, 4, 8, but not 16, because that would 
exceed the multiplicand 13.

So, the scribe would have written something like this:

	 1                 7
	 2               14
	 4               28
	 8               56

Here is the twist: the Egyptians at that time were 
smart enough to know that in order to express any 
number from 1 to 2n, we can add numbers from 20, 
21, 22 … 2(n-1). This is the system of binary arithmetic, 
which is used by computers.

The next step would be to identify the numbers from 
the left column that add up to the multiplicand  
(here 13).

Doubtful? Try it with any number! You can also prove 
it easily by mathematical induction if you use the 
strong induction hypothesis.

Here is an example: if a trader wants to give his 
customer any weight between 1 and 255 kg, what is 
the minimum number of weights he needs?
 
The answer is 8, and the weights are 1, 2, 4, 8, 16, 
32, 64, 128. Using them, the trader can measure any 
weight between 1 to 255 kg. For example, to weigh 
153 kg, the trader will use the following weights:

128 + 16 + 8 + 1 = 153.

You can try any other weights.

So, back to our multiplication question,

1 + 4 + 8 = 13.

To get the product of 13 and 7, the scribe would 
take 1st, 3rd and 4th row and add the numbers in 
the second columns of those rows. In our case, the 
numbers would be 7, 28 and 56. When we add those 
we get

7 + 28 + 56 = 91.

Bingo! We have indeed got the correct product of 13 
and 7. Now, isn’t that interesting?

EGYPTIANMULTIPLICATION
Amrita Mitra

Amrita Mitra is a computer science graduate and an enthusiast of mathematics. She has a hobby of reading 
and writing articles on historical mathematics.

References
1. R. GILLINGS, Mathematics in the time of the 
Pharaohs, Dover Publications (1982).

2. http://www-history.mcs.st-andrews.ac.uk/
Indexes/HistoryTopics.html.
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Reproduced with permission: L. WEINSTEIN,  
Guesstimation 2.0: Solving Today’s Problems 
on the Back of a Napkin, Princeton University 
Press (2012) 33-36. 

While I was at a Norfolk 
Tides baseball game, a foul ball landed 
in the section above me and showered 

some of my friends with beer. What is the 
probability of a foul ball landing in a cup of beer 
during one baseball game? What is the expected 
number of “splash downs” during all the major 
league baseball games played in an entire 
season? (See the answers for an even more improbable 
detail.)

Hint How many foul balls land in the stands each game?

Hint What is the size of a cup of beer?

Hint What fraction of people have beer cups?

Answer We need to break down the problem into manageable (or at least estimable) pieces. The first two 
pieces will be the number of foul balls per game that land in the stands and the probability that a given foul ball 
lands in a cup of beer. Let’s start with the number of foul balls that land in the stands. The number per inning is 
definitely more than one and fewer than twenty, so we can take the geometric mean of five for our estimate. 

1If you watch a lot of baseball, you can probably come up with a better estimate; I counted several (between three 
and seven) foul balls per inning landing in the stands. With nine innings per game, this amounts to forty foul balls 
per game that could possibly land in a cup of beer. 

Now we need to estimate the probability that a given foul ball will land directly in a cup of beer. (Note: only 
beer is sold in open-topped cups.) This means that we need to break the problem into even smaller pieces. Let’s 
assume that the cup of beer is sitting innocently in a cup holder. To hit a cup of beer, the foul ball needs to: 

1. not be caught by a fan, 2. land within the area of a seat, 3. hit a seat whose owner has a cup of beer,  
4. land in the cup. 

Most fly balls are caught, but many are not. Let’s estimate that between one-quarter and one-half of fly balls are 
not caught. “Averaging” the two, we will use one-third.

1	 Yes, I know the square root of 20 is a touch less than 4.5. If you prefer to round down and use four rather than five, go ahead.

A 
baseball in  
a glass of beer
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 Most of the stadium area is used for seating, so let’s ignore that factor. At any given time, more than 1% and less 
than 100% of fans have a cup of beer in front of them. Using the geometric mean, we estimate that 10% of seats 
have beer cups. 

A large beer cup is 4 inches (10cm) across, so the baseball must land in an area defined by

The area of the seat (from arm rest to arm rest and from row to row) is about 2 ft by 3 ft (60cm by 90cm), so 

Thus, if the ball hits a seat that has a cup of beer, the probability that it lands in the cup is 

or 1%. The metric probability is the same.

(Extra credit question Which is more likely, that the balls lands in the cup in the cup holder, splashing 
the beer, or that the fan is holding the cup of beer when the foul ball arrives and splashes it in his or her 
excitement?) 

This means that the probability that any single foul ball lands in a cup of beer is

 

With forty foul balls per game, this means that the probability of a foul landing in a cup of beer during any one 
game is 10-2 . This is not very likely. The probability that we will be directly below the splash is even less likely. 
During the entire season, each of the 30 teams plays 160 games, giving a total of about 2,000 games (as it takes 
two teams to play a game). This means that the total number of beer landings in one season is

					     B = (2 × 103 games per season) 

					             × (10-2 beer landings per game) = 20 . 

Because baseball analysts keep meticulous statistics, I am very surprised that they do not appear to record beer 
landings. 

Oh yes. The very improbable detail? According to my friends, the beer belonged to our former governor! (“Now 
at an improbability factor of a million to one against and falling,” D. Adams2.)

2	 D. Adams. The Hitchhiker’s Guide to the Galaxy, Pan Books, London, (1979).
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Sweet Sixt ee n
Michael P. Lamoureux, Professor of Mathematics, University of Calgary

What’s so sweet about sixteen?
Last summer, I was invited to give a talk at Calgary’s 16th Pecha Kucha 
event. These events run around the world, where artists and other creative 

people get together and present 20 slides, in 20 seconds each, about some fun topic. That 
night’s topic was “Sweet Sixteen’’ — that special time of coming-of-age, when a teenager is crossing the threshold 
into adulthood. We heard about dancers discovering their art, activists discovering the world of social change, 
even how to make the perfect cupcake!

As a mathematician, I thought I should talk about the number 16 itself.

There’s a lot you can say about 16, as it is a very interesting number. In fact, all integers are interesting: here’s a 
proof. Make a list of all the interesting integers (like 1, the first number, that’s interesting, or 2, the first prime, 
that’s interesting and so on.) Make another list of everything left over — the uninteresting integers. In this 
second list, there is a smallest number — the smallest uninteresting integer. Now THAT would be an interesting 
number! So that’s a contradiction. Unless, of course, the list of uninteresting numbers was empty.

But for 16 itself — well, there’s a lot you can say. We often see numbers in base 16 when working with 
computers, as in Figure 1. We see 16 appear in the strangest places, for instance in a pattern of 16 red dots 
buried in the Mandelbrot set, as in Figure 2. When we go into four dimensional space, we see 16 corners on a 
4D cube, as sketched in Figure 4.

But here is something really neat about 16. It is the only integer that can be written two different ways as the 
power of the two same integers. That is, we can write

16 = 24 = 42.

16 is 2 raised to the power 4, and also 4 raised to the power 2. Sweet!
Now, you can play around with other pairs of integers and find many examples that don’t work. For instance

8 = 23 ≠ 32 = 9,
					     or

81 = 34 ≠ 43 = 64.
Play around all you want, you won’t find two integers where one, raised to the other, gives you the same result 
when you flip the numbers. 

16
16

16161616

16
1616 16 16 1616161616161616161616161
6161616161616161

6161616161616
16161616161616161616161616161616
1616161616161616 1
6161616161616

1616161616161616161616161616161616 1
616161616161616 1
6161616161616

161616161616161616 161616161
61616161
6161616161616161
61616161616

161616161616161616161616161616161616 1
616161616161616 1
6161616161616

161616161616161616 161616161
61616161
6161616161616161
61616161616 16161616161616161616 161616161

61616 1616161616161
61616161616161616 161616161616161

6161616161616161616161
6161616161616161616161616 16161616161616161616161616161616161616 1

616161616161616 1
6161616161616

161616161616161616 161616161
61616 1616161616161
61616161616161616 16161616161616161616 161616161

61616161
6161616161616161
61616161616 161616161616161
6161616161616161616161
6161616161616161616161616 1616161616161616161616 161616161
61616 1616161616161
61616161616161616 161616161616161

6161616161616161616161
6161616161616161616161616

161
61616161616161

6161616161616161616161
61616161616161616161616161616

16161616161616161616161616161616
1616161616161616161616 1616

16

16161616161616161616161616161616161616 1
616161616161616 1
6161616161616

161616161616161616 161616161
61616161
6161616161616161
61616161616 16161616161616161616 161616161

61616161
6161616161616161
61616161616 161616161616161
6161616161616161616161
6161616161616161616161616 1616161616161616161616 161616161
61616 1616161616161616161

61616161616 161616161616161
6161616161616161616161
6161616161616161616161616

161
61616161616161

6161616161616161616161
61616161616161616161616161616

16161616161616161616161616161616
1616161616161616161616 1616

16
1616161616161616161616 161616161

61616161
6161616161616161
61616161616 161616161616161
6161616161616161616161
6161616161616161616161616

161
61616161616161

6161616161616161616161
61616161616161616161616161616

16161616161616161616161616161616
1616161616161616161616 1616

16
161
61616161616161

6161616161616161616161
61616161616161616161616161616

16161616161616161616161616161616
1616161616161616161616 1616

16

1616
16161616161616161616161616161616

1616161616161616161616 161616 16

161616161616161616161616 161616 1616161616 161616 16 1616161616

16
16

16161616161616161616161616161616161616 1
616161616161616 1
6161616161616

161616161616161616 161616161
61616161
6161616161616161
61616161616 16161616161616161616 161616161

61616 1616161616161
61616161616161616 161616161616161616161

6161616161616161
6161616161616161616161616 1616161616161616161616 161616161
61616 1616161616 161
61616161616161616 161616161616161616161

6161616161616161
6161616161616161616161616

161
61616161616161

6161616161616161616161
61616161616161616161616161616

16161616161616161616161616161616
1616161616161616161616 1616

16
1616161616161616161616 161616161

61616161
6161616161616161
61616161616 161616161616161
6161616161616161616161
6161616161616161616161616

161
61616161616161

6161616161616161616161
61616161616161616161616161616

16161616161616161616161616161616
1616161616161616161616 1616

16
161
61616161616161

6161616161616161616161
61616161616161616161616161616

16161616161616161616161616161616
1616161616161616161616 1616

16

1616
16161616161616161616161616161616

1616161616161616161616 161616 16

161616161616161616161616 161616 1616161616 161616 16 1616161616

16
16
1616161616161616161616 16161616 1

61616 1616161616161616161
61616161616 161616161616161
6161616161616161616161
6161616161616161616161616

161
61616161616161

6161616161616161616161
61616161616161616161616161616

16161616161616161616161616161616
1616161616161616161616 1616

16
161
61616161616161

6161616161616161616161
61616161616161616161616161616

16161616161616161616161616161616
16161616161616 16161616 1616

16

1616
16161616161616161616161616161616

1616161616161616161616 161616 16

161616161616161616161616 161616 1616161616 161616 16 1616161616

16

16
161
61616161616 161

6161616161616161616161
61616161616161616161616161616

16161616161616161616161616161616
1616161616161616161616 1616

16

1616
16161616161616161616161616161616

1616161616161616161616 161616 16

161616161616161616161616 161616 1616161616 161616 16 1616161616

16 16

1616
16161616161616161616161616161616

1616161616161616161616 161616 16

161616161616161616161616 161616 1616161616 161616 16 161616161616 16 16

161616161616161616161616 161616 1616161616 161616 16 161616 161616 16 1616161616 161616 16 161616 161616 16 16 161616 161616161616161616

16
16
16

16161616161616161616161616161616161616 1
616161616161616 1
6161616161616

161616161616161616 161616161
61616161
6161616161616161
61616161616 16161616161616161616 161616161

61616 1616161616161
61616161616161616 161616161616 161

6161616161616161616161
6161616161616161616161616 1616161616161616161616 1616161616161

61616161616 161
61616161616161616 161616161616161616161

6161616161616161
6161616161616161616161616

161
61616161616161

616161616161616161616161
616161616161616161616161616

16161616161616161616161616161616
1616161616161616161616 1616

16
1616161616161616161616 161616161

61616 1616161616 161616161
61616161616 161616161616161616161

6161616161616161
6161616161616161616161616

161
61616161616161616161

6161616161616161
61616161616161616161616161616

16161616161616161616161616161616
1616161616161616161616 1616

16
161
6161616161616161616161

61616161616161
61616161616161616161616161616

16161616161616161616161616161616
1616161616161616161616 1616

16

1616
16161616161616161616161616161616

1616161616161616161616 161616 16

161616161616161616161616 161616 1616161616 161616 16 1616161616

16
16
1616161616161616161616 161616161

61616 1616161616 161616161
61616161616 161616161616161616161

6161616161616161
6161616161616161616161616

161
61616161616 161

6161616161616161616161
61616161616161616161616161616

16161616161616161616161616161616
1616161616161616161616 1616

16
161
61616161616161616161

6161616161616161
61616161616161616161616161616

16161616161616161616161616161616
1616161616161616161616 1616

16

1616
16161616161616161616161616161616

16161616161616 16161616 161616 16

161616161616161616161616 161616 1616161616 161616 16 1616161616

16

16
161
61616161616 161616161

6161616161616161
61616161616161616161616161616

16161616161616161616161616161616
1616161616161616161616 1616

16

1616
16161616161616161616161616161616

1616161616161616161616 161616 16

161616161616161616161616 161616 1616161616 161616 16 161616 1616

16 16

1616
16161616161616161616161616161616

1616161616161616161616 161616 16

161616161616161616161616 161616 1616161616 161616 16 161616161616 16 16

161616161616161616161616 161616 1616161616 161616 16 161616161616 16 1616161616 161616 16 161616161616 16 16 161616 161616161616161616

16

16
16
1616161616161616161616 161616161

61616161
6161616161616161
61616161616 161616161616161
61616161616161616161616161616

161616161616161616

161
61616161616 161616161

6161616161616161
61616161616161616161616161616

16161616161616161616161616161616
1616161616161616161616 1616

16
161
61616161616 161616161

616161616161616161
616161616161616161616161616

16161616161616161616161616161616
1616161616161616161616 1616

16

1616
16161616161616161616161616161616

1616161616161616161616 161616 16

161616161616161616161616 161616 1616161616 161616 16 1616161616

16

16
161
61616161616 161616161

6161616161616161
61616161616161616161616161616

16161616161616161616161616161616
1616161616161616161616 1616

16

1616
16161616161616161616161616161616

1616161616161616161616 161616 16

161616161616161616161616 161616 1616161616 161616 16 1616161616

16 16

1616
16161616161616161616161616161616

1616161616161616161616 161616 16

161616161616161616161616 161616 1616161616 161616 16 161616 161616 16 16

161616161616161616161616 161616 1616161616 161616 16 161616 161616 16 1616161616 161616 16 161616 161616 16 16 161616161616161616161616

16 16
16
161
61616161616 161616161

61616161616161616161616
1616161616161616161616

16161616161616161616161616161616
1616161616161616161616 1616

16
1616
16161616161616161616161616161616

1616161616161616161616 161616 16
1616161616161616 16161616 161616 1616161616 161616 16 1616161616

16 16
1616
16161616161616161616161616161616

1616161616161616161616 161616 16

161616161616161616161616 161616 1616161616 161616 16 161616 161616 16 16

161616161616161616161616 161616 1616161616 161616 16 161616 161616 16 1616161616 161616 16 161616161616 16 16 16161616161616161616161616 16 16

1616
16161616161616161616161616161616

1616161616161616161616 161616 16

161616161616161616161616 161616 1616161616 161616 16 161616 161616 16 16

161616161616161616161616 161616 1616161616 161616 16 161616161616 16 1616161616 161616 16 161616 161616 16 16 161616 161616161616161616

16 16 16 16

161616161616161616161616 161616 1616161616 161616 16 161616 161616 16 1616161616 161616 16 161616161616 16 16 161616161616161616161616

16 16 16 1616161616 161616 16 161616161616 16 16 161616 161616161616161616

1616 16 16 161616 1616161616161616161
6161616161616161

6161616161616

1616

16
16
16

16 16 16 16

16161
61616161616 16161616 161616 16 16161616 161616 16 161616161616 16 16 16161616 161616 16 16161616161616 16 161616161616161616161616

16 16 16 16 16161616 161616 16 16161616161616 16 161616161616161616161616

161616 16 161616161616161616161616

16161616161616161
6161616 161616

16
16 16 16 16 16161616 161616 16 16161616161616 16 161616161616161616161616

161616 16 161616161616161616161616

16161616161616161
6161616 161616

16
161616 16 161616161616161616161616

16161616161616161
6161616 161616
1616161616161616161
6161616 161616
1616161616 1616161
6161616161616

16
16
16 16 16 16 16161616 161616 16 16161616161616 16 161616161616161616161616

161616 16 161616161616161616161616

16161616161616161
6161616161616

16
161616 16 161616161616161616161616

16161616161616161
6161616 161616
16161616161616161616161616 161616
1616161616 1616161
6161616161616

1616
161616 16 161616161616161616161616

16161616161616161
6161616 161616
1616161616161616161
6161616 161616
1616161616 1616161
6161616161616

161616161616161616161
6161616 161616
16161616161616161
6161616161616 161616161616 1616161

6161616161616 161
616161616161616161
616161616

16

16
16
16 16 16 16 16161616 161616 16 16161616161616 16 161616161616161616161616

161616 16 1616161616161616161616161
6161616161616161

6161616161616

16
161616 16 161616161616161616161616

16161616161616161
6161616161616
1616161616161616161
6161616 161616
1616161616 1616161
6161616161616

1616
161616 16 161616161616161616161616

16161616161616161
6161616 161616
16161616161616161616161616161616
1616161616 1616161
6161616161616

161616161616161616161
6161616 161616
16161616161616161
6161616161616 161616161616 1616161

6161616161616161
616161616161616161
616161616

161616
161616 16 161616161616161616161616

16161616161616161
6161616 161616
1616161616161616161
6161616 161616
1616161616 1616161
6161616161616

161616161616161616161
6161616 161616
1616161616 1616161
6161616161616 161616161616 1616161

6161616161616161
616161616161616161
616161616 16161616161616161616161
6161616 161616
1616161616 1616161
6161616161616 161616161616 1616161

6161616161616161
616161616161616161
616161616 16161616161616 1616161
6161616161616161
616161616161616161
616161616 1616161
61616161
61616161
61616161616161

6161616161616161616161616

1616

16
16
16 16 16 16 16161616 161616 16 16161616161616 16 161616161616161616161616

161616 16 161616161616161616161616

16161616161616161
6161616161616

16
161616 16 161616161616161616161616

16161616161616161
6161616 161616
1616161616161616161
6161616 161616
16161616161616161
6161616161616

1616
161616 16 161616161616161616161616

16161616161616161
6161616161616
1616161616161616161
6161616 161616
1616161616 161616 1
6161616161616

1616161616161616161616161616161616
16161616161616161
6161616161616 1616161616161616161

6161616161616161
616161616161616161
616161616

161616
161616 16 161616161616161616161616

16161616161616161
6161616 161616
1616161616161616161
6161616 161616
1616161616 1616161
6161616161616

161616161616161616161
6161616 161616
16161616161616161
6161616161616 161616161616 161616 1

6161616161616161
616161616161616161616161616

16161616161616161616161
6161616161616
1616161616 1616161
6161616161616 161616161616 1616161

6161616161616161
616161616161616161616161

616 16161616161616 1616161
6161616161616 161
616161616161616161
616161616 1616161
6161616161616161
61616161616161

6161616161616161616161616

16161616
161616 16 161616161616161616161616

16161616161616161
6161616161616
1616161616161616161
6161616 161616
1616161616 1616161
6161616161616

161616161616161616161
6161616 161616
16161616161616161
6161616161616 1616161616161616161

6161616161616 161
616161616161616161616161

616 16161616161616161616161
6161616 161616
1616161616161616 1
6161616161616 161616161616 161616 1

6161616161616 161
616161616161616161616161

616 161616161616161616161
6161616161616 161
616161616161616161
616161616 1616161
6161616161616161
61616161616161

6161616161616161616161616 16161616161616161616161616161616 161616
16161616161616161
6161616161616 1616161616161616161

6161616161616161
616161616161616161
616161616 16161616161616 161616 1
6161616161616161
616161616161616161
616161616 1616161
61616161
61616161
61616161616161

6161616161616161616161616

16
16161616161616 1616161

6161616161616161
616161616161616161
616161616 1616161
61616161
61616161
61616161616161

6161616161616161616161616

16
1616161

61616161
61616161
61616161616161

61616161616161616161616161616
16161616161616161616161616161616

16161616161616 16161616 1616

161616

16
16
16 16 16 16 16161616 161616 16 16161616161616 16 161616161616161616161616

161616 16 161616161616161616161616

16161616161616161
6161616161616

16
161616 16 161616161616161616161616

16161616161616161
6161616 161616
1616161616161616161
6161616 161616
1616161616 1616161
6161616161616

1616
161616 16 161616161616161616161616

16161616161616161
6161616161616
1616161616161616161
6161616 161616
1616161616 161616 1
6161616161616

161616161616161616161
6161616 161616
1616161616 1616161
6161616161616 161616161616 1616161

6161616161616 161
616161616161616161
616161616

161616
161616 16 1616161616161616161616161
6161616161616161

6161616161616
1616161616161616161
6161616 161616
1616161616 1616161
6161616161616

1616161616161616161616161616 161616
1616161616 1616161
6161616161616 1616161616161616161

6161616161616 161
616161616161616161616161616

16161616161616161616161
6161616 161616
1616161616 1616161
6161616161616 161616161616 1616161

6161616161616161
616161616161616161616161

616 161616161616161616161
6161616161616 161
616161616161616161
616161616 1616161
6161616161616161
61616161616161

6161616161616161616161616

16161616
161616 16 1616161616161616161616161
6161616161616161

6161616161616
16161616161616161616161616161616
1616161616161616 1
6161616161616

1616161616161616161616161616161616
1616161616 1616161
6161616161616 161616161616 1616161

6161616161616 161
616161616161616161616161616

161616161616161616161616161616 161616
16161616161616161
6161616161616 1616161616161616161

6161616161616161
616161616161616161616161

616 161616161616161616161
6161616161616 161
616161616161616161
616161616 1616161
6161616161616161
61616161616161

6161616161616161616161616 16161616161616161616161616161616 161616
16161616161616161
6161616161616 1616161616161616161

6161616161616161
616161616161616161616161616 16161616161616161616 1

6161616161616 161
616161616161616161
616161616 1616161
61616161
61616161
61616161616161

6161616161616161616161616

16
16161616161616161616 1

6161616161616161
616161616161616161
616161616 1616161
6161616161616161
61616161616161

6161616161616161616161616

16
1616161

61616161
6161616161616161616161

61616161616161616161616161616
16161616161616161616161616161616

16161616161616 16161616 1616

16

16161616
161616 16 1616161616161616161616161
6161616161616161

6161616161616
16161616161616161616161616 161616
16161616161616161
6161616161616

1616161616161616161616161616 161616
1616161616 1616161
6161616161616 161616161616 1616161

6161616161616161
616161616161616161616161616

161616161616161616161616161616 161616
1616161616 1616161
6161616161616 161616161616 1616161

6161616161616 161
616161616161616161616161616 16161616161616161616 1

6161616161616 161
616161616161616161
616161616 1616161
61616161
61616161
61616161616161

6161616161616161616161616 1616161616161616161616161
6161616 161616
1616161616 1616161
6161616161616 161616161616 1616161

6161616161616161
616161616161616161
616161616 16161616161616 161616 1
6161616161616 161
616161616161616161
616161616 1616161
61616161
61616161
61616161616161

6161616161616161616161616

16
16161616161616 1616161

6161616161616161
616161616161616161
616161616 1616161
61616161
6161616161616161616161

6161616161616161616161616

16
1616161

61616161
61616161
61616161616161

61616161616161616161616161616
16161

616161616161616161616161616
16161616161616 16161616 1616

16
1616161616161616161616161

6161616161616
16161616161616161
6161616161616 161616161616161616 1

6161616161616161
616161616161616161
616161616 161616161616161616161
6161616161616161
616161616161616161
616161616 1616161
6161616161616161
61616161616161

6161616161616161616161616

16
16161616161616 161616 1

6161616161616161
616161616161616161616161616 1616161
6161616161616161616161

61616161
6161616161616161616161616

16
1616161

61616161
61616161
61616161616161

61616161616161616161616161616
16161

616161616161616161616161616
16161616161616 16161616 1616

16
16
16161616161616 161616 1

6161616161616 161
616161616161616161
616161616 1616161
61616161
6161616161616161616161

6161616161616161616161616

16
1616161

61616161
6161616161616161616161

61616161616161616161616161616
16161

616161616161616161616161616
16161616161616 16161616 1616

16
16
1616161

61616161
61616161
61616161616161

61616161616161616161616161616
16161

616161616161616161616161616
16161616161616 16161616 1616

16

1616
16161

616161616161616161616161616
16161616161616 16161616 161616 161616
161616161616 16161616 161616 16 16161616 161616 16 1616161616

16
16

16 16 16
16

16
1616

16161616161616161
6161616161616161
616161616161616161616161616

16161
61616161616161616161616161616

16161616161616 161616161616

16 16

16161
61616161616161616161616161616

16161616161616 16161616 161616 1616

16161616161616 16161616161616 16 16161616161616 16 161616161616 16 16

16161
61616161616161616161616161616

16161616161616 16161616 161616 1616

16161616161616 16161616 161616 16 16161616 161616 16 161616161616 16 1616

16161616161616 16161616 161616 16 16161616161616 16 1616161616
16 16 16 16161616 161616 16 16161616161616 16 161616161616161616161616

16 16 16 16

16161
61616161616161616161616161616

16161616161616 16161616161616 1616

16161616161616 16161616 161616 16 16161616 161616 16161616161616 16 1616

16161616161616 16161616161616 16 16161616 161616 16 1616161616
16 16 16 16161616 161616 1616161616161616 16161616161616161616161616

16 16 16 1616

16161616161616 16161616161616 16 16161616 161616 16 1616161616
16 16 16 16161616161616 16 16161616161616 16 161616161616161616161616

16
16 16 16 16161616 161616 16 16161616161616 16 161616161616161616161616

161616 16 161616161616161616161616
1616161616161616 1
6161616 161616

16

16 16 16 16

16161
61616161616161616161616161616

16161616161616 16161616 161616 1616

16161616161616 16161616 161616 16 16161616 161616 16 161616161616 16 1616

16161616161616 16161616 161616 16 16161616 161616 16 1616161616
16 16 16 16161616 161616 16 16161616161616 16 161616161616161616161616

16 16 16 1616

16161616161616 16161616 161616 16 16161616 161616 16 1616161616
16 16 16 16161616 161616 16 16161616161616 16 161616161616161616161616

16
16 16 16 16161616161616 16 16161616161616 16 161616161616161616161616

161616 16 161616161616161616161616
1616161616161616 1
6161616 161616

16
16 16 16 1616

16161616161616 16161616161616 16 16161616 161616 16 1616161616
16 16 16 16161616 161616 16 16161616161616 16 161616161616161616161616

16
16 16 16 16161616 161616 16 16161616161616 16 161616161616161616161616

161616 16 161616161616161616161616 1
616161616161616 1
6161616 161616

16
16
16 16 16 16161616 161616 16 16161616161616 16 161616161616161616161616

161616 16 161616161616161616161616 1
616161616161616 1
6161616 161616

16161616 16 161616161616161616161616 1
616161616161616 1
6161616 161616
161616161616161616 1
6161616 161616 1
616161616 161616161
61616161616

16
16

16 16 16 16

16161
61616161616161616161616161616

16161616161616 16161616 161616 1616

16161616161616 16161616 161616 16 16161616161616 16 161616161616 16 1616

16161616161616 16161616 161616 16 16161616 161616 16 161616161616 16 16 16161616 161616 16 16161616161616 16 161616161616161616161616

16 16 16 1616

16161616161616 16161616 161616 16 16161616 161616 16 161616161616 16 16 16161616161616 16 16161616161616 16 161616161616161616161616

16
16 16 16 16161616 161616 16 16161616161616 16 161616161616161616161616

161616 16 161616161616161616161616
1616161616161616 1
6161616 161616

16
16 16 16 1616

16161616161616 16161616 161616 16 16161616 161616 16 161616161616 16 16 16161616 161616 16 16161616161616 16 161616161616161616161616

16
16 16 16 16161616161616 16 16161616161616 16 161616161616161616161616

161616 16 161616161616161616161616
1616161616161616 1
6161616 161616

16
16
16 16 16 16161616161616 16 16161616161616 16 161616161616161616161616

161616 16 161616161616161616161616
1616161616161616 1
6161616 161616

16161616 16 161616161616161616161616 1
616161616161616 1
6161616 161616
161616161616161616 1
6161616161616 1
616161616 16161616161
616161616

16
16
16 16 16 1616

16161616161616 16161616 161616 16 16161616 161616 16 1616161616
16 16 16 16161616 161616 16 16161616161616 16 161616161616161616161616

16
16 16 16 16161616161616 16 16161616161616 16 161616161616161616161616

161616 16 161616161616161616161616
1616161616161616 1
6161616161616

16
16
16 16 16 16161616161616 16 16161616161616 16 161616161616161616161616

161616 16 161616161616161616161616
1616161616161616 1
6161616 161616

16161616 16 161616161616161616161616 1
616161616161616 1
6161616161616
161616161616161616 1
6161616161616 1
616161616161616161
61616161616

16

16
16
16 16 16 16161616 161616 16 16161616161616 16 161616161616161616161616

161616 16 161616161616161616161616
1616161616161616 1
6161616161616

16161616 16 161616161616161616161616 1
616161616161616 1
6161616161616
161616161616161616 1
6161616 161616 1
616161616 16161616161
616161616

1616161616 16 161616161616161616161616 1
616161616161616 1
6161616161616
161616161616161616 1
6161616 161616 1
616161616 161616161
61616161616

16161616161616161616 1
6161616 161616 1
616161616 161616161
61616161616 161616161616 161616161

6161616161616161
6161616161616161616161616

16
16
16

16 16 16 16

16161
61616161616161616161616161616

16161616161616 16161616 161616 1616

16161616161616 16161616 161616 16 16161616 161616 16 161616161616 16 1616

16161616161616 16161616 161616 16 16161616 161616 16 1616161616
16 16 16 16161616 161616 16 16161616161616 16 161616161616161616161616

16 16 16 1616

16161616161616 16161616 161616 16 16161616 161616 16 1616161616
16 16 16 16161616161616 16 16161616161616 16 161616161616161616161616

16
16 16 16 16161616 161616 16 16161616161616 16161616161616161616161616

161616 16161616161616161616161616
1616161616161616 1
6161616161616

16
16 16 16 1616

16161616161616 16161616 161616 16 16161616 161616 16 1616161616
16 16 16 16161616 161616 16 16161616161616 16 161616161616161616161616

16
16 16 16 16161616 161616 16 16161616161616 16 161616161616161616161616

161616 16 161616161616161616161616
1616161616161616 1
6161616161616

16
16
16 16 16 16161616 161616 16 16161616161616 16 161616161616161616161616

161616 16 161616161616161616161616
1616161616161616 1
6161616 161616

16161616 16 161616161616161616161616 1
616161616161616 1
6161616161616
161616161616161616 1
6161616161616 1
616161616 16161616161
616161616

16
16
16 16 16 1616

16161616161616 16161616 161616 16 16161616 161616 16 1616161616
16 16 16 16161616 161616 16 16161616161616 16 161616161616161616161616

16
16 16 16 16161616 161616 16 16161616161616 16 161616161616161616161616

161616 16 161616161616161616161616
1616161616161616 1
6161616161616

16
16
16 16 16 16161616 161616 16 16161616161616 16 161616161616161616161616

161616 16 161616161616161616161616
1616161616161616 1
6161616161616

16161616 16 161616161616161616161616 1
616161616161616 1
6161616161616
161616161616161616 1
6161616 161616 1
616161616 161616161
61616161616

16

16
16
16 16 16 16161616 161616 16 16161616161616 16 161616161616161616161616

161616 16 161616161616161616161616
1616161616161616 1
6161616161616

16161616 16 161616161616161616161616 1
616161616161616 1
6161616 161616
161616161616161616 1
6161616161616 1
616161616 161616161
61616161616

1616161616 16 161616161616161616161616 1
616161616161616 1
6161616 161616
161616161616161616 1
6161616 161616 1
616161616 161616161
61616161616

16161616161616161616 1
6161616 161616 1
616161616 161616161
61616161616 161616161616 161616161

6161616161616161
6161616161616161616161616

16

16
16
16 16 16 1616

16161616161616 16161616 161616 16 16161616161616 16 1616161616
16 16 16 16161616 161616 16 16161616161616 16 161616161616161616161616

16
16 16 16 16161616 161616 16 16161616161616 16 161616161616161616161616

161616 16 161616161616161616161616
1616161616161616 1
6161616 161616

16
16
16 16 16 16161616 161616 16 16161616161616 16 161616161616161616161616

161616 16 161616161616161616161616
1616161616161616 1
6161616 161616

16161616 16 161616161616161616161616 1
616161616161616 1
6161616161616
161616161616161616 1
6161616 161616 1
616161616 161616161
61616161616

16

16
16
16 16 16 16161616 161616 16 16161616161616 16 161616161616161616161616

161616 16 161616161616161616161616
1616161616161616 1
6161616 161616

16161616 16 161616161616161616161616 1
616161616161616 1
6161616 161616
161616161616161616 1
6161616 161616 1
616161616 161616161
61616161616

1616161616 16 161616161616161616161616 1
616161616161616 1
6161616 161616
161616161616161616 1
6161616 161616 1
616161616161616161
61616161616

16161616161616161616 1
6161616 161616 1
616161616 161616161
61616161616 161616161616 161616161

6161616161616161
6161616161616161616161616

1616

16
16
16 16 16 16161616 161616 16 16161616161616 16 161616161616161616161616

161616 16 161616161616161616161616
1616161616161616 1
6161616 161616

16161616 16 161616161616161616161616 1
616161616161616 1
6161616 161616
161616161616161616 1
6161616 161616 1
616161616 161616161
61616161616

1616161616 16 161616161616161616161616 1
616161616161616 1
6161616 161616
161616161616161616 1
6161616 161616 1
616161616 161616161
61616161616

16161616161616161616 1
6161616 161616 1
616161616 161616161
61616161616 161616161616 161616161

6161616161616161
6161616161616161616161616

161616161616 16 161616161616161616161616 1
616161616161616 1
6161616 161616
161616161616161616 1
6161616 161616 1
616161616 161616161
61616161616

16161616161616161616 16161616 161
616 1
616161616 161616161
61616161616 161616161616161616161

61616161616 16161
6161616161616161616161616 1616161616161616161616 1

6161616 161616 1
616161616 161616161
61616161616 161616161616 161616161

6161616161616161
6161616161616161616161616 16161616161616 161616161

6161616161616161
6161616161616161616161616 1616

16161616161616161616161616161616
1616161616161616161616 1616

16 16
16

16
16

1616161616161616161616 1
6161616 161616 1
616161616 161616161
61616161616 161616161616 161616161

61616161616 1616161
61616161616161616161616 16161616161616 161616161616161

6161616161
6161616161616161616161616 1616

16161616161616161616161616161616
1616161616161616161616 1616

16
16161616161616 161616161

616161616161616161
61616161616161616161616 1616

1616161616161616161
6161616161616
1616161616161616161616 1616

16
1616
1616161616161616161
6161616161616
1616161616161616161616 16161616
161616161616161616161616 161616 1616161616 161616 16 161616 1616

16
16
16161616161616 16161616161616161

61616161
6161616161616161616161616 1616

1616161616161616161
6161616161616
1616161616161616161616 1616

16
1616
1616161616161616161
6161616161616
1616161616161616161616 16161616
161616161616161616161616 161616 1616161616 161616 16 161616 1616

16

16
1616
1616161616161616161
6161616161616
1616161616161616161616 16161616
161616161616161616161616 161616 1616161616 161616 16 161616 161616 1616

161616161616161616161616 161616 1616161616 161616 16 161616 161616 16 1616161616 161616 16 161616 161616 16 16 161616 16161616 1616161616

16

16
16
16161616161616 161616161

61616161616 16161
6161616161616161616161616 1616

1616161616161616161
6161616161616
1616161616161616161616 1616

16
1616
16161616161616161616161616161616

1616161616161616161616 16161616
161616161616161616161616 161616 1616161616 161616 16 161616 1616

16

16
1616
16161616161616161616161616161616

1616161616161616161616 16161616
161616161616161616161616 161616 1616161616 161616 16 161616 161616 1616

161616161616161616161616 161616 1616161616 161616 16 161616 161616 16 1616161616 161616 16 161616 161616 16 16 161616 16161616 1616161616

16 16

16
1616
16161616161616161616161616161616

1616161616161616161616 16161616
161616161616161616161616 161616 1616161616 161616 16 161616 161616 1616

161616161616161616161616 161616 1616161616 161616 16 161616 161616 16 1616161616 161616 16 161616 161616 16 16 161616 16161616 161616161616 16 1616
161616161616161616161616 161616 1616161616 161616 16 161616 161616 16 1616161616 161616 16 161616 161616 16 16 161616 16161616 1616161616

16 16 16 1616161616 161616 16 161616 161616 16 16 161616 161616161616161616
16 16 16 16 161616 16161616 1616161616
161616 16161616161
6161616161616

16 16

16
16
16161616161616 161616161

6161616161616161
6161616161616161616161616 1616

16161616161616161616161616161616
1616161616161616161616 1616

16
1616
16161616161616161616161616161616

1616161616161616161616 16161616
161616161616161616161616 161616 1616161616 161616 16 161616 1616

16

16
1616
16161616161616161616161616161616

1616161616161616161616 16161616
161616161616161616161616 161616 1616161616 161616 16 161616 161616 1616

161616161616161616161616 161616 1616161616 161616 16 161616 161616 16 1616161616 161616 16 161616 161616 16 16 161616 16161616 1616161616

16 16

16
1616
16161616161616161616161616161616

1616161616161616161616 16161616
161616161616161616161616 161616 1616161616 161616 16 161616161616 1616

161616161616161616161616 161616 1616161616 161616 16 161616 161616 16 1616161616 161616 16 161616 161616 16 16 161616 16161616 161616161616 16 1616
161616161616161616161616 161616 1616161616 161616 16 161616 161616 16 1616161616 161616 16 161616 161616 16 16 161616 16161616 1616161616

16 16 16 1616161616 161616 16 161616 161616 16 16 161616 16161616 1616161616
16 16 16 16 161616 16161616 1616161616
161616 16161616161616161616161616 16 16

16
1616
16161616161616161616161616161616

1616161616161616161616 16161616
161616161616161616161616 161616 1616161616 161616 16 161616161616 1616

161616161616161616161616 161616 1616161616 161616 16 161616 161616 16 1616161616 161616 16 161616 161616 16 16 161616 16161616 161616161616 16 1616
161616161616161616161616 161616 1616161616 16161616 161616 161616 16 1616161616 161616 16 161616 161616 16 16 16161616161616 1616161616

16 16 16 1616161616 161616 16 161616161616 16 16 161616 16161616 1616161616
16 16 16 16 161616 16161616 16161616161
61616 161616161616161616161661

16 16 16 1616
161616161616161616161616 161616 1616161616 161616 16 161616 161616 16 1616161616 161616 16 161616 161616 16 16 161616 16161616 1616161616

16 16 16 1616161616 161616 16 161616 161616 16 16 161616 16161616 1616161616
16 16 16 16 161616 16161616 1616161616
161616 161616161616161616161616

16
16 16 16 1616161616 161616 16 161616 161616 16 16 161616 16161616 1616161616
16 16 16 16 161616 16161616 1616161616
161616 161616161616161616161616

16
1616 16 16 161616 161616161616161616
161616 16161616161
6161616161616

16161616 161616161616161616161616
1616161616161616 1
6161616161
61616 16 16

16
16
16161616161616 16161616161

616161616 1616161
61616161616161616161616 1616

1616161616161616161
6161616161616
1616161616161616161616 1616

16
1616
1616161616161616161
6161616161616
1616161616161616161616 16161616
161616161616161616161616 161616 1616161616 161616 16 161616 1616

16

16
1616
16161616161616161616161616161616

1616161616161616161616 16161616
161616161616161616161616 161616 1616161616 161616 16 161616 161616 1616

161616161616161616161616 161616 1616161616 161616 16 161616 161616 16 1616161616 161616 16 161616 161616 16 16 161616 16161616 1616161616

16 16

16
1616
16161616161616161616161616161616

1616161616161616161616 16161616
161616161616161616161616 161616 1616161616 161616 16 161616 161616 1616

161616161616161616161616 161616 1616161616 161616 16 161616 161616 16 1616161616 161616 16 161616 161616 16 16 161616 16161616 161616161616 16 1616
161616161616161616161616 161616 1616161616 161616 16 161616 161616 16 1616161616 161616 16 161616 161616 16 16 161616 16161616 1616161616

16 16 16 1616161616 161616 16 161616 161616 16 16 161616 16161616 1616161616
16 16 16 16 161616 16161616 1616161616
161616 16161616161616161616161616 16 16

16
1616
16161616161616161616161616161616

1616161616161616161616 16161616
161616161616161616161616 161616 1616161616 16161616 161616 161616 1616

161616161616161616161616 161616 1616161616 161616 16 161616 161616 16 1616161616 161616 16 161616 161616 16 16 161616 16161616 161616161616 16 1616
161616161616161616161616 161616 1616161616 161616 16 161616 161616 16 1616161616 161616 16 161616 161616 16 16 161616 16161616 1616161616

16 16 16 1616161616 161616 16 161616 161616 16 16 161616 16161616 1616161616
16 16 16 16 161616 16161616 16161616161
61616 161616161616161616161616

16 16 16 1616
161616161616161616161616 161616 1616161616 161616 16 161616 161616 16 1616161616 161616 16 161616 161616 16 16 161616 16161616 1616161616

16 16 16 1616161616 161616 16 161616 161616 16 16 161616 16161616 1616161616
16 16 16 16 161616 16161616 1616161616
161616 16161616161
6161616161616

16
16 16 16 1616161616 161616 16 161616 161616 16 16 161616 16161616 1616161616
16 16 16 16 161616 16161616 16161616161
61616 161616161616161616161616

16
1616 16 16 161616 16161616 16161616161
61616 16161616161
6161616161616

16161616 161616161616161616161616
1616161616161616 1
6161616 161
616

16

16 16 16

16
1616
1616161616161616161
6161616161616
1616161616161616161616 16161616
161616161616161616161616 161616 1616161616 161616 16 161616 161616 1616

161616161616161616161616 161616 1616161616 161616 16 161616 161616 16 1616161616 161616 16 161616 161616 16 16 161616 16161616 161616161616 16 1616
161616161616161616161616 161616 1616161616 161616 16 161616 161616 16 1616161616 161616 16 161616 161616 16 16 161616 16161616 1616161616

16 16 16 1616161616 161616 16 161616 161616 16 16 161616 16161616 1616161616
16 16 1616 161616 16161616 1616161616
161616 16161616161
6161616161616

16 16 16 1616
161616161616161616161616 161616 1616161616 161616 16 161616 161616 16 1616161616 161616 16 161616 161616 16 16 161616 16161616 1616161616

16 16 16 1616161616 161616 16 161616 161616 16 16 161616 16161616 1616161616
16 16 16 16 161616 16161616 16161616161
61616 161616161616161616161616

16
16 16 16 1616161616 161616 16 161616 161616 1616 161616 16161616 1616161616
16 16 16 16 161616 16161616 16161616161
61616 16161616161
6161616161616

16
1616 16 16 161616 16161616 16161616161
61616161616161616161616161616

16161616 161616161616161616161616
1616161616161616 1
6161616161
616

16
16 16 16 1616

161616161616161616161616 161616 1616161616 16161616 161616 161616 16 1616161616 161616 16 161616 161616 16 16 161616 16161616 1616161616
16 16 16 1616161616 161616 16 161616 161616 16 16 161616 16161616 1616161616
16 16 16 16 161616 16161616 16161616161
61616 16161616161
6161616161616

16
16 16 16 1616161616 161616 16 161616 161616 16 16 161616 16161616 1616161616
16 16 16 16 161616 16161616 1616161616
161616 16161616161
6161616161616

16
1616 16 16 161616 16161616 16161616161
61616 16161616161
6161616161616

16161616 161616161616161616161616
1616161616161616 1
6161616 161
616

16
16
16 16 16 1616161616 161616 16 161616 161616 16 16 161616 16161616 1616161616
16 16 1616 161616 16161616 1616161616
161616 161616161616161616161616

16
1616 16 16 161616 16161616 16161616161
61616 161616161616161616161616

16161616 161616161616161616161616
1616161616161616 1
6161616161616

16
16
1616 16 16 161616 16161616 16161616161
61616 16161616161
6161616161616

16161616 161616161616161616161616
1616161616161616 1
6161616161616

1616161616 161616161616161616161616 1
616161616161616 1
6161616 161
616

161616161616161616 16161616 1
61616 161
6161616 161
61616161616161616

Fig. 2. 16 dots in the Mandelbrot fractal. Fig. 3. 16 corners in a 4 dimensional cube.Fig. 1. Computer output in base 16.
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So, why is that? Well, if you have two integers x,y that satisfy 

xy = yx,

taking logarithms we find that
 

A quick plot of z= log(x)/x in Figure 4 shows that for any z value in the range of the function, you can always 
find exactly one x to the left of the function’s maximum and one y to the right of the max, with log(x)/x = 
log(y)/y =z. A little calculus shows the maximum is exactly at the point (e,1/e), where e ≈ 2.71 is the base 
exponential. So the x is in the interval (1,e) and the y is in the interval (e,∞) while z runs between 0 and 1/e. 

Well, there is only one integer in the interval (1,e), which is x=2. The corresponding y value is y =4, since we 
have

Which brings us back to the number 16,  expressed as two powers 24 and 42.

But now, Figure 4 suggests we can find a lot of pairs of numbers x,y with xy = yx, except they might not be 
integers. A little playing around with a calculator shows that we can write the integer 17 in two different ways as 
a power, with

17 = 1.78381425..4.89536796... = 4.89536796..1.78381425... .

(At least to the accuracy of my calculator.)

In fact, here is a theorem. For any number N bigger that ee ≈ 15.1543, we can find two different numbers x,  so 
that

N = xy = yx.

That is, we can write N in two different ways, x raised to the y, or y raised to the x. 

2 4 6 8 10 12 14

0.1

0.2

0.3

x y

z

e

1/e

CAPTION: Fig. 4: A plot of log(x)=x.Fig. 4.  A plot of log(x)/x.
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Which again shows why 16 is an interesting integer: it is the smallest integer that can be written two different 
ways xy and yx, even allowing x and y to be any numbers (not just integers). 15 is too small, because it is smaller 
than ee.

So, where does this ee come from? You can see it in Figure 4. As you push z up towards the maximum 1/e, 
the corresponding x and y move towards e. Thus the powers xy = yx head towards ee. That, it turns out, is the 
minimum value those paired powers can take. Conversely, if you move the z down towards zero, the x heads 
towards 1, while the y heads towards ∞. A careful calculation with limits shows the powers xy = yx both head 
towards infinity. So the powers cover everything between ee and ∞. 

Can we say more? Amazingly, yes. This is an interesting function, the Lambert W function, which solves the 
equation

z = W exp(W). 

There are really two branches to this function, called W0(z) and W-1(z). With a bit of algebra (an exercise!) it is 
easy to show that starting with the value z shown on the vertical axis of Figure 4, we find 

So, pick z to be any number between 0 and 1/e, plug into the above formulas, and you get two numbers x,y so 
that their powers match: xy = yx. With a good choice of z, you can find any power between ee and infinity. 

With all the math tools available on the internet, Wolfram Alpha, Mathematics, Google calculator and more, 
you can find these functions yourself and make your own computations of the x and y. 

Have fun!
References
Crave Cupcakes: www.cravecupcakes.ca
Google Calculator: www.google.com
Pecha Kucha: www.pechakucha.org/cities/calgary
Wolfram Alpha: www.wolframalpha.com
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Foretelling Death:  
The Math of War
     Sophia Luo is a senior at The Harker School, California. She enjoys creating with art and hiking  
  with friends.

For millennia, humans have tried to predict the future. From shamans 
 to witches, magicians and psychics, we are forever wondering what will happen next. Nowadays, we have 
new groups of people who cast prophecies about the future; economists use statistics to predict whether 

our financial markets will rise or fall and doctors use biology to foretell the consequences of diseases for human 
bodies. And now, for better or for worse, some of the latest research indicates that we can use math to predict 
wartime deaths.

A team of physicists, mathematicians, computer scientists and economists decided to verify this prediction by 
targeting recent Middle Eastern and Latin American conflicts, such as those in Iraq, Afghanistan and Columbia. 
Forming a research group, they aimed to observe the mathematical and statistical patterns in war – a chaotic 
and seemingly unpredictable human phenomenon.

To collect data they looked at 130 sources, all of which are accessible to the public. Examining sources ranging 
from newspapers to NGO reports and television news, the researchers extracted data concerning the size of 
attacks, the number of deaths, conflict locations and more. During “The Mathematics of War” TED talk, Sean 
Gourley, one of the researchers, observed, “All this noise around us actually has information.” In other words, 
the team drew upon big data methods through their extraction and analysis of specific pieces of information 
from the large open-source expanse of the Internet.

With the data, the research team concluded that (1) the conventional theories regarding strict hierarchies and 
networks of insurgent groups may prove false, and (2) similar patterns between war and financial markets give 
rise to the possibility that collective human behavior in violent and nonviolent situations may be related. To 
reduce error, researchers individually synthesized information from each wartime event and verified the data 
by comparing results with separate groups of researchers. The team also compared different stories of the same 
events from various sources to minimize media and reporting bias. Finally, the researchers took into account 
only deaths as measurements of casualties, as injuries would be much more difficult to use as data points.

At the heart of their research paper, “Common ecology quantifies human insurgency” [1], the team created 
three summative figures (Power-Law Exponents and Size of Events [here, fig. 1 and 2], as well as Timing of 
Events) and a diagram (Model Framework for Insurgency) that revealed very startling patterns and behaviors 
in war. Together, these findings point to the possibility of quantifying the chaos of war. In order to better 

Fig. 1. Power-Law Exponents
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understand these patterns, I will summarize the researchers’ findings, including the mathematical theory and 
statistical analysis, behind the first figure: Power-Law Exponents.

For each war they assessed, the researchers graphed the relationship between the number of people killed in 
each attack (i.e., event casualties) and the frequency of those attacks. They found negative correlations between 
the two variables in all the wars. Applying a statistical procedure derived by Clauset, Shalizi and Newman in the 
paper “Power-Law Distributions in Empirical Data” [2], the researchers found a power-law relationship between 
the negative slopes of these frequency versus casualty plots and the probabilities of a certain number of deaths 
occurring due to an attack: 

P(x) = Cx-α

where P represents the probability of x number of deaths, C is a constant and α stands for the slopes of 
frequency versus casualty plots. A power-law relationship is a statistical relationship in which one variable 
changes as an exponent of another. Moreover, because P(x) → ∞ as x→0, there must be a lower bound, xmin.

After calculating α for all their selected wars, they found that most of the values clustered around 2.5, the value 
correlated with global terrorism. Figure 1 depicts all the found αs.

To find these numbers, they first needed to approximate α and xmin. For each war, they used event casualties to 
find respective complementary cumulative density functions (CCDF), defined as P(x ≥ xmin): 

CCDF(x) = P(x ≥ xmin)

For an example illustrating CCDF (let’s define it as CCDF(X) = P(X ≥ x) for the following explanation), imagine 
a situation of flipping a fair coin twice. Here are all the possible results for tallying the number of heads flipped:

The researchers applied this same mathematical reasoning to their study. Instead of flipping a coin, they 
calculated the power-law distributions of event sizes for each war. After finding possible xmin values, they 
estimated corresponding α values. Table 2 is a regenerated table of a portion of their data from their paper’s 
Supplementary Information.

Having generated α values for each conflict, the researchers also provided visual demonstrations of the power-
law relationships applied to four different wars in Afghanistan (2001-2005), Iraq (2003-2008), Colombia (1988-
2005) and Peru (1980-2002), as shown in Figure 2.

On the log-log axes, the green curves are smooth lines drawn through the data and the blue lines represent 
power law relationships fitted to the data. Like other power law relationships drawn on log-log plots, they 
appear as straight lines.

Now the real question is, what if we applied the researchers’ methods to predict the futures of wars being 
fought? After collecting a substantial number of data points, wouldn’t we be able to calculate α values and fit 
relatively accurate power-law models to incipient wars?  

Definition Probabilites Calculation

x = 2 2 heads
(h,h) 1/4 ccdf(2) = P(X ≥ 2) = ¼

X = 1 1 head
(t,h) or (h,t) 2/4 ccdf(1) = P(X ≥ 1) = 2⁄₄ + ¼ = ¾

X = 0 No heads
(t,t) 1/4 ccdf(0) = P(X ≥ 0) = ¼ + ¾ = 4 ⁄₄

Table 1. All the possible results for tallying the number of heads flipped
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What if we could then extend the statistical approach to predict the number of deaths to occur during such a 
conflict? Better yet, what if we could predict the number of deaths to occur due to a specific military operation? 
Would we try to avoid the casualties? Would our attempts at evading death be successful? Or would our efforts 
be in vain?

At the same time, what if these casualties were necessary for our overall success in a war? Would we then 
continue our military operations, knowing the amount of people who would die? Would we be consciously 
sacrificing people and view them as mere numbers in the war?

Conversely, what if the enemy had the same predictive power? What if they knew just how many resources were 
necessary to increase their chances of killing a certain amount of people? What if they knew how to statistically 
maximize that likelihood? What if they knew how frequently they needed to engage in attacks that resulted in a 
certain casualty size in order to augment their destructive power?

Math is powerful; there’s no question about it. Knowing how and where to apply math is key to unlocking 
an unfathomable expanse of knowledge. At the same time, we must be careful. With knowledge comes 

responsibility, for we must stay true to 
our moral compasses. After all, who 
knew that math could predict death?
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Fig. 2. Size of events

Conflict 
Country

Database start-end 
dates

Total number 
of events

Total number 
of Deaths

Deaths explained 
by power-law 

estimate

Number of 
events with 

deaths ≥ xmin

xmin a

Colombia 01/01/1988-22/01/2005 21,478 38,876 20,637 2,251 4 2.90
Iraq 01/01/2003-24/11/2005

01/05/2003-21/07/2007
01/04/2007-01/09/2008

3,737
8,645
4,632

22,347
31,671
15,427

19,184
19,262
9,834

1,186
1,435
898

2
4
3

2.03
2.32
2.31

Senegal 10/06/1982-04/02/2005 559 3,313 3,199 191 2 1.73
Afghanistan 09/09/2001-29/10/2005 1,225 5,048 3,655 184 8 2.44

Israel-
Palenstine

01/07/2000-31/07/2002 180 811 524 44 6 2.55

Sierra Leone 13/10/1994-10/01/2003 697 13,596 9,933 83 47 2.41
Peru 01/06/1980-01/12/2002 10,452 17,579 8,452 433 8 2.40

Indonesia 18/03/1996-31/12/2001 376 1,393 998 89 5 2.50
N. Ireland 14/07/1969-31/12/2001 2,698 3,523 3,523 2,698 1 3.17

Table 2. 
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There is a growing awareness 
 among Canadians that electoral systems used 
in other democracies can be very different 

from our own and the question arises as to whether 
ours, inherited from the nineteenth century, should 
be revised. Through four referendums on electoral 
reform at the provincial level, it has become obvious 
that the general public has little understanding of 
the purposes and workings of electoral systems in 
general, including our own. So who should educate? 
Politicians who win with the current system? 
Advocacy groups that would benefit from a change? 
Political scientists? In this brief sample of the 
subject I hope to show that electoral systems have a 
mathematical flavour and could be part of the high 
school mathematical curriculum. 

Location problems and electoral methods 
Figure 1 shows the population of seven towns and 
the road network connecting them. A hospital will be 
built in one of the towns, serving all of them. Where 
should it go? The mode, with the largest population, 
is G, the median, which minimizes the average travel 
distance, is B and the center, which minimizes the 
maximum travel distance, is D. Which criteria are 
more relevant? We will not answer this question 
directly, but rather show that the problem of choosing 
an appropriate electoral system has the same flavour. 
We will first see what happens if we let the population 
choose the location of the hospital democratically. 

G is the plurality winner: If everybody votes 
sincerely (each for their own town) and the winner 
is the town with the most votes, then G wins. This is 
the plurality procedure, which is a distributed way to 
compute the mode. 

C is the two-round winner: If there is a second 
round between the two top place-getters, then C and 
G will compete in this second round. If everyone then 
votes for the town closest to them, then C will beat G 
by a score of 71000 to 29000. 

A is the alternative vote winner: The multi-round 
process can be carried out to the extreme, with each 
round eliminating only the lowest place-getter: First 
F, then D… At each new round, each voter votes for 
the closest town still in the running, until one town 
gets fifty percent of the vote. In this case A would win 
after five rounds, as shown in the table below. Note 
that it is not necessary to hold the successive rounds 
at different times. The voters can fill a single ballot 
with their preferences listed in order. For instance, 
a resident of town D would list the towns in the 
order: D, E, B, F, A, C, G. The counting can then be 
performed iteratively by transferring votes from the 
candidates that are eliminated. 

MATHEMATICAL ASPECTS 
OF ELECTORAL SYSTEMS
  Claude Tardif, Royal Military College of Canada

Town B

15000

Town A

17000

Town C

19000

Town D

7000

???

??

?

Town E

13000

Town G

24000

Town F

5000

5km
12km

6km

4km

8km

11km

Fig. 1: Where should the hospital go?
Fig. 1. Where should the hospital go?
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This electoral procedure is called instant runoff voting 
in the United States and the alternative vote in other 
parts of the world. Ballots where the candidates 
are ranked in order of preference are called ranked 
ballots. 

These three majoritarian systems give three different 
winners and allow us to gradually introduce the 
ranked ballot, which is implicit in such location 
problems. None of these systems elects a central 
“consensual” location like the median or the center. 
Other systems fill that purpose: 

B is the Condorcet winner: When the road 
network is a tree, as in this example, the median 
coincides with the Condorcet winner, that is, the 
candidate that wins against any opponent in a 
two-member race (when such a candidate exists). 
Indeed, a road joining neighbouring towns X and 
Y corresponds to a partition of the population into 
those that live closer to X than to Y and those that 
live closer to Y than to X. If more than 50% of the 
population lives closer to X, then X would win 
a majority against any town on the Y side of the 
network, and also moving the hospital from Y to 
X would reduce the average travel distance. If we 
represent this by an arrow from Y to X we get the 
diagram of Figure 2, showing that B is the median 
and the Condorcet winner. 

D is the Borda winner: In the Borda system, a 
voter’s ranked ballot is used to give points to the n 
candidates; the k-th favorite candidate gets n − k 
points. The scores are counted and the candidate with 
the most points wins. The towns that are “somewhere 
in the middle” get points from all around, much more 
than the towns in dead ends. The winner ends up 
being D. However the center and the Borda winner 
are not guaranteed to always be the same, even in a 
tree network. 

The five electoral systems we have seen each give their 
own answer to what is an acceptable compromise 
position for a shared resource, sometimes coinciding 
with mathematically defined centrality measures. In 
real life the criteria for the best hospital location are 
more complex and towns are not dots along a tree. 
Nonetheless, our example describes fairly accurately 
the final rounds of the 2009 mayoral election in 
Burlington, Vermont, as illustrated in Figure 3. 
The method used was the alternative vote (called 
there, instant runoff). The “central” Democrat with 
the fewest votes was closer to the Progressive “left” 
than to the Republican “right”, so the Progressive 
ended up winning the election. The Democrat was 
the Condorcet winner and the Republican was the 
plurality winner. This is a real-life example of three 
different “democratic” systems giving three different 
winners. 

So which system gives the best results? The answer 
may be obvious to unconditional supporters of the 
Progressives, the Democrats or the Republicans, but if 
we put aside partisan interests the question begins to 
look like the hospital location problem (with the road 
map more fuzzy and perhaps different from voter to 
voter). 

It is interesting to note that in 2010, the Burlington 
instant-runoff voting was repealed in a referendum. 
The repeal campaign used the slogan “Keep voting 
simple;” implying that anything other than simple 

A
17000

B
15000

C
19000

D
7000

E
13000

F
5000

G
24000

Fig. 2: Condorcet winner
Fig. 2. Condorcet winner

P
2981

D
2554

R
3294

Fig. 3: 2009 Burlington mayoral election
Fig. 3. 2009 Burlington mayoral election

Round 1 2 3 4 5
A 17% 17% 17% 32% 51%
B 15% 15% 15% – –
C 19% 19% 19% 19% –
D 7% 12% – – –
E 13% 13% 20% 20% 20%
F 5% – – – –
G 24% 24% 29% 29% 29%
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plurality is too complex. So it appears that the basic 
logistics of various electoral systems and the role they 
fulfill needs to be explained, much more than the 
deeper mathematical aspects of the subject. 

Social choice theory and its model 
An electoral system is a mathematical object. It is a 
function, of the form 

Here, A is a set of alternatives or candidates. 
is the set of linear orderings of A, that is, the set of 
possible ranked ballots listing the members of A in 
order of preference. P is the voting population. The 
contents B of the ballot box after the election is an 
element of  . This is the data that f must use 
to determine the outcome f(B) of the election. Social 
choice theory studies all possible functions of this 
type. The plurality rule, two-round system, alternative 
vote and Borda count of the previous section are 
possible choices for f, provided that a tie-breaking 
rule is available if necessary. The Condorcet method 
needs additional back-up rules in the case when there 
is no Condorcet winner. These are just a few options 
among countless possibilities. However, to limit the 
choice to sensible options, we can formalise “fairness” 
in terms of mathematical axioms that f should satisfy. 
The choices then dwindle rapidly. In particular, the 
well-known impossibility theorem of Arrow states 
that when there are at least two voters and three 
alternatives, no function  satisfies the 
three basic fairness axioms of non-dictatorship, Pareto 
efficiency and independence of irrelevant alternatives 
(see for instance (3)).

However remarkable Arrow’s theorem is, it is 
unfortunate that it is often the only thing known to 
mathematicians about voting systems. Closing the 
subject of voting systems with the statement “no 
system is perfect” is like rejecting calculators because 
they cannot represent irrational numbers with perfect 
accuracy. For one thing, approximations of fair 
systems may still be worthy of scrutiny. For another, 
Arrow’s theorem applies only to a model, and many 
real-life voting situations escape it. 

For instance, along the lines of Arrow’s theorem, we 
find May’s theorem which states that when there are 
only two alternatives, the majority rule is the only 
“fair” voting system. Yet, consider the three friends of 
Figure 4 deciding on whether to have pizza or sushi 
for lunch. Despite May’s theorem, it is likely that 

they will go for sushi. The pizza voters only have a 
slight preference for pizza, while the sushi voter has 
a big preference for sushi. This information is not 
registered by the ranked ballot, which only records 
ordinal preferences. This is outside of the model of 
May’s theorem. 

More significantly, often the outcome of an election 
is not an element of the set A of alternatives, but 
rather an element of the geometric realisation ΔA 
of the simplex with the elements of A as vertices. By 
this we do not mean a Frankenstein-type politician 
made from the limbs of the candidates, but rather an 
assembly of representatives. The axioms in Arrow’s 
theorem do not apply to functions of the type

which model our federal, provincial and city 
council elections. The only relevant “axiom” is the 
nonmathematical statement of Ernest Naville: “In a 
democratic government the right of decision belongs 
to the majority, but the right of representation 
belongs to all.” 

Representation in multimulti-member elections 
Let’s go back to the hospital location problem and 
see what happens if we let the population vote on the 
location of two hospitals instead of just one. Even 
with a categorical ballot where the voters can only put 
an X besides one or two candidates, we get more than 
one system: 

I vote for pizza, 
I like both, but I 
had sushi yesterday.

I vote for sushi, I'm 
lactose intolerant, 
and pizza would make 
me sick.

I vote for pizza, 
I like both, but it 
is cold and the 
pizzeria is closer.

Fig. 4: Pizza or Sushi?
Fig. 4. Pizza or Sushi?
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G and C are the single non-transferable vote 
winners: If everybody votes for their own town and 
the two towns with the most vote win, then G and C 
win with 24000 and 19000 votes respectively. 

A and B are the block voting winners: If 
everybody gets two votes — one for their own town 
and one for the closest town — and the two towns 
with the most votes win, then B and C win with 51000 
and 32000 votes respectively. 

B and F are the sequential weighted block 
voting winners: The sequential weighted block voting 
method uses the ballots of the block voting method, 
but the results are counted differently. First, the town 
with the most votes is elected, namely B, with 51000 
votes. Then, the weight of every ballot with B on it is 
reduced by half. Thus the count of ballots for C drops 
from 32000 to 16000 and F wins the second hospital 
with 29000 votes. 

 
The scores of the winning locations are higher with 
block voting than with other methods, but in Figure 
5 we see that these locations are clustered in a narrow 
area rather than spread across the network. Indeed, 
when used in a political election, block voting usually 
produces a landslide for one party or a cluster of 
like-minded candidates and no representation for the 
others. Block voting is used for council elections in 
some Canadian cities, where it is called the at large 
system. It is instructive to see its outcome represented 
in a location problem as in the present example. 

The single non-transferable vote is used in some 
elections around the world. However in real life, 
nominations would be tactical, to avoid vote splitting. 
The sequential weighed block voting is a theoretical 
method, not used in real elections. It illustrates the 
fact that the results are spread more evenly when the 
role of the ballots are equalised as much as possible. 
With sequential weighed block voting, 80% of the 

ballots count toward the election of a location, while 
with block voting, only 51% of the ballots count 
towards the election of a location and among them, 
32% count towards the election of the two locations. 
It would be interesting to compile similar statistics 
with the results of at large elections in Canadian 
cities. Unfortunately the raw data that would be 
needed is never published. 

The single transferable vote is a commonly used 
system that equalises the role of ballots to some 
degree. It uses a ranked ballot and works similarly to 
selecting the last survivors in the alternative vote. In 
our example, the latter method would give A and G 
as the winning locations. Indeed, after five rounds the 
surviving towns are A with 51000 votes, E with 20000 
votes and G with 29000 votes. In the next round E is 
eliminated, so that the last two survivors are A and G. 
Note that the final tally is 71000 votes for A and 29000 
votes for G, which means that 71% of the population 
is closer to the hospital at A and 29% is closer to the 
one at G. Therefore, it would make sense to build a 
much larger hospital in A than in G. However, if the 
hospitals must have equal size and each serve roughly 
half of the population, then the hospital at A will be 
overcrowded and the residents of A, B, C, D and E 
will often have to go to the other hospital. It would 
then make sense to let them have a say on its location, 
which the alternative vote does not allow. 

The single transferable vote solves this problem as 
follows: A threshold of votes needed to be elected 
is established, namely , where v 
is the total number of votes and n is the number 
of candidates to be elected. In our example, this 
threshold is 100000/3 = 33334. An elected candidate 
only keeps this threshold number and the excess is 
transferred. After the fifth round, when A is elected 
with 51000 votes, it keeps only 33334 of these votes 
and the remaining 17666 votes are transferred to the 
next surviving preference, namely E. The count is now 
33334 votes for A (elected), 37666 votes for E and 
29000 votes for F, so E is the second location elected. 

SNTV BV SWBV

Fig. 5: Locations for two hospitals
Fig. 5. Locations for two hospitals

Fig. 6: More locations for two hospitals
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Fig. 6: More locations for two hospitals
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The use of the single transferable vote is widely spread 
around the world. Ireland uses it for all its elections 
and calls it proportional representation. Indeed, 
when used in an election with a party system the 
results are fairly proportional, in the sense that the 
proportion of members a party elects is roughly equal 
to the proportion of first place votes that the party 
gets. Elsewhere in the world the single transferable 
vote also tends to produce fairer results in terms of 
gender and race representation: Australia uses the 
alternative vote for its lower house and the single 
transferable vote for its upper house. The proportion 
of women elected is consistently higher in the upper 
house. In the middle of the 20th century many 
American cities used the single transferable vote 
for municipal elections allowing some minorities to 
gain representation for the first time. In particular, 
this is how New York City got its first African 
American councillor, Adam Clayton Powell, in 1941. 
Unfortunately, the representation of minorities was 
met with growing intolerance and there were repeated 
repeal campaigns. In Cincinnati, the fear of some day 
having a black mayor was the theme of the successful 
repeal campaign in 1957 (see (1)). 

In British Columbia, Canada, the single transferable 
vote was proposed as an alternative to the current 
single member plurality system for provincial 
elections. It was rejected in two referendums — 
in 2005 and 2009. Rather than the effect on the 
representation of minorities, it was the perceived 
complexity of the system that worked against it. 
In fact, the system is indeed more complex than 
our example suggests: when ballots are transferred 
away from an alternative that has already reached 
threshold, the question arises as to exactly which 
ballots should be transferred. In our example, 
when ballots are transferred away from A, the next 
preference expressed is always E, so that the choice of 
ballots transferred is irrelevant. However it is possible 
to make up with examples where the choice of ballots 
transferred can modify the outcome. 

The traditional way to solve this dilemma is to 
randomly choose the ballots to be transferred — 
Ireland still uses this method. When the voting 
population is large enough the chances of having 
the outcome affected by a particular random draw is 
negligible. However, the method proposed in British 
Columbia was instead to transfer a fraction of every 
ballot, relying on modern technology to ease the 
calculations. This made the system harder to explain 
to the general population and the complexity of 
the system overshadowed its purpose and potential 
benefits. 

With a party system in place, fair representation can 
be achieved with systems that are more simple to 
explain than the single transferable vote. 

Representation and party systems 
Canada and all of its provinces use single member 
plurality to elect their legislatures. This amounts to 
holding parallel elections in each electoral district 
using the plurality method. It is well known that 
this method distorts the results, in the sense that 
the proportion of members a party elects differs 
significantly from the proportion of the popular 
vote it gets. Typically, a party wins a majority 
government with much less than 50% of the popular 
vote. In extreme cases, the party that makes up the 
government is not even the party that obtains the 
largest fraction of the popular vote. This phenomenon 
is easily illustrated by the following example. 

In the above table there is a majority of Us, but if 
we consider the rows of the table as the ridings in a 
single member plurality election, we get a majority of 
rows with a majority of Ns, resulting in a “majority” 
of Ns. Such “wrong winner” elections happened a 
dozen times in Canadian provincial elections since 
World War II. However the letters U and N in our 
example are taken from the notorious election of 1948 
in South Africa. The United Party won the largest 
fraction of the popular vote, but the National Party 
elected more members and formed the goverment. It 
had been campaigning on its newly devised program 
of apartheid. As a result, systematic segregation took 
hold of the country for half a century. 

We will consider the systems where electoral districts 
are merged as multi-member districts. The district 
magnitude, or the number of members per district, 
is an important design specification of such systems. 
The districts can be paired as two-member districts as 
in Chile or the whole country can be a single district, 
as is done in Israel. However, these extremes are not 
common. According to the ACE Electoral Knowledge 
Network (http://aceproject.org), most scholars agree 
that district magnitudes between three and seven 
members tend to work quite well. 

U U U

U N N

U N N
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For instance, let’s consider the results in the five 
districts of Quebec City in the 2011 federal election. 

The major parties contesting the election were B 
(Bloc), C (Conservative), L (Liberal) and N (New 
Democratic Party). (O stands for other.) Since single 
member plurality was used, the N party, which had 
a plurality of the votes in each of the five districts, 
elected five representatives with 42% of the popular 
vote. Parties B, C and L, with respectively 20%, 27% 
and 8% of the vote, elected none. 

If the five districts were merged as one, each party 
could be given a proportion of elected candidates 
roughly equal to the proportion of the popular vote it 
receives. If there are n candidates to be elected, then 
each party would elect one candidate for each slice of 
(100/n)% of the popular vote it receives. In the case of 
Quebec city, this yields one candidate elected for each 
20% of the popular vote: one for B, one for C, none 
for L and two for N. 

There are different methods of rounding to elect 
the fifth candidate. Let p and c, respectively, be the 
percentage of popular vote a party received and 
the number of candidates it has already elected. 
According to the Hare method, the last seat is given 
to the party with the largest remainder p−c · 20%, 
namely L with a remainder of 8%. According to the 
D’Hondt method, the extra seat is given to the party 
with the largest quota p/(c + 1), namely N with a 
quota of 14%. These two systems of proportional 
representation respectly give results of 2N, 1B, 1C, 1L 
and 3N, 1B, 1C instead of the result of 5N obtained 
with single member plurality. 

Which of these is the fairest outcome? There are no 
mathematical axioms modeling fairness for multi-
member elections. There are however, quantitative 
measures of the outcome, such as the Gallagher’s 
least square index which measures how proportional 
the result of an election is (see (2)). There is also a 
(fractional!) measure of the “effective number of 

parties” (see (4)); if the election is fair, this number 
should be roughly the same before and after the 
election. However, it is better to use such measures on 
the global result of the election rather than on a single 
five-member riding. 

In our example, the Hare method gives party L one 
member, that is 20% of the representation, with 
only 8% of the popular vote. This is a lucky break 
that depends on the distribution of the popular 
vote among the other parties. Across many districts 
things tend to even out and the results can be fairly 
proportional. 

An interesting way to illustrate this point is to 
note that our example is amenable to the Alabama 
paradox. Suppose that Quebec City had been a six-
member riding instead of a of five-member riding. 
Then, the share of votes needed to elect one candidate 
would have dropped to 16 %. Hence N would have 
gotten two candidates elected and B and C would 
each have one. With the Hare method, the two 
remaining seats would have been given to the two 
parties with the largest remainders, namely N and C. 
Thus, party L would have lost its representative even 
though the number of representatives increased! 

The Alabama paradox scenario cannot happen 
with the D’Hondt method; increasing the number 
of representatives could never decrease a party’s 
representation. However with the D’Hondt method, 
parties with a lower level of support tend to be 
underrepresented, unless the district magnitude is 
much larger. 

There remains the question of which specific 
candidates of each party should be elected. There are 
many options. In closed-list systems the parties decide 
the order in which their candidates are elected. Such 
systems are prefered by special interest advocacy 
groups because the lists can be used for positive 
discrimination. On the other hand, open list systems 
allow voters to have a more active role in deciding 
which candidates get elected. There are mixed systems, 
in which some candidates are elected from single-
member districts and others from a list. This allows 
independent candidates to run with a fair chance 
of being elected. The single transferable vote of the 
previous section gives independents a chance and 
allows a voter’s preferences to run across party lines. 

B C L N O
D1 10250 13845 3162 24306 1196
D2 8732 16220 3505 24131 1021
D3 14640 13207 8110 23373 1139
D4 8148 21334 3612 22629 1032
D5 14684 9330 4735 22393 1372
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Conclusion 

We often hear the comment that the math taught 
in school should be more relevant to real life. The 
study of electoral systems connects to the politics 
that fills the news. Talking about electoral systems to 
the general public is different from teaching math in 
a classroom; it can confront people with their poor 
understanding of ratios and proportions and with 
the fact that others may understand the system better 
than themselves. People can get defensive and it can 
be difficult to keep the focus on electoral systems 
rather than political gossip. 

As we have seen, the presentation of electoral systems 
can use combinatorics and algorithms to explain 
different systems and their purpose, algebra and 
topology for general models, ratios, proportions and 
statistics for analyzing the results. It can be taught 
at an abstract or a pragmatic level. It can expose 
a degree of systemic discrimination inherent to a 
system, which would be considered outrageous if 
it were on a sign in a public space or on a job ad 
rather than hidden in the intricacies of an electoral 
machinery. Perhaps these aspects of the topic are 
better suited to the mathematics curriculum than to 
the civics or politics curriculum. 
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In the entirety of human history 
 we’ve only eradicated two diseases: smallpox 
(which used to kill a great many children) and 

rinderpest (a cow disease). However, several more 
diseases are in line for eradication in the next few 
years: guinea worm disease (a non-fatal disease 
spread by drinking water) and polio. We have a 
vaccine against polio. 

So why isn’t polio eliminated yet?

Polio used to be widespread; the longest-serving 
President of the United States, Franklin Roosevelt, 
suffered from it and was mostly confined to a 
wheelchair (although he didn’t want anyone to know, 
so often attended public events while seated in a car). 
When eradication efforts began in 1988, there were 
350,000 cases. Now there are fewer than 500. Polio 
can cause severe disability and paralysis, especially 
among children, although there are a large number 
of cases without symptoms. The disease is spread via 
direct contact with infected faeces, as well as through 
water reservoirs. The virus can’t reproduce in water, 
so this form of transmission is slower. 

This means that mathematical models must take into 
account both time and space. The disease changes 
in time, as the numbers fluctuate between seasons, 

but space is also important and in particular, how 
and where people are distributed. One way that 
mathematical modelling can deal with this is through 
what’s called a metapopulation model. This involves 
breaking space into different regions or patches and 
developing a system of differential equations (our 
model) within each one. We then link each patch 
together according to the population movement. By 
thinking of each region (whether national, provincial 
or smaller) as a “patch,” it is possible to model the 
dynamics both within and between different patches. 
One of the key dynamics we’re interested in is 
vaccination.

When invented in the 1950s, the polio vaccine 
was hailed as an enormous breakthrough. The first 
vaccines had to be injected, but a few years later there 
was another breakthrough: an oral vaccine. Why is 
this so important? Because it can be administered 
easily and painlessly to children, without requiring a 
doctor. This makes mass vaccination possible.

The oral vaccine was responsible for the large decline 
in incidence over the past 30 years – in 2009, there 
were 1606 cases and by 2012, there were just 223. 
However, something happened to cause that number 
to double in 2013. 

Where did these cases come 
from?
	
The problem with vaccines is that no 
one likes taking them. We would like 
other people to be vaccinated, but not 
ourselves. When a disease starts to 
disappear people stop getting vaccinated, 
because they aren’t seeing its effects. 
Worse, ignorance of the benefits of 
vaccination have led directly to increased 
outbreaks. In 2003, Nigeria issued a fatwa 
stating that vaccines were an American 
plot to sterilise Muslims. (They aren’t.) 
This caused the number of Nigerian cases 
to increase.  

 AN EASY WAY TO SPEED UP THE 
ERADICATION OF POLIO
Robert Smith?
Department of Mathematics and Faculty of Medicine, The University of Ottawa
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Fig. 1. Susceptible and infected individuals in two patches, with cross-contamination.
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As well, aid workers administering 
the vaccine in Pakistan and Afghanistan have 
been murdered, thus decreasing the number of 
vaccinations administered and causing the incidence 
to rise.
 
Another challenge to eradication is the vaccine itself. 
In a very small number of cases (1 in 750,000), the 
vaccine can give you polio. However, we have been 
so successful at controlling wild polio (i.e., the polio 
strain that spreads in nature, as opposed to vaccine-
induced polio) that 15% of all 2013 cases were due to 
the vaccine.
 
At the same time, there have been great advances – 
India was declared polio-free in March 2014 and the 
disease now exists in only a handful of countries. 
There has been a 99% drop in the number of cases 
since eradication efforts began. 

We’re close to eradicating this disease. 

How can we improve our efforts?

One of the best ways that we’ve found to vaccinate 
individuals against diseases such as polio and measles 
is through National Immunisation Days (NIDs). 
These involve mass vaccinations in a one- to two-
day period. To give you an idea of how large these 
are, in a single NID in India, 174 million children 
are vaccinated, using 225 million doses, employing 
2.5 million vaccinators. These happen twice a year 
and are called “pulses.” Most countries with polio 
have these NIDs. They are a way of ensuring that 

most everyone gets vaccinated, 
because it can be done in 
schools or villages all at once. 

However, in most countries 
health is managed locally 
(such as at the provincial 
level, as happens in Canada). 
Even when countries manage 
health nationally, they don’t 
coordinate with neighbouring 
countries. 

Should they? More 
formally, should we 
synchronise pulse 
vaccinations? 

There are good reasons to think this might be 
important. Many people migrate across borders, 
carrying diseases with them. Different regions have 
different transmission seasons, depending on climate, 
geography etc and environmental transmission may 
not respect borders (such as a lake that joins two 
countries).
 
Suppose you’re a migrant worker who moves between 
two areas: Patch 1 and Patch 2. If you are in Patch 1 
when Patch 2 is being vaccinated, but have returned 
to Patch 2 when they’re vaccinating in Patch 1, you 
will not receive the vaccine. 

How can we make sure all migrants 
are vaccinated? 

By vaccinating all the patches at once, of course!
	
More formally, mathematical modelling shows that 
there is a local minimum (x΄=0 and x˝>0) when the 
phase difference between two patches is zero.  

Fig. 2a. Estimated number of polio cases per year

Fig. 2b. The exponential decline of polio is largely due to the oral vaccine.
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That is, the disease spread is least when vaccinations 
in different patches occur at the same time. In fact, 
this can be the difference between eradicating the 
disease and having it persist. (See Figure 3.)

We measure the progress of eradication using Re, 
the effective reproduction number. This is a measure 
of disease spread, taking into account the average 
number of secondary infections. Mathematically, 
we derive this number by measuring the stability 
of an uninfected equilibrium. That is, if there is no 
disease, then there will continue to be no disease (it 
can’t spontaneously appear) unless someone brings 
it in from outside. This is equivalent to perturbing 
the equilibrium, just slightly. If those perturbations 
result in the disease returning to its uninfected state, 
then we say that the equilibrium is stable. If not 
(i.e., if a few cases can lead to an outbreak), then the 

equilibrium is unstable. Mathematics is so useful here 
because it can predict this number in advance, such 
that we can tell whether our intervention methods are 
likely to be successful. If they stabilise an otherwise 
unstable equilibrium, then there is a good chance of 
eradicating the disease.
	
What happens if we add other 
factors? 

Migration makes the spread of disease more likely, 
making it even more important to synchronise the 
vaccinations; the more migration there is, the more 
crucial this becomes. (See Figure 4a.) We want to 
vaccinate in the blue areas, but as migration pushes 
the curve to the back, the only blue areas are at the 
sides, when the patches are in phase.
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Fig. 3. These two figures use identical data, except that the vaccinations are out of phase. When they happen at the same time we have eradication – when they 
don’t, the disease persists in both patches.
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Seasonality adds a complication: we need to vaccinate 
when the transmission is low. (See Figure 4b.)
Now we want to vaccinate in the blue corners. So we 
still want to synchronise the vaccinations, but we also 
want to vaccinate at the right time of year. 

But what if two patches have 
different seasonal effects? That 
is, what if synchronising the 
vaccinations would conflict with the 
low-transmission season in one of 
the patches? 

This issue has arisen in the past, with Operation 
MECECAR – a program to coordinate vaccinations in 
the Mediterranean (ME), Caucasus (CA) and Central 
Asian Republics (CAR). They considered this problem 
and decided to synchronise the vaccinations. 

Was this the correct strategy? 

No.
	
Mathematical modelling shows that the answer is 
more subtle and depends on migration. If migration 
is low, then the pulses don’t need to be synchronised. 
In this case, the best strategy is to de-synchronise the 
pulses and vaccinate in the low-transmission season 
for each region (i.e., the blue valleys). (See Figure 
5a.) If migration is high, the strategy is completely 
changed. In this case, migration overwhelms 
seasonality and the pulses need to be synchronised 
again. (See Figure 5b.)

Thus, modelling shows that the best strategy is 
to synchronise the pulses in almost all cases. The 
good news is that this is something we can do. 
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Fig. 4a. The more migration, the more important synchronisation becomes. 
Fig. 4b. If the virus fluctuates seasonally, then we want to vaccinate in the blue corners; i.e., when the vaccines are synchronised and transmission is low.
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Coordinating NIDs across different regions is within 
our power and provides obvious benefits. 
Modelling also helps us see the most important 
factors that affect polio eradication: migration and 
seasonality. Individually these lead us to synchronise 
the pulses; however, if they overlap, then we must 
de-synchronise the pulses if migration is low, but 
synchronise the pulses if migration is high. These 
conclusions aren’t necessarily obvious without 
modelling. As we saw from Operation MECACAR, 
making decisions without models can lead to the 
wrong strategy – and this affects people’s lives. 

Very soon, we stand a chance of doubling our success 
at disease eradication, bringing our total up to four. 
The final push to eradicate any disease is difficult, but 
it is important not to lose momentum – or hope. In 
the home stretch of polio eradication, synchronising 
vaccinations across regions may be the key to 
removing one of humanity’s greatest scourges once 
and for all. 

Figure 2a is from the World Health Organization

Figure 2b was taken by Rod Curtis for the World 
Health Organization

Figures 3–5 are from the original academic article: 
Cameron J. Browne, Robert J. Smith?, Lydia 
Bourouiba, 2015. From regional pulse vaccination 
to global disease eradication: insights from a 
mathematical model of Poliomyelitis. Journal of 
Mathematical Biology, 71(1), 215–253.

Fig. 5a: If migration is low, the pulses should be de-synchronised and vaccination should occur in the low-transmission seasons for each patch. 
Fig. 5b: If migration is high, then this overwhelms seasonality and the pulses should be synchronised. 
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Problems
1. Find all positive integers n for which  is an integer.

2. Find all the integers m such that  is divisible by 192.

3. Find the number of positive integers  ≤ 1000 which are not divisible by any of 5,  

  7, and 11.

4. Let x, y be any real numbers. Find the smallest possible value of  

	 .

5. Let P(x) be a polynomial of degree four and let a ≥ 1, b ≥ 1 be distinct numbers such 

that P(a) = P(1 − a), P(b) = P(1 − b). Show that P (x) = P(1 − x), for any real number x.

6. Let a
1
, a

2
, ..., an be real nonnegative numbers such that a

1
 + a

2
 + ... + a

n
 = k. Find the 

maximum value of a
1
a

2
 + a

2
a

3
 + ... a

n−1
a

n
.

7. Let M = {1, 2, 3, ..., 2016} and k a positive integer. Find the minimum value of k for which 

any subset of M with k elements contains at least two distinct numbers such that one of 

them is a multiple of the other.

8. The point P is inside a convex quadrilateral ABCD of area 168 such that PA = 9, PB = PD 

= 12 and PC = 5. Find the perimeter of the quadrilateral.

X X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X 

PRIZE! 
PIMS is sponsoring a prize of $100 to the first high school student (from within the 

PIMS operating region: Alberta; British Columbia; Manitoba; Saskatchewan; Oregon; 

Washington) who submits the largest number of correct answers before September 1, 

2016. Please submit to pims@math.uvic.ca.

X X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X
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2014 Math Challenges
1. Let n ≥ 1 be a positive integer. Determine the greatest integer less than or equal to 

Solution
Let  Since  for any positive integer 
n we have 4n + 1 < A < 4n + 2 and hence the greatest integer less than or equal to A is 4n + 1.

2. Let m, n, p be integers. Prove that 12 is a divisor of m2+n2+p2 if and only if 12 is a divisor of m4 + n4 + p4.

Solution
For any integer m, m4 – m2 = m2 (m2 – 1) = (m – 1)m(m+1)m. If m is even then m2 is divisible by 4 and if m is 
odd then (m – 1)(m + 1) is divisible by 4. Hence, in any case, m4 – m2 is divisible by 4. Also, (m – 1)m(m + 1) 
is divisible by 3, as a product of three consecutive integers. Consequently, since 3 and 4 are relatively prime we 
conclude that 12 is a divisor of m4 – m2 and also of (m4 – m2) + (n4 – n2) + (p4 – p2) = (m4 + n4 + p4) – (m2 + n2 + 
p2). Now, if 12 is a divisor of m2 + n2 + p2 this is equivalent to say that 12 is a divisor of (m4 – m2) + (n4 – n2) +  
(p4 – p2) + (m2 + n2 + p2) = m4 + n4 + p4.

3. Let n ≥ 25 be an integer. Find the remainder obtained when n(n + 1)(n + 2) is divided by n − 2:

Solution
We have
	 n(n + 1)(n + 2) = [(n – 2) + 2][(n – 2) + 3][(n – 2) + 4]
		  = (n – 2)3 + 9(n – 2)2 + 34(n – 2) + 24

If n > 26, the remainder is 24. If n = 26 the remainder is 0 and if n = 25 the remainder is 1.

4. The numbers 1, 2, 3, . . . , 2014 are arranged in a circle in cyclic order. We paint the numbers 1, 5, 9, and every 
fourth number, round and round the circle. Some of the numbers may be painted more than once. Find the 
number of numbers which will never be painted.

Solution
Since 2014 is even, even numbers are never painted. Since 2014 is not divisible by 4, all odd numbers are 
painted. Hence the number of numbers which will never be painted is 2014 ÷ 2 = 1007.

5. Find all the pairs (a, b) of positive real numbers such that
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Solution

Since  and the equal sine holds only if a = b = 4, there is only one pair (a, b) = (4, 4) which 
veries the given inequality.

6. Find all functions  such that  for every 

Solution
From the inequality 2x ≤ f (x) + 3 we obtain that  and hence  

which combined with the given condition  gives . It follows that 

.

7. The value of a diamond is proportional to the square of its weight. A diamond breaks in two pieces and their 
total value is now 32% lower than the original value. Find the ratio of the weight of the larger piece to the 
smaller piece.

Solution
Let the weight of the original diamond be 1, the weight of the larger piece be x and the weight of the smaller 
piece be y. Then x + y = 1 and x2 + y2 = 0.68. Eliminating y, we have 0 = x2 – x + 0.16 = (x – 0.8)(x – 0.2).
Since x > y, x = 0.8 and y = 0.2 so that x : y = 4 : 1.

8. Find the number of isosceles acute-angled triangles with perimeter 40 such that all three sides have integral 
lengths.

Solution
Let m, m and n be the lengths of the sides of the triangle. Then 2m+n = 40. Thus we may have (m, n) = (19, 2), 
(18,4), (17,6), (16,8), (15,10), (14,12), (13,14), (12,16) and (11,18). However, (11,18) is not a convenient
solution since 112 + 112 = 242 < 324 = 182, so that the triangle is not acute. Hence, there are eight isosceles 
triangles with the requested properties.
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