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FOREWORD BY THE PIMS DIRECTOR

The Pacific Institute for the Mathematical Sciences is committed to providing training for young math-
ematical scientists whether they are pursing careers in academia or in industry.

The Graduate Industrial Mathematical Modelling Camp (GIMMC) is one of two components
of the annual PIMS Industrial Forum. The other component is the PIMS Industrial Problem Solv-
ing Workshop which takes place soon after the camp. GIMMC was conceived to give students the
opportunity to learn about the modern methods of applied mathematics. It also gives them extensive
training and helps prepare them for the Industrial Problem Solving Workshop.

At the workshop students work together in teams, under the supervision of invited mentors. Each men-
tor poses a problem arising from an industrial or engineering application and guides his or her team of
graduate students through a modelling phase to a resolution.

The third GIMMC was held at Simon Fraser University, May 23-27, 2000. Forty-one graduate students
came from North America came to SFU to work five mentors from industry. Almost all the students came
from 16 universities across Canada, however one came from as far away as New York University. The
five industrial mentors, who came from University of Minnesota, University of Southampton, Eastman
Kodak, Rensselaer Polytechnic Institute and IBM, provided a wide range of interesting and challenging
problems. It is my pleasure to announce that the programme was a huge success.

These proceedings contain the culmination of each teams work and they show how much can be achieved
in a week of hard work.

I want to express my appreciation and gratitude to everyone involved in this workshop, in particular
I wish to thank the organisers (Keith Promislow, Mary Catherine Kropinski, Sadika Jungic, Lindsay
Hughes) and mentors (Rachel Kuske, Colin Please, David Ross, Donald Schwendeman, Brett Stevens).
The great success of the first three years of GIMMC shows that we have much to look forward to in the
future.

Dr. Nassif Ghoussoub, Director
Pacific Institute for the Mathematical Sciences



PREFACE

As preparations for the fourth Graduate Industrial Mathematical Modeling Camp (GIMMC) at
University of Victoria are now well under way, its an appropriate time to reflect upon the success and
direction of these workshops. There is no doubt that the GIMMC has grown in size from the initial one
held at SFU in 1998. That one attracted 30 applicants and had a shoestring budget. The current edition
has applications in the 100s and a permanent place in the PIMS budget. But the real measure of success
of the GIMMC has to be the impact on the graduate students who have attended. Unfortunately, no
formal records have been kept, but there is abundant anecdotal evidence: Math Pays Off!

Consider two students, Antonio (Tony) Cabal, a graduate student in applied math at University of
Western Ontario who attended the 1998 GIMMC, and Tom Janiewicz, an undergrad at Simon Fraser
University who attended the 2000 GIMMC. Tony worked on a problem mentored by David Ross (East-
man Kodak) whose goal was to model the of diffusion of surfactants in a thin flowing polymer known as
a coating curtain. Such was the impression that Tony made upon David that when a position became
available at Kodak later that year, David brought Tony in for an interview. Tony is now employed as
a mathematical modeller with Kodak. As a member of the integrated materials and microstructures
lab he develops and applies mathematical models of fluid mechanics and MEMS microactuators for ink
jet printers. The crux of Tony’s work involves the analysis and numerical solution of nonlinear PDEs.
In addition, Tony has two patents pending for inventions which have grown out of his mathematical
models! As David explains it “Tony is doing very well here, he is very good.”

In Tom’s case, he dove into the Catalytic Converter problem presented by Don Schwendeman from
Rensselaer Polytechnic Institute. This problem is described in Chapter 5 of this Proceedings. A few
months after completing the GIMMC, armed with his BS in applied math and the writeup of the Catalytic
Converter problem, Tom interviewed at Universal Dynamics, a BC high-tech engineering/software firm.
In Tom’s words: “When I showed the interviewer the report on the catalytic converter from the workshop,
he did not hesitate too long to offer me the job.” He now works in the Brainwave group at Universal
Dynamics with another programmer and two engineers on the mathematical underpinnings of a software
system which controls manufacturing processes. Tom’s work uses “control theory very intensely” and he
includes Laplace Transforms,; z transforms, and singular value decompositions among the mathematical
techniques he has applied recently.

Tom has been eager to help establish contacts between Universal Dynamics and the PIMS universi-
ties; and perhaps to bring a problem to the GIMMC or the Industrial Problem Solving Workshop in the
future. In this way Math and the GIMMC will continue to pay dividends for future students.

Keith Promislow and Mary Catherine Kropinski
Organising Committee

Department of Mathematics and Statistics
Simon Fraser University
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Chapter 1

Catalytic Converter: A Simple
Mathematical Solution to
Understanding Operation

Participants: Donald Schwendeman (Mentor), Rozita Dara, Tomasz Janiewicz, Margaret Liang, Mo-
hammad Oskoorouchi, Maurice Shevalier, Maikel Sianturi.

PROBLEM STATEMENT: A catalytic converter is used by automobiles for controlling emissions.
It takes unburned gases, which can contribute to smog, and “burns” them. The “burning” involves a
chemical reaction catalyzed by an inert metal located within the converter. The chemical reactions are
temperature dependent and do not occur until the converter reaches a critical temperature.

In this workshop, the processes involved in a catalytic converter are examined, heat transfer, mass
transfer, and the chemical reactions. A mathematical model of the converter is developed. The model
is then used to simulate the converter, which is similar to the work done by Oh and Cavendishi [3].
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1.1 Problem Description

When a car starts, the catalytic converter, which is cold, is exposed to hot gases. The converter is
slowly heated in a non-uniform manner, during which time no conversion reaction occurs. When the
converter reaches the critical temperature, the reaction occurs. Many of the reactions are exothermic
and add to the heating of the converter. The converter then heats the exhaust gas passing over it which
then contributes to the heating of the converter not yet at the critical temperature. The concentration
of gases undergoing the reaction decreases as more of the converter is heated. Ideally, when the entire
converter reaches the critical temperature this concentration will go to zero.

In this model many simplifications are made. One simplification involves the chemical species which
undergo the catalytic reaction. In this model only C'O is considered to react. The reaction involved is
as follows:

1
CO + 502 — COZ

In this model a concentration of O, is assumed to be constant. Further the only source of CO, is
assumed to be from the catalytic reaction, so the concentration of C'O, is inversely related to CO.

The second major simplification involves the catalytic converter. It consists of many tubules em-
bedded in a ceramic matrix. The ceramic is coated with platinum. Instead of considering thousands of
tubules, an average tubule which is one dimensional in length is considered. It has a platinum coating
on top and bottom of the ceramic. Through the center of the tubule the exhaust gas flows.

In the succeeding sections, a simple one dimensional model is developed. The model is then non-
dimensionalized and solved both analytically and numerically for the gas and ceramic temperature, as
well as the CO concentration.

1.2 Methodology of Solution

We derive the equations based on two principles, conservation of mass and conservation of heat. The
variables we will attempt to solve for are,

¢y = Concentration of gas in free space.

¢s = Concentration of gas on the surface of the solid.

T, = Temperature of gas inside the converter.

Ts = Temperature of the solid.

The Fquation for Conservation of Mass in Open Space is

b
A/ cng—uAc —uAc! -I-Pk/ (cs — ¢g)de,
\;—’ \,—’ a

~ _
i e

where

(i) is the rate of change of mass of gas inside control volume [a, b], A is the cross sectional area,

(ii) is the flux of gas at inlet a, u is the velocity of gas,

(iii) is the flux of gas at outlet b,

(iv) is mass transfer of gas to the surface of the solid, here P is the parameter of the area of the
open space and k is the mass transfer coefficient,.

Terms ¢ and ii¢ can be written as a single integral, and since a and b are arbitrary we can eliminate
the integrals. After some simplifications we end up with the following equation:

0 0
A (57569 + up—Cy ) = Pk(cs — ¢q). (1.1)

After adding up all the contributions from various sources of heat, we will end up with the following
equation:
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d b b

A / egTypgde = uAcyT)py — uAe, Ty py + Ph/ (Ts — Ty)dz .

dt a —_—— Y a .,
‘I' 1I I7I I‘"/

where

(I) is the rate of change of heat inside control volume [a, b], ¢, is the specific heat of the gas, and p,
is the density of gas.

(IT) is the heat flux at a, T is the temperature of gas at a.

(III) is the heat flux at b, T, is the temperature of gas at b.

and,

(IV) is the heat transfer to the surface of the solid, h is the heat transfer coefficient.

For reasons similar to equation (1.1) this equation simplifies to the following;:

Ae 0 T, 0 T, | = Ph(Ts — T,
CqPg (a g+u£ g> = Ph(T; — Ty). (1.2)
This is the equation for Conservation of Energy in Open Space.
The conservation of mass on the surface of solid is obtained by balancing the following two quantities

b b
/ (A+ B)aRdz = 7/ pgPk(cs — cg)dx,

~~ ~~

* * %

where,

* is moles of the gas generated by reaction on the surface from a to b, here @ is the area of platinum
on the surface of the solid, B is the cross sectional area of the solid, and R is the reaction rate.

** ig the mass transfer of gas from the surface.

After eliminating the integrals we end up with the Equation for Conservation of Mass on Surface:

(A+ B)aR + pyPk(cs —cg) = 0. (1.3)

The conservation of energy in the solid is represented by the following relationship

Ox
~- N ~- S——r
1 2 3 4 5

d b oT, oT, b b
EB/ spsTsda :DBa— lu—p — DB== |H+/ Ph(T, —Ts)daz+/ Pqdz,
a € ~ , a a

where

1 is the rate of change of heat inside the solid in the control volume in [a,b], ¢ is the specific heat
of the solid, p; is the density of the solid.

2 is the heat flux in solid at b, here D is the diffusion coefficient.

3 is the heat flux in solid at a.

4 is the heat transfer from solid to gas.

5 is the heat generation due to reaction and ¢ is the heat energy due to reaction.

If we combine term 2 and 3 into a single integral, eliminate the integrals from the above equation we
will have the equation for the Conservation of Energy in the Solid:

0T, 0T,

Béspsﬁ = BD 8,7;2

+ Ph(T, —T,) + Pq (1.4)

If we analyze the exhaust from the engine we can come up with the temperature and concentration
of gas. These will give us insight into initial and boundary conditions. Thus T}, and ¢, are known at
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x = 0. Furthermore at any given time 7}, is known as is ¢4 at the inlet. Since at any instance there is no
heat flux to the surrounding environment since air is a good insulator, so %1;8 z=0,r, = 0. Finally, since
the converter is initially at room temperature T|;—¢ is known.

The next step in the analysis of the above four equations is non-dimensionalization. After considering
four different time scales: the path length time scale the mass transfer time scale, the energy time scale,
and the temperature built up time scale, we decided that the last is the most appropriate one for a
consideration of the warm up problem. Upon scaling the variables, our equations transform into the

following non-dimensional system:

0
ug-Cy = alcs —¢g) (1.5)
0
ug Ty = BT —Ty) (1.6)
aocge’s = Cg — Cs (1.7)
O 682T+ﬁ(T T,) + i (1.8)
=—Ts = 6—T, —Ts) + aaocse” >, .
ot Ox? g ’ '
where
PEL PhL D EAT
o= Aug ﬁ = ACgpgur 0= L2Etf:JS V= RT2 *

Here L is the length of the converter, ug is the velocity of the gas, E is the activation energy, and o
is a constant of the reaction of CO with Os.

The initial and boundary conditions translate as follows:

e Since scaling eliminated time dependence in equations (1.5) and (1.6), we can drop Ty~ and

Cqlt=0-

L] Tg|z:0 =0.

® Cgloa=0 = 1.

oT,
ox

o Ts‘t:O =1

e=0,. = 0.

1.3 Results

1.3.1 Analytical Solution

There are two stages for this problem. The first stage is the gentle heating of the converter, and the
second stage is the reaction of chemical species.

In the heating stage, the temperature of the solid is almost independent of the location, so %217;5 is
small. since ¢ is small, we can ignore the second derivative term in equation (1.8). Since + is big and
T, = —1 initially, e?”s is small, so we can also cross out the exponential term in equation (1.8). Solving
the modified equation (1.5)- (1.8), we get ¢, = ¢, and they both decrease slowly. The temperature of the
gas decreases as it moves down the converter and heats up the solid. As a consequence the temperature
of the solid increases slowly.

When the solid reaches its critical temperature, chemical reaction starts, and we reach the second
stage. In this stage, Ts > 0, so we can not ignore the exponential term in equation (1.8). Inside the
converter, the temperature does not change much before and after the reaction, so 887; %27;

=0, and
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Equation (1.8) becomes:
B(T, — Ts) + aacCse?™= = 0.

Solving equations (1.5)- (1.8) gives:

_ B(l B Ts)
Cg = B_ oae’Ts *
14+c0eTs
Plot of T versus ¢, is shown below:

a-
0.5
—0.5
1

Figure 1.1: Temperature of the converter vs. concentration of pollutant

Equations (1.5) with (1.7) show that ¢, is a decreasing function of location x. ¢4 equals 1 at x=0,
and we must follow the curve in figure above with decreasing c,. At the spot where the curve turns,
the path must jump to the branch of the curve that is hot, where T = 1, which is also shown in the
numerical analysis below.

1.3.2 Numerical Solution

The equations used in the numerical solution are equations (1.5)- (1.8). The solution obtained was the
simplest and most straight forward. Equations (1.5) and (1.6) are ordinary differential equations but
they have a ¢; and Ts dependents. The ¢; dependents of equation (1.5) is removed by substituting
equation (1.7) and assuming T is known. Solving for ¢4 yields the following:

ol —ace’ls

T is assumed to be known along discrete points on z. This equation is solved using the trapezoidal rule.
Equation (1.6) is also an ordinary differential equation with the following form:

B B

The solution has a homogeneous and particular part which can be written as

T, :e%ﬁw/ B etegs. (1.10)
’ 0 U
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This equation is also solved using the trapezoidal rule.

Equation (1.8) is a partial differential equation. The first term on the right hand side is replaced by
the central difference formula. This then converts it to an ordinary differential equation which is solved
using a modified Euler Method.

The technique to solve the system of equations is as follows:

1. Equation (1.9) is solved for ¢, using an initial value of T.
2. Equation (1.10) is solved for T, using an initial value of T5.

3. The new Ty is solved for using the modified Euler’s Method.

This new Ty is then substituted into step 1 and the loop is repeated until Ty|,—o > 0.80. The results
of the simulations are shown in Figures 1.2, 1.3, and 1.4.

0.9

o “‘ °

e \\\\\\

\

N
\

0.7

Concentration of CO

0.8

Length 1

Figure 1.2: Temperature of the gas vs. the converter length

Figure (1.2) shows the temperature of the gas over the converter length as a function of time. Initially
at t = 0 and z = 0 the gas has the condition of T, = 0. Over the length of the converter the temperature
drops to —1 at z = 1. This is expected since the heat from the gas is absorbed by the converter. As time
progresses the temperature of the gas does not drop as much over the length of the converter. There
is a point where the temperature of the gas increases. This is due to the conversion reaction occurring
and the gas absorbs heat from the converter. As time continuous to progress the temperature of the gas
increases until it is in equilibrium with the temperature of the converter.

Figure (1.3) shows the temperature of the converter over its length as a function of time. Initially at
t = 0 the entire converter is at its initial temperature of —1. As time progresses the temperature of the
converter increases due to heat absorption from the gas. There is a point in time where the temperature
of the converter is greater than that of the gas. This is due to the onset of the conversion reaction. From
this point in time on the temperature of the converter raises sharply due to more conversion reaction
occurring. This temperature front travels towards the inlet located at = 0 due to heat diffusion within
the converter.

Figure (1.4) shows the concentration of CO over the length of the converter as a function of time.
Initially the concentration of CO does not decrease, because the temperature of the converter is lower
than the critical temperature. As time progresses the concentration of C'O decreases as a function of
length due consumption by the chemical reaction. At the end of the simulation the concentration of
CO is 1 at the inlet and decreases to 0 at the outlet. This indicates that the converter is at optimum
temperature resulting in the optimum conversion reaction occurring.
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Figure 1.3: Temperature of the converter vs. its length

0.8
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Figure 1.4: Concentration of CO vs. length of the converter



Chapter 2

Queue Compatible Gray Codes and
Applications

Participants: Brett Stevens (Mentor), Paul Buskell, Paule Ecimovic, Cristian Ivanescu, Anamaria
Savu, Abid Malik, Tzvetalin Vassilev, Boting Yang, Zhiduo Zhao.

PROBLEM STATEMENT: Our group treated the following aspects of Gray Codes: k-subset of an
n set and the problem of the shortest circular covering n-word. In the process of investigating these
problems, we encountered several interesting applications of Gray codes, some of which will be described

below.
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2.1 All Subset Covering Words

2.1.1 Formal Problem Statement

Problem: What is the shortest circular word on n-letters {1,2,3,...n} such that every subset of
{1,2,3,...n} appears at least once as a sub-word (k consecutive letters for a size k subset).

(n)§§k< Z ) =n2nt

For the above upper bound, it is loose according to the numerical results we have some approaches in
improving that: e.g.

let ZZ_Ok< Z >:S;

Zz_ok< kil )ZSSQ
Z_Sk( Z >:SA;
Z_§k< ' ):313;

We have some results for these functions as below:

=1 | f(2)=2 | f3)=3 | f4)=8 | f(5)=13
S()=1 | S@)=4 | S(3)=12 | S(#)=32 | S(5)=80
SS(1)=0 | SS(2)=1 | SS(3)=5 | SS(4)=17 | SS(5)=49
SA(1)=0 | SA(2)=2 | SA(3)=9 | SA(4)=28 | SA(5)=75
SB(1)=0 | SB(2)=0 | SB(3)=3 | SB(4)=16 | SB(5)=55

From the table, we get better upper bound function SB. That surpasses function S.

The function f(n) defines the length of the corresponding gray codes. e.g:

Gray code
1
12
1231
24123413
1234531425345

G x| W N =B

We have the known lower bound ( LZJ >
2

2.1.2 Triangulational Gray Codes

In this section, we describe a kind of Gray code which is motivated by triangulations. Let S be a finite
set of points in the Euclidean plane. A triangulation of S is a maximal straight-line plane graph whose
vertices are the points of S. By maximality, each face is a triangle except for the exterior face, which is
the complement of the convex hull of S. Without loss of generality, we can assume that all the points are
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in the general position, that is, no three points are collinear. For each edge whose endpoints are in S, we
can assign a number to it, for example, 1,2,3,---,n(n — 1)/2. Let m = n(n — 1)/2. Each triangulation
can be represented by a word of bits (i.e., numbers) X% = (mgi),mgi), e ,mg,?), where m is the number of
edges in the triangulation. m is constant for each triangulation when S is given. Thus, we have a code
word set X = {X', X2 ... XN} where N is the number of all the triangulations of S. Let T'(S) be a
triangulation of S, then an edge e of T'(S) is flippable if it is adjacent to two triangles whose union is a
convex quadrilateral. So, the flip of e is an operation of removing e from 7'(S) and replacing it by the
other diagonal of the convex quadrilateral. In this way, we get a new triangulation 77(S), and we say
that 7"(S) is a flip of T(S). It is well known that for any two X% and X7 in X' there exists a series of
flips to transform X? to X7, say, X — X% — ... — X% — XJ, Thus, (X%, X",..., X%, X7) is a kind
of Gray codes.

The triangulational Gray code is a sequence X' X% ... X% of distinct m-bit m-ary code words
such that adjacent words differ in exactly one bit (regardless of the position). The code may be defined
by giving X% and the transition sequence T = (to,t1,---,t;, 1), where #; is the labelling number of the
edge in which the code words X% and X+ differ.

An important problem in the triangulational Gray code is to compute the shortest distance between
any two code words, where the shortest distance means the smallest number of flips needed to transform
one word to the other. For this problem, we investigate a special case, that is, where S is a convex point
set. We use the greedy algorithm to attack this problem.

The one-vertex emission triangulation is a triangulation each interior edge of which has the same
endpoint. For each word in X, there exists a triangulational Gray code such that this code can be
transformed to a one-vertex emission triangulation. So, we have the following algorithm.

Algorithm (greedy strategy).

Step 0. Given two words X and X7 in X.

Step 1. Select one vertex v in X* which has the maximum degree.

Step 2. Computer the triangulational Gray code which transforms X? to the v-vertex emission triangu-
lation.

Step 3. Compute the triangulational Gray code which transforms the v-vertex emission triangulation to
X7,

We have observed that the approximation ratio of Algorithm is less than 2.

Triangulation in three dimensions is more complicated than that in two dimensions. A 3D triangu-
lation is a partition of the input domain, point set or polyhedron, into a collection of tetrahedra, that
meet only at shared faces (vertices, edges, or triangles).

In three dimensional Euclidean space, a strictly convex hexahedron formed from five vertices can
be triangulated in two ways: either as a pair of tetrahedra separated by a face, or as three tetrahedra
surrounding an interior diagonal. A 8D flip is one in which two (three) adjacent tetrahedra of the 3D
triangulation form a strictly convex hexahedron, then one replace the tetrahedra by the other possible
3D triangulation of the hexahedron containing three (two) tetrahedra. The flip can be considered to be
a face “flip”, where one interior face is “flipped” for three interior faces or vice versa.

Similarly, we can define the 3D triangulational Gray code. The 2D triangulational Gray code is a
sequence X% X% ... X of distinct m'-bit n’-ary code words such that adjacent words differ in exactly
one bit (regardless of the position), where n’ = n(n —1)(n—2)/6 and m' can vary in words. So the length
of the words may differ. However, if the length of the adjacent words is different, then the difference of
the length is 1.

An important problem on the 3D triangulational Gray code is whether for two words in 3D, whether
there must exist a 3D triangulational Gray code to connect them. For this problem, we just consider
whether there exists a 3D triangulational Gray code which can transform a two-emission 3D triangulation
to a one-vertex emission triangulation, Unfortunately, even so special case, we cannot obtain significant
result. We are going to continue this work.
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2.2 Universal cycles for k-subsets of an n-set

A universal cycle for k-subsets of {1,...,n} is a cyclic sequence of ( Z ) integers with the property
that all subsets of {1,...,n} of size k appear exactly once consecutively in the sequence. As an example
the word

123

contains {12} {2 3} and {3 1} only once i.e. all 2-subsets of {1, 2, 3}.

Problem: Given n and k is there any universal cycle and if there is how can we find it within a reason-
able amount of time?

A necessary condition for the existence of the word is:

. . n—1
k divides < B 1 )

There are some trivial cases:
e k =1 the universal cycleis 123...n
e k =n the universal cycleis 123...n
e k=mn — 1 the universal cycleis 123...n

A nontrivial case is k=n — 2.
Result: We have established that is impossible to construct a universal cycle in this case even when the
necessary condition is satisfied (i.e. n is odd)

Next we describe the ideas which led us to this result.
Assuming that such a word exists then the following must happen:

e Somewhere in the word, there is a length n subword that is the n-set 123...n
Proof: We can assume wlog that the universal cycle contains:

123..n—2zyz

Since 2 3...n—2 x is a (n—2)-subset x must be 1,n or n—1. If  is 1 then the subset 12 3...n—2
is repeated. So we may assume wlog x = n — 1. The allowed values for y are 1 or n. If y is n we
are done. Otherwise y = 1 and the next position z is 2 or n. Continuing in this way if n does not
appear we get a contradiction: 12 3...n — 2 appears twice. So n has to appear which implies that
the cycle has to contain 123...n

e If m < k then a m-subset can appear at most:

1 n—1 .
miE | o ) tumes
e We already know that the pattern 1 2 3...n appears somewhere inside of the cycle. If we prove

that 23...n — 1 are forced after 123...n

n n+l n+2 ... 2n—-2
n 2 3 .. n—1

position :

1 2
number : 1 2
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this will contradict the fact the n — 2-subset 2 3...n — 1 appears just once and so the word can
not exist.

Proof:We look for the numbers which can appear on positionsn+1n+2n+3...2n — 2.

position: 1 2 ... n n+1 n+2 ... 2n-2
number: 1 2 ... n ? ? ?

The first position in which 2 can appear is n+ 1, the first position on which 3 can appear is n+2,...,
the first position in which n — 1 can appear is 2n — 2.

So n — 1 is forced to be in position 2n — 2 because otherwise 1 2 3...n — 2 are in positions
n+1n+2 ...2n—2, not necessarily in this order and so a subset is repeated. Also n — 2 is forced
to be in front of n — 1 and so on. This is proved by the induction which follows.

Suppose that for a certain ¢ > 1 we have the pattern, so n-i-1 is not in this position.

pos: — . —1 1 . n—-i—2 . n—t+1 . n n+l . 2n—i—-2 2n—4—1 . 2n—2
num: 7 . 7 1 . n—i1—2 . mn—i+1 . mn 1 .om—i—2 n—1 .on—1
In the —i, ..., —1 position can be any i-subsequence of {n—i,...,n—1,n,}. But any i-subsequence
of {n —i,...,n—1,n,} can be joined with {1,2,...,n —i — 2} and this gives a n — 2 subsequence
which appears twice.
This relies on the fact that the case kK = n — 1 is trivial and an universal cycleis 12 ... n. To see
this remove {1,...,n — 4 — 2} from the pattern and get

n—i+1l...nn—1...n—1
which is acceptable for k = n — i and the set {n —4,...,n — 1n} q.e.d.

Once we know that a universal cycle does not exits we may ask what is the largest word which does not
contain a n — 2-subset twice. In general this word has the length 2n — 3 and is:

123..n123 ...n—3n

Another nontrivial case is n — k =3

The necessary condition for the existence of the word is n = 1,2 (mod 3). Hence when n is multiple of 3
the cycle does not exist. For the other values of n we could not prove or disprove that a universal cycle
exists in general except the values shown below. The computer search shows some cases when a cycle
does exist:

e k=4 n=7
The cycle which contains all the 5-subsets of {1,2,3,4,5,6,7} is:
123451236412753167425637415627345671

e k=5 n=8
The cycle which contains all the 5-subsets of {1,2,3,4,5,6,7,8}is: 1234561234751238
6417385427638154768253761258461278436578

e k=7 n =10 (Example found by Brad Jackson) The cycle with 5 fold symmetry which contains
all the 7-subsets of {1,...,10} is:
234568123567102589371045923478102357126104710124 ...

General results that we found are the following:

e Somewhere in word, there is a length n — 1 word that is the n —1-set 123...n —1
Proof: is similar to that in case n — k = 2

e A n — 4-subset will appear at most twice inside of the cycle

Using the results obtained for n — k = 1,2,3 we can not say what happens for general n and k.
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2.2.1 Example

Consider the circular word

1234531425345

Note that it contains as subwords (respecting the circular nature) all subsets of the 5-element set
{1,2,3,4,5}, called the alphabet of the word.

Here is how I arrived at this word. First, I looked at the shortest words containing all subsets of a
one, two, three, and four-element alphabet. These are, respectively:

2
23

1
1
1
123413214

Starting with the above word 1, write each word as a row in an array, followed underneath by the
same word with everything shifted to the left by one space (remember that each is a circular word).
Continue until as many rows as there are letters in each word have been added. The resulting arrays
are:

1 12 123 12341324
21 231 23413241
312 34132412
41324123

13241234

32412341

24123413

41234132

Note that each main anti-diagonal consists entirely of the highest letter in each alphabet, and the
general “striped” appearance of the anti-diagonals.

Looking at successive pairs of arrays, we see that the larger array contains a portion of the smaller
one, which is boxed below:

1 [1]2 3 41324
21 El 413241
312 4132412
41324123

13241234

32412341

24123413

41234132

This led me to see if an extension of the last array could produce a larger array containing a word
on a five-letter alphabet with the desired property.
To understand my motivation, note that each of the “staircase” structures below:
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1 12 123 12341324
2[1] 2@ 23413241
3 34132412
41324123
13241234

3241234

241234

41234

are simply formed by k-cycles on each k-alphabet acting on the original boxed areas. This led me to
look for a 4-cycle that I could put in the following space in a larger array:

12345 5
2345 5
345 5
4 5 5
5

The striping phenomenon would then allow us to retrieve the word from the top row of the array.
I soon hit upon the following:

1234531425
2345 1425
345 4 25

4 5 25

5 5

The top row as it sits only contains all of the 2-subsets of the 5-alphabet. It was found to lack the 3-
subsets 1,4,5 and 2,3,5; adding 345 to the end gave the word shown at the beginning, which does contain
all subsets of the 5-alphabet as circular subwords. In the course of our investigation, we computed that
the lower bound for such a word turned out to be thirteen characters, rather than fifteen. Analogous
work on finding a word on six letters containing all subsets of 6 letters continues.

2.2.2 Attempts

Initially, the problem of generating covering n-words and their substrings attracted our attention from
the point of view of the following data structure motivated by binary gray coding of a given alphabet.
Let {a1,as,...,a,m} be an m-alphabet. Then, the following data structure will store all the k-words,
where k € {1,2,...,n}:
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This matrix is three dimensional and contains the following information. The rows represent an
ordering of the given m-alphabet, from the first character to the last. The rows represent k-words
formed from characters of the given alphabet, as follows. The elements of this matrix are binary digits,
with 1 in the column and row of the matrix if the given word contains the given character in the given
row. Thus each row represents a word with a given sequence of the characters of the alphabet represented
as a bit string. Along the third dimension are all the k! permutations of a word of length k over the m-
alphabet. Encoding the permutations of a given brought us to seek a binary Gray code for permutations.
We considered canonical decomposition of permutations into transposition sequences unique to within
a permutation of the natural ordering of the neutral element of the permutation group. Assuming each
transposition could be applied at most once and in a unique sequence, we considered a least change
ordering of binary transposition sequence codes representing a given permutation. This would be the
binary Gray code representing a given permutation.

Our purpose in retaining a binary coding scheme in the entire data structure was to enable a boolean
comparison of the covering word w; with all its sub-words ws ...wsn such that if the covering word in
some boolean combination with all its sub-words yields 0 (a “collapsing function”) then the covering word
would contain all sub-strings made from its characters as sub-words, which would indicate a solution to
the problem for a given word length.



Chapter 3

Optimal Design of a
Micro-Electrical-Mechanical Systems
Actuator

Participants: David Ross (Mentor), Kyle Biswanger, C. Sean Bohun, Lloyd Bridge, Leevan Ling, Do-
minique Noel, Simal Saujani, Daniel Spirn, Fridolin Ting.

PROBLEM STATEMENT: Fundamental to the design of an inkjet printer is precise delivery of ink
from the printer to the paper. One proposed method is to manufacture a tiny beam of metal in such
a way that when one end is heated, the beam bends thereby projecting a tiny volume of ink onto the
paper.

A preliminary beam has been manufactured at Eastman Kodak with the overall dimensions 100pm X
20pm x 5pum. This particular beam consisted of two materials, aluminium (Al) and silicon dioxide (SiO2)
in a ratio of 3:2. A voltage pulse of 10us was applied to the beam heating it up to about 400K and
resulting in a maximum rate of deflection of about 0.2ms™?!.

The problem set forth was to first model the beam described above in the hopes of understanding the
underlying physics. The second goal was to generalize the model to design a beam with perhaps more
layers that achieves a maximum deflection rate of at least 1ms—'. Because of the nature of the fluid, the
temperature of the beam must not exceed about 400K. In addition, the overall dimensions of the beam
are required to be about the same as the preliminary beam discussed above. As a result, the only free
parameters are the choice of materials for the beam and in which amounts they should be chosen.

16
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3.1 Introduction

Solving the equations for the full beam/fluid flow, even numerically, is a formidable task, and now we
shall proceed to simplify the model as much as possible. Of course, we intend to justify this process in
the subsequent analysis.

The assumptions:

e We may treat the problem with one space dimension. Moreover, we shall neglect calculation of the
flow field and opt to model the effect of the fluid on the beam with a parameterization scheme.

e The flow carries little fluid away (relative to the length scale of the beam) and so the convective
term in temperature conservation equation may be dropped.

e We assume each layer of the beam to be homogeneous and the heating to be uniform; conse-
quently, we expect a uniform temperature profile. Furthermore, we assume linear elasticity theory
is sufficient to model the beam, and that boundary conditions may be applied at the initial (un-
stretched/contracted) positions. We shall also neglect the thermal expansion of the oxide.

These simplifications are implicit in what follows.

3.2 Heat Transport in the System

Of central importance in the modelling of this problem is the transport of heat from the Al into the
Si0O4 and surrounding Isopar fluid. A current is supplied to the aluminium, which generates an amount
of heat. Since the thermal expansion coefficient of Al is large with respect to SiO2, the beam will bend.
If we could determine the temperature of the aluminium as a function of time, we could approximate
the displacement of the end of the beam and thus estimate the beam speed.

Listed below are some of the thermal properties of of Al, Si0, and the surrounding Isopar fluid. The
density of a material is denoted as p while the specific heat and conductivity are denoted as ¢, and k
respectively.

| Material | pgem ™) [ e, Jg 'K D) [k (Jem 's 'K |
Fluid (Tsopar) 0.77 2.1 1x1073
Silicon Dioxide 3.4 0.7 1.38 x 102
Aluminium 2.7 0.5 2.31

With these values, the first question that we ask is can we disregard temperature variations in
the oxide? If the temperature variations in the oxide layer are negligible, then thermally, we could
simply model the beam as being made out of aluminium. The rule of thumb is that in time At, heat
diffuses a length Az given by the expression Az = (kAt/pc,)'/?. Hence for SiOy, heat diffuses a length
approximately 1um in 5us. Since the depth of the SiO4 is approximately 3pum, we cannot disregard the
temperature variations in SiOs. Therefore, we must account for both materials.

The equations governing the heat flow are:

picubi = kfbes (Fluid)
PoxCroolt = koxbua (Silicon Oxide) (3.1)
pAlchlat = kAlazz + Q (Aluminium)

where () = 5.35 x 107 Watts cm~?. The boundary conditions are determined by the empirical fact that
temperature is continuous and energy is conserved across the interface boundaries. These conditions
imply

6 (interface ) f(interface™)

k=0, (interface”) = k*6,(interface™) 32
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Figure 3.1: Temperature through a cross section of the beam as heat is applied.

at any interface. In addition, at infinity the system should be at room temperature so that 6(z =
too,t) =60y = 300K.

We decided to limit our scope to the one dimensional problem. Notice that the one dimensional heat
flow equation in aluminium can be greatly simplified by integrating. As a result, we get

k0, — k.0,

N c
pAlC’UAlet =
L,

b+ Q@ (3.3)

where 6, is the rate of change of the average temperature of aluminium, L ,, is the width of the aluminium,
and b and ¢ denote boundaries oxide/aluminium and aluminium /fluid respectively. Since the conductivity
k of aluminium is so high, it can be assumed that the temperature variation across the aluminium is
zero. Hence the temperature of aluminium is spatially uniform. This fact greatly improves the efficiency
of our numerical schemes. The numerical scheme we use did not make use of equation (3.3) but our
results justify this approximation. The resulting temperature profile is displayed in figures 3.1 and 3.2.

3.3 Modelling the Beam

For the beam we consider a laminated beam with N layers labelled {1,2,..., N} where layer j has a
Young’s modulus of Ej}, a density of p; and a thickness of h; — h;_1. With this notation, we take hg =0
and hy = H the overall height of the laminated beam. When the beam is bent the surface outside the
curve is stretched while the surface inside the curve is compressed. Internal to the beam there must be
some surface which is neither stretched or compressed. This surface is known as the meutral surface.
The location of this neutral surface, yo, is found by summing the stress (force per unit area) in each of
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Figure 3.2: Temperature of the aluminium layer for a ¢ = 10us heating pulse.

the layers and noting that the resultant stress is zero. This procedure gives

N
> Ej(h —hiy)
yo = . (3.4)
2 Ej(h; — hj-1)
j=1

It is interesting to note that if the Young’s modulus was the same for all of the N layers then the above
expression becomes a telescoping series and the neutral surface would lie at hy/2 = H/2 which is the
height of the centre of mass if the layers also all have the same density.

3.3.1 Beam Equation

Having located the neutral surface, one can determine the beam equation for this laminated structure.
This is accomplished by computing the moment in each of the N layers at two horizontal positions,
2 = xg and © = xg + Az. The details of this derivation are simple yet tedious. The resulting beam
equation is

pHuy + Dugyyye = P

where

N
1
pH = E pi(hj —hj1), D= 3 E Ej(y — yo)°
j=1
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are the weighted density and the composite flexural rigidity respectively. and P is the external pressure.
If E; = EVj then using (3.4) we find D = EH?/12 as one would expect for a uniform beam of thickness
H. The value of E and « for the various materials are listed below.

| Material | E(gem 's?) | o (K1) |
Silicon Dioxide 6 x 101 ~0
Aluminium 20 x 101 16 x 106

3.3.2 Boundary Conditions

In order to be well posed, the equation for the beam requires a number of boundary conditions and
initial conditions. The initial conditions are simply that the beam has no velocity and is not bent. That
is, u(z,0) = 0 = u(z,0).

There are four boundary conditions. Since the beam is fixed and clamped at the origin x = 0 we
easily identify the conditions u(0,¢) = 0 and u,(0,¢) = 0. In addition, the free end, = L, does not
experience any shear stress and as such, 4., (L,t) = 0.

The fourth boundary condition arises from the application of heat. Since the beam is laminated,
each of the layers will expand at different rates when heated. This imbalance in the strains of the various
layers creates a moment at the end x = L. We derive this temperature dependent moment next.

We first recall that the stress and strain are related by

F; Al

A, E; L (3.6)
where E; is the Young’s modulus of the jth layer. Therefore a layer with A; = W (h; — h;_1) will have
F; = E;W(hj — hj—_1)Al;/l;. The magnitude of I; will depend on the layer. Before any heating takes
place, each of the layers has a length denoted as Iy and if we now heat the beam, each of the layers
expands at a different rate. Let a; denote the expansion rate of the jth layer so that I; = (1 + a;6)lo
is the amount the jth layer would have expanded at the temperature 6 if it was not connected to the
other layers. If we set [ to be the mean amount of expansion of the beam as a whole after the various
layers have expanded we have for the jth layer that

-1

Fj = E;W(hj = hj-1)—
J

However, these individual forces must cancel out so that Zjvzl F; = 0. Solving for I gives

Ej(hj —hj1)

M-

[

L (hj —hj1)

1 J

J

The quantity of interest is the the ratio (I —I;)/l; and using the fact that even for temperatures on the
order of 400K, a;0 < 1 so using (3.7) gives the approximation

N
. o Y Ejaj(h; —hj 1)
. . B B i=1
A_; ay L ~0E;(a— aj) where a="2 ~ : (3.8)
> Bi(hj = hj)

Jj=1
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The moment generated by each layer satisfies 0E; (& — a;) = E;(y — Yo)Uz2 (L). Multiplying by a factor
of (y —yo) and integrating over the layers, one finds the total effective moment at the point z = L to be

N
0(t) hi
Uy (L, 1) =35D Eﬁ i@ —aj)(y —yo)? =T6(t) (3.9)

j—1

which is linear with respect to the applied temperature.

3.4 Beam Fluid Interaction

Consider the following version of the beam equation that accounts to at least a first order approximation,
for both the drag and the viscosity of the fluid

(8 + pH)uy = —Dugpzs — kuy. (3.10)

An expression for the natural frequency of the beam can be obtained by using separation of variables.
Let u(z,t) = F(z)G(t) and consider a slightly simplified version of the boundary conditions where the
beam is not heated

u(x,0) = us(x,0) = u(0,t) = uy(0,t) = Upe (L, t) = Ugea(L,t) = 0.
Under the separation, one obtains two expressions. For the spatial variable

4
PN E=0 )= F(0) = F'(L) = F(L) = 0

and for the temporal variable
(B+pH)G" + kG’ + \'G = 0; G(0) = G'(0) = 0. (3.11)

Focusing on the spatial equation, we find that

. Az . Az Az Az
F(z)=A {sm <m> — sinh (Wﬂ +B [cos <D1/4> — cosh <m>}

where A and B are constants. The eigenvalues for A arise from the boundary conditions at =z = L.
Computing the second and third derivatives at L leads to the compatibility condition

—cos§ —cosh§ sin§ —sinh¢ | . AL
‘ —sin¢ —sinh¢  —cos& — cosh & =0 with 5_D1/4'

This implies that the eigenvalues satisfy 1 4 cos & cosh ¢ = 0 whose solutions are given by { = £1.8751
and &, ~ £(2n 4+ 1)7/2 for n € N. The fundamental frequency and damping of the beam can now be
determined by looking at the temporal equation.

3.4.1 Determining $ and &

We observe from the experimental data available that, throughout its motion, the beam oscillates about
some varying mean deflection. Not only this, but it is clear that, once the heat supply to the beam is
turned off, the amplitude of these oscillations in the fluid decreases in time. Thus, into our model, we
incorporate terms associated with a damped harmonic oscillator system, which will model the effect of
the viscous fluid on the motion of the beam.

Since our model is one dimensional, we shall consider the free end of the beam, oscillating in one
dimension in the fluid, as analogous to the mass in a mass-spring-dashpot system. For a mass m,



22 CHAPTER 3. MICRO-ELECTRICAL-MECHANICAL SYSTEMS ACTUATOR

attached to the free end of a spring with spring constant ¢, and moving in a dashpot containing fluid
with damping coefficient 2b, the motion of the mass is governed by

mi + 2bx + cx = 0.

me—b% )\
m?2 b

we identify the frequency of oscillation as (mc —b?)'/2 /m and the decay rate as b/m. Now, the frequency
of oscillations in fluid appears constant, and was measured as 3.45 x 10> Hz. The appropriate data for
frequency and damping calculations is summarized in the table below.

(3.12)

Oscillatory solutions of this equation have the form

z(t) = Ae /™ gin (

Fluid | Fundamental | Amplitude | Amplitude
Frequency at 15 us at 35 us
(MHz) () ()
Air 0.484 0.27 0.26
Isopar 0.345 0.293 0.086

The decay rate, measured over the remaining time after 20us, is b/m = 6.13 x 10*. Following the
separation of variables method we choose the fundamental mode ¢ = A3, and so

)\4
0 (6.13 x 10%)? = 4x?f2_ . = 4.70 x 10'?,
m

where \g = (3D /L*. That is,

&D

5 D D
— _ —12 _ -7
= 170 x 10008 2.63 x 10 I and b=1.61x10 i

m
A comparison of (3.12) with the separation of variables (3.11) method yields

D
k=322x10"7—_

D
_ —12
B=263x10 2= — pH, i

= (3.13)

as first approximations for the constants to be used in to match the given data. These numbers are later
tuned to match the data as close as possible.

3.5 Results

As there were two goals in this project two cases were considered. The first case was a beam in the
ratio of 2:3 of Al to SiOs in the Invar fluid. While in the second case, a ratio of 1:2 was chosen to
maximize the coupling moment induced by the temperature. In this second case the beam is slightly
thinner and therefore gets hotter for the same amount of energy input. The parameters for these two
cases are summarized below. Ti,ax = 397.3K in case 2:3 and 402.4K in case 1:2 respectively.

| Parameter | Case 2:3 | Case 1:2 |
pH 1.56 x 10~2 | 9.50 x 10~*
D 10.442 2.2542
T 4.755 x 1072 | 7.985 x 102
Q 4.08 x 107 6.80 x 107
B 1.32x107°% [ 1.32x 1073
k 123 73.8
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Figure 3.3: Position of the end of the beam with respect to time

The values of 5 and k are determined by matching the solution to the given experimental data in the
case 2:3. Once these values are known, the same value of 3 is used in the case 1:2 as the same volume
if Invar fluid is being accelerated in both cases. The value of k scales with the thickness of the beam.

For a given geometry a solution of the heat equation (3.1-3.2) determines 6(t). This time dependent
temperature is then applied as a boundary condition for the beam equation (3.5), (3.8-3.10). Numerical
solutions for the two cases are plotted below along with the experimental points. The agreement is
astounding.

3.6 Conclusions and Directions

Our initial goal was to accelerate Isopar fluid to a speed of 1ms™! over 10us using a beam that deflects
when heated. Our first objective was to develop an appropriate physical model for the problem. The key
simplifying assumptions included treating the problem as one dimensional, relying on the linear beam
equation and neglecting the details of the fluid flow.

We were able to reproduce experimental results with high agreement. Furthermore, applying the theory,
we were able to improve the speed of the fluid by a factor of 2.

Although we did not obtain our objective, we did make significant progress. The next step would be to
consider more than two layers and possibly different materials. Despite the inherent difficulties, studying
the two dimensional problem would be of interest. There’s also evidence that an insulating layer would
increase speed; this may increase the relaxation time beyond acceptable limits.
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Temperature Effects on a River or
Estuary Due to the Construction of
a Power Station

Participants: Colin Please (Mentor), Ibrahim Agyemang, Matthew Bolton, Samantha Carruthers,

3

Irina Dinu, Shafiqul Islam, Jung Min Lee, Lila Rasekh, Sirod Sirisup, John Frederick Williams.

PROBLEM STATEMENT: It is expected that the construction of a power station on a river will
have some pollution effects. We are particularly interested in the effect of the increase in temperature
caused by the release of 2 x 10? Js~! of heat from the power plant. The concern is that this increase in
temperature may have possible ecological effects on the river.

Three different situations are modelled.

24
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Figure 4.1: Idealized river with power station. v; = 02ms~', [; =10m, T; = 288K.

4.1 Introduction

We assumed that both river and estuary are channels with constant width. We also assume that without
a power station the temperature remains constant and does not vary with depth. The density of the
water is assumed constant because the temperature does not vary enough for it to be significant. Finally,
the flow rate of the pipe to and from the power plant are taken to be 100 m3s—!.

Three situations are considered. The first is where we have a power station on a river and the intake
pipe is upstream from the outflow. The second is where we reversed the position of the intake and outflow
pipes. In the above instances, we considered the case where there is no heat loss to the surroundings
and the case where there is a natural heat loss which is linearly dependent on the temperature. The
final situation is the case of having a power station on an estuary. Here we must take into account that
the velocity is time dependent, and the temperature is dependent on both time and space.

The following variable notation is used throughout.

v := the velocity of the river (assumed plug flow - no depth dependence)
l := the depth of the river

p = the density of water (assumed constant - 1000 kgm—3)

w := the width of the river (assumed constant - 100 m)

T := the temperature of the river

g := the acceleration due to gravity (9.81ms~?)

Q := the heat energy added by the condenser (2 x 10° Js™1)
E := the flow rate of the water through the pipes (100 m3s™")
P := the hydrostatic pressure

¢, := the specific heat of water (4.186kJkg 'K ')

h := the surface heat transfer coefficient (30 Js 'm—2K ')

To model these situations we considered what was occurring across the three boundaries of the river (see
figure 4.1) using the conservation laws of: mass, force, and energy. We assumed that there is no heat
conduction in our model and the heated water is discharged vertically from the outlet.

4.2 Solution of Idealized Models

4.2.1 Case 1. Intake Upstream of Outflow

Note that the variable subscripts refer to the region from which thee corresponding quantities are taken.
Also note that v, refers to the velocity inside the pipe (assumed constant: 2ms™'), and 7T}, is the
temperature inside the pipe.
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Mass Conservation

The amount of fluid entering any junction must equal the amount of fluid leaving the junction. This
gives two relations,

pv1liw pvalow + pE (1 2 junction)

pvaelaw + pE = puslzw (2-3 junction)

Force Balance (Newton’s second Law)

Balancing the forces at each junction also gives two expressions, where the the hydrostatic pressure is
given by P; = (I; — z) pg + P....

w ( él Pidz — fé2 Pydz — fll; Pairdz) = pwhv? — pwlyv? (1 2 junction)

w ( [52 Pydz — fé3 Pydz — fll: Pm,dz) = pwlyvi — pwlzv? (2-3 junction).

Conservation of Energy

Finally, equating the energy across any junction gives,
worly (503 + peyTh) — B (3pv]) + peyTy) = wosls (53 + pepTh) (1-2 junction)
wosly (503 + peyTs) + E (5pv) + pepyTy) = wosls (5pv35 + peyTs) (2-3 junction)

where the added heat from the power station is pFEc,T, = pEc,Ti + Q.

Scaling

These nonlinear algebraic equations pose a formidable problem. In order to simplify the equations,
appropriate dimensionless scalings were introduced in the hope that small parameters would be found
that may be neglected. We set

li=0=0)l, wvi=pwv, Ti=(1-8)T

where i € {2,3}. In addition we identify the following dimensionless parameters:

E 1 2 2
ay = ~ o =L 41x107Y, az= L 17 x 1078,
vlllw 2 gl 2Cp 1
v2 2Q)
=2t=1 = 51.0x ~ 10°.
ay 02 00, Qs Epv’ 0x 0
Solution
With these scalings the equations become:
2 = 2/},2(1*52)+1,
1 = N3(1 - 63) 3
1-(1-8) = 2m[l-pi(l-06),
(1-05)° = (1-63)> = 2as[p3(1—02) — p3(1-33)],
Cir = azpa(l—02) + p2(l —62)(1 — B2),

piaz(1—02) + (1= f2)(1 = d2)pr + Co = pz(1 = B3)(1 = 83) + pias(1 — d3)
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where C; = 14 a3 — ajaz3 — a; and Cy = aqa1a3 + a1 + asajaz. Recognizing the fact that many
parameters in the system are so small that they are negligible, the system is easily solved to leading
order:

62:07 ﬁ2:07 N2:05,
03 =0, B3=—-aiazas, p3=1.

Physically this means that the height of the river is essentially unchanged, the temperature increases
by approximately 2.3°C' at the outflow, and the velocity in region two is half the normal velocity of the
river.

4.2.2 Case 2 - Reversed Flow

With an understanding of the important scalings in this problem we can repeat the analysis for the case
where the inflow and outflow are reversed. From the analysis above, we can immediately write down the
solution to the new problem.

0o =0, Bo=—aiazas, p =2,
d03=0, fB3=—-aiazas, pg=1.

Physically this means that the temperature increases only at the outflow and by the same amount as
obtained earlier. This is because instead of the central section moving more slowly, now it moves faster.
The fact that the recirculated water does not get hotter and hotter may seem counterintuitive at first
glance. However, in this case the outflow mixes with the entire volume of the inflow diluting the amount
of heat added. In summary this analysis has shown that the temperature downstream must increase by
the same amount regardless of whether the outflow is upstream or downstream.

4.2.3 Case 3 - Heat Loss

With some insight into the problem, we can consider the more complicated case of accounting for heat
loss. Assuming temperature loss is linearly proportional to the difference between the temperature at a
position z and the natural temperature Ty, where the proportionally constant h = 30Js 'm2K~', we
have the energy equation:

dr h
x  pleyy
One can easily solve to find
T(z) =T [1+e 7" 2>

where g is the distance between the intake and outflow pipes and 1/v = plcyv/h ~ 280 km. Thus, the
temperature decays exponentially as you go downstream with a decay length of approximately 280 km.
This means that the temperature difference decays by a factor of e for every 280 km you go.

4.3 Flow in an Estuary

An estuary is a river system that is affected by large tides. To understand the flow in an estuary, we
assume a river as in section 2 with the addition of a dam at one end. Through a weir in the dam, we
imagine a constant rate of flow into the water. This models feeding into the river upstream from the
tide without having to worry about changing water levels in the water network upstream. We know that
the tide rises and falls periodically which gives us a time dependent boundary condition at one end of
our estuary.

By considering conservation of mass and energy we have the shallow water equations

ol 9l) awl) 0 (1 5 5\ _
E+—ax =0, o -I-% §gl +0°l) =0




28 CHAPTER 4. TEMPERATURE EFFECTS OF A POWER STATION

Dam

Ocean

Figure 4.2: An idealized estuary.

with the boundary conditions

R=1(0,t)v(0,t)w,  Il(mg,t) =lp + I1 cos(wt)
where R = 1400m3®s~ !, w = 100m, lp = 10m, [ = 1m, w = 27/12.4hrs, 2o = 100 km.
In dimensionless form we then have

oh ~ O(uh) O(uh) 0, , 2y
E-I—e 3y =0, 57 -I-ea—y(uh-l-alh)—()

with
u(0,7)h(0,7) = ay, h(l,7) =1+ ecost

and where 7 = wt, lgh =1, xoy = x, vou = v,

wllmg 1 ll 1 lgg R
~ 1.4 , = —=— = —= ~ 248, 9 =
lo s ’ ¢ lo ].0 ’ a 2’05 ’ a2 lgU)’Ug

Vo =

Assuming that
h=14¢€ehi(y,7) and u=0+eui(y,7),

we get
6h1 6u1

or " °

6“1 8h1
— = d — +2ea;— =0.
By 0 an g + 2ea; By 0

Cross-differentiating we obtain the wave equation for the correction to the height

P Oy
or? Oy?
with ¢ = 2a1€2 and boundary conditions
0h1(0,7)

hi(1,7) = cosT, =0.

dy

Detailed analysis of this equation, and recalling our physical scalings suggests that a reasonable flow in
the estuary generated by the tidal motion is of the form

v = uvg = v1 + vy cos(wt), l=1lgh=1.
The spatial variation has been neglected as it varies over a scale much larger than we are considering.

Although the height truly does vary in time, it does so slowly and relatively little and is thus not the
most important effect.
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Temperature at Power Station.

30 T

e=.1
251 1

151 q

101 ~

Figure 4.3: Temperature variation in the idealized estuary.

4.4 Temperature Variation on an Estuary

In our model of an estuary we will make all the same assumptions as above for the geometry and physical
properties of the estuary and power plant. From our analysis of the algebraic case and of the previous
modelling of the estuary, we also assume that v = v1 + vy cos(wt) in the river and that the height of the
river is constant. We will take the mean velocity to be very small, that is Z—[‘J =0 <« 1. Writing down
the dimensionless energy balance with heat loss as we had done earlier, we have

0
a—f + u(T)

98 _

ay _’YB )

where

u=-cos(r)+d0 for —y*<y<O0
u=cos(7) + u2d for 0 <y <y*,

with conservation across the outlet by the equation
0 [(2 = 1) + (u2B(y™,7) = B3, 7)) cosT| +ar [L+ B(0,7) + (B(y™,7) = By}, 7)) cosT] = 0.

Although in the no loss case we have a simple-looking advection equation, we are confounded from
finding an analytical solution by the complicated velocity term and the nonlocal jump condition across
the outlet. Instead we consider a numerical solution.

To solve the problem numerically we have assumed that the source and outlet are at the same location.
This is reasonable due to the scale - the separation is usually less than 1 km but we are interested in a
scale of hundreds of kilometres. For these computations we used an explicit up-winding first-order finite
difference method.

This lets us answer the questions posed by our mythical engineer, what is the temperature distribution
in space and how hot does the water near the station get? As one would expect, we get an oscillatory
solution slowly drifting down river and decaying slowly when heat loss is considered. The two important
parameters in this problem are the heat loss coefficient A and the mean river velocity vy.
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4.5 Conclusions

A model of the temperature distribution in an idealized 1-D river has been constructed. As a first study,
mass, force and energy conservation arguments were used to obtain the steady state solution for constant
river velocity. This model was then refined to include heat loss such that an estimate for the length scale
of temperature decay downstream of the power station could be obtained. The problem of a tidal estuary
(with heat loss) was addressed, and the resulting nonlinear advection equation was solved numerically.
As one would expect, when the mean flow velocity is small the temperature distribution is localised and
the peak temperature is high; when it is large the temperature is spatially more spread out, and the peak
temperature is lower. The numerical model provides a method to calculate the important quantitative
information required to assess the environmental impact of the power station on the estuary.



Chapter 5

Optimal Policies for Disk Controllers

Participants: Rachel Kuske (Mentor), Nicola Costanzino, Bruce Rout, Calin Anton, Cristina Popescu,
Leonid Mocofan, Amir Sepasi, Nathan Krislock, Zhihui Xue.

PROBLEM STATEMENT: The problem we consider is one of trying to maximize the amount of
information processed by a system consisting of a CPU and a RAID disk controller. We envision a
situation where the information to be processed consists of write data, read data, read requests and a
small amount of other miscellaneous jobs. We make the distinction between read data and read requests
because a request to retrieve data from, say, the hard drive or the cache is very small in size, while the
actual data that is retrieved and read may be very large. On the other hand, the data to be written
is accompanied with a write request that is very small in size compared to the average size of data
that is to be written. For this reason, we don’t distinguish between a stream that consists of write
data accompanied by a write request, and a stream consisting of just write data. The CPU processes
these requests by sending them (and any associated data) to the disk controller. Since we assume that
our CPU can only process serially, the job of the disk controller is to manage access to the hard disks,
such that the total time the CPU spends processing information is reduced from the time it would take
without the controller.

Our job is to first propose a simple model for the system in question and identify the important and
necessary parameters. Once this is done, we consider a few cases where we try to optimize the processing
ability of the system by tuning the parameters of the disk controller.

31
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5.1 Methodology of Solution

Below is a schematic of the system we consider in this report.

CACHE
X A |
v Y, | | Z,
A ™ i R ——
fu > HD
GONTROLLER ——-
CPU
X, W, Z,
)\r ft I"lt gr
fr ur
Y

We describe this system using a fluid model, which assumes that the data is flowing in and out at
a fairly regular rate. This approach has been very successful in situations where there is more-or-less
uniform usage, or that the time scale in which we monitor the flow of information is large compared
to the time interval between the discrete batches being sent to the CPU. Using this approach, we can
model the data and requests as a fluid-like steam quantities, and describe everything in terms of rates
with units of blocks per unit time. The parameters of the model are defined as follows:

>
S

: rate of incoming write data

: rate of incoming read requests

X, : amount of write data yet to be processed by CPU

X, : amount of read requests yet to be processed by CPU

i ¢ rate CPU can write data to cache (Megabytes per second)
uy - rate CPU can process read requests

fw : fraction of time CPU spends writing data

fr : fraction of time CPU spends writing write requests

Y, : amount of write data in the cache

Y, : amount of read data in the cache

d : ratio between average read data size and average read request size
Y © rate controller processes writes to HD

vy : rate controller processes read requests

gw : fraction of time controller spends writing data to HD

gr : fraction of time controller spends processing read requests
Z.w : amount of write data written to HD

Z, : amount of read data written to cache

pr @ rate CPU can process read data

fr ¢ fraction of time CPU spends reading data

fo : amount of time controller spends dealing with other jobs

>
3
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W, : amount of read data processed by CPU
Yiax : maximum data the cache can hold
T : the amount of time so that the system is completely processed

Consider a situation as in the previous schematic. For the analytical portion of this report, we will
work in the regime where the cache never gets full. Using the notations above we arrive at the following
model of a CPU- controller system:

)_(w(t) = Aw — Hw fuw Xr(t) =Ar — prfr

Yw(t) = Hwfuw = Ywuw(t) Yr(t) = iy fr —vrg:(t) d (5.1)

Zw(t) = Ywgw(t) Zr(t) = YrGuw — fritr .
Wi (t) = prfr

where we set

£ = fo if Yo+ Yy + Z < Vinax
W1 0 otherwise ,

and

 fr if Z,>0
fr= 0  otherwise .
This form for f,, ensures us that the cache is never full, and likewise the choice for f, ensures us that
we only spend time reading from the cache if there is data in the cache to be read. Clearly, we need to
impose some conditions on the state variables in order that we can pick out optimal g,, and g,.. For the
analytical portion of this report, we will consider the case where we never fill up the cache. Under this
assumption we have the constraints

Y, >0, Yu>0, 2,50, Y, 4Yy+Zr < Vi
fr+futfot+tfr=1, 9gr + 9w = L.

We pick out parameters g, and g,, such that the average throughput £ is maximized, where our control
£ is given by

(5.2)

T
€= 7 [ [Zulwa)0)+ Wila) O (5.3)

5.2 Results

We analysed three cases. The first case is one in which the disk controller has a fixed ratio for the
dedication percentages g,, and g,. The second case is one in which we assume that the dedication
percentages vary with time in a way that is proportional to the amount of data in the controllers cache.
Finally, we numerically consider a stochastic generalization of the first case.

5.2.1 CASE 1

We first consider maximizing the throughput over all constant values of g, and g,,, that is, we maximize
& over the set

A= {g, € [0,1]}.

In this case, a quick look at (5.3) convinces us that £ is maximized by maximizing g,,. However, the
constraints limit the size of g,,. Analyzing the requirements of (5.2) yields:
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Hr fr
Yrd
P fuw
W fr

r

Y, >0—=1—-g, < € (0,1]

Y >0= gy <

€ (0,1]

Zy >0 = gy >

€ (0,1].

Hence our optimal policy for this case is to set the disk controller dedication percentages to

gw = min {'uf;fw ,1— 'u;fT } gr=1—gu. (5.4)

Example 1:

As a demonstrative example, we choose A, = 1, A, = 1/20, p, = 2p, = 20, f,, = 1/2, f, = 1/400,d =
1/100, v = 4/3, 7, = 8/3, tttauw = 8/3 and f, = 1/4. These parameters satisfy all the inequalities and
tell us that the optimum dedication percentages for the disk controller for this strategy is g, = 3/4 and

gr =1/4.

5.2.2 CASE 2
We now turn our attention to the case where we set
9w = a(Y.(a) + Yy (o) + Z,.(a)(t), a>0 (5.5)

that is, the percentage of time dedicated to process the write request is directly proportional to how
full the cache is. This is a reasonable ansatz because the fuller the cache is, the more time we should
dedicate to emptying it out (recall that we are working under the requirement that the cache never gets
overflowed). For this case we have the nonlinear program

T
max % / [Zu(gu) (1) + Wi (g0) ()]t

over all g,, such that

guw =Y.+ Y, + Z,)

satisfies (5.2). In this case we must still solve the ODE system (5.1), but this time we substitute our
ansatz (5.5) for g,,. This leads to the system

v=Av+b
where
—Q%Yy —QYy —Q%Yy
A= —ay,d —ay.d —avy.d |,
—ayy —ayy —ayy
_ Pow fuo
b= —Yrd + pr fr
Yr — f‘r,u'r

and
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Yo
v = Y,
Zy

Example 2:
Equations for the full nonlinear program (i.e. without putting in any values for the parameters) are

horrendously long and unintelligible, so for simplicity we consider a particular example for the parame-
ter values given in the previous case. For this the solutions to the ODE’s are

1
Y, (1) = 004848t — —(0.002877 — 0.0002877¢ ")

0.09381
Yo (t;a) = (4.5298at + 1.53347(1 — 674.00041:))
(6]
0.287717
Zp(t;a) = —0.47343t + — (1 — e*4.00at)-
(6]

With some computations, we see that the problem

T
max% /0 Zu(g) (£) + Wi (g,) (8)]dt

subject to (5.2) is equivalent to
max{a(Y,(t; @) + Y, (t;a) + Z,.(t; )}
under the same constraints. The feasible set for « is given through

Y, > 0= a € (—1.360755/T,0) U (0.76365 x 108, )
Yo >0=a€eR
Z,>0= a < 0.5365675/T.

which implies that a € (—1.360755/T,0) U (0.76365 x 10~8,0.5365675/71). After solving the nonlin-
ear program we find that the optimal value of « is

o = 0.5365675/T, (5.6)

and thus putting this value of a in the formula for g,,, we get

gu(at,T): = 0.5365675(—0.42494996660t + 0.5356811791 — 053568117917 ¢~ 21448391535
t at
+ 0.1748382854(2.430531537%+ 1.533466752 — 1.53346755¢ 21448391535y /1,

Representing the g,, as a function of t and T we get the pictures from figure (5.1), where Dt represents
the total time the experiments is run for. As it can be seen, g,, tends to stabilize at a value around 0.The
relatively small value of g,, can be interpreted as a proof that the disk controller is kind of ”intelligent”.

5.2.3 CASE 3

Here we consider a case where the input data has an associated stationary distribution. For the simula-
tions, a standard poisson distributed write and read input data stream was randomly generated having
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Figure 5.1: g,, as a function of t and T

an averages A, and A, respectively. For the parameters, we used the sample values found in Examples
1 and 2.

The model assumed a disk controller buffer size of 4 Megabytes for our simulations taking time steps
of 3.75 seconds before clearing the buffer. The first figure (5.2) shows the distribution of data being
input to the CPU and the “output” stream as read requests. The second figure (5.3) shows the states of
the controller buffer. It can be seen that the buffer is being cleared each time step under our parameters
but is being nearly fully utilized throughout the run. The intermittent stream represents data sent to
the buffer before it is cleared by the controller (in the middle of time steps). The data lines across the
bottom of the graph represent amounts of data in the cache at the end of each time step.

The third figure (5.4) shows expected amounts of input and output data. In the model the input
data is in a buffer and has to wait for the CPU to send it to the controller’s cache. The output stream
represents the expected read requests serviced in each time step.

It can be seen from this figure that over 11 hours of simulation the parameters predict the system
can keep up to the demands of reads and writes to the hard drives provided the CPU has access to an
input buffer of 180 Megabytes. The expectation of output hits a maximum of 40 Megabytes of read
requests. Here we have assumed the read request size is an average of 1/100 of the actual output data
stream.

The model makes certain assumptions. It first fills the cache with incoming data. It then decides
how much data to input by checking that it does not overflow the cache. The model also calculates the
maximum amount of data that the CPU can write to the cache as py, fu, At. The model puts into the
cache whatever is less, the amount to fill the cache or the maximum it can write in the time allotted.
After the data during that time step has been handled, the CPU then loads the incoming data requests
into the cache, again after checking that the cache doesn’t overload and deciding on the least value of
either how much data it has to handle as read requests, filling the buffer or how much data the CPU
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poisson distribution of input and output stream
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Figure 5.2: The distribution of data being input to the CPU and the “output” stream as read requests.

can handle, namely p.., f., At.

After the CPU has loaded the buffer as much as it can, the model switches its attention to the
controller. The controller first empties data from the cache and writes it to the hard drive. The model
decides on the least value between the amount of write data in the cache and the maximum amount of
data it can possible handle in the time step, namely 7, g, At. Once the controller has tried to clear
the cache as much as it can it then sends data to the CPU. Here the model has the controller decide
between how much it has in read requests in the cache to process and the maximum amount of read
requests it can handle. The model then also takes into account the maximum amount of data that the
CPU can output and decides between all three to determine the amount of data to put in the output
stream.

The CPU’s input buffer is reduced by the amount of data sent to the cache and the amount of data
expected is lowered by the amount of data in the output stream.
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Figure 5.3: The states of the controller buffer.
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Figure 5.4: The expected amounts of input and output data.
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