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FOREWORD BY THE PIMS DIRECTORThe Pa
i�
 Institute for the Mathemati
al S
ien
es is 
ommitted to providing training for young math-emati
al s
ientists whether they are pursing 
areers in a
ademia or in industry.The Graduate Industrial Mathemati
al Modelling Camp (GIMMC) is one of two 
omponentsof the annual PIMS Industrial Forum. The other 
omponent is the PIMS Industrial Problem Solv-ing Workshop whi
h takes pla
e soon after the 
amp. GIMMC was 
on
eived to give students theopportunity to learn about the modern methods of applied mathemati
s. It also gives them extensivetraining and helps prepare them for the Industrial Problem Solving Workshop.At the workshop students work together in teams, under the supervision of invited mentors. Ea
h men-tor poses a problem arising from an industrial or engineering appli
ation and guides his or her team ofgraduate students through a modelling phase to a resolution.The third GIMMC was held at Simon Fraser University, May 23{27, 2000. Forty-one graduate students
ame from North Ameri
a 
ame to SFU to work �ve mentors from industry. Almost all the students 
amefrom 16 universities a
ross Canada, however one 
ame from as far away as New York University. The�ve industrial mentors, who 
ame from University of Minnesota, University of Southampton, EastmanKodak, Rensselaer Polyte
hni
 Institute and IBM, provided a wide range of interesting and 
hallengingproblems. It is my pleasure to announ
e that the programme was a huge su

ess.These pro
eedings 
ontain the 
ulmination of ea
h teams work and they show how mu
h 
an be a
hievedin a week of hard work.I want to express my appre
iation and gratitude to everyone involved in this workshop, in parti
ularI wish to thank the organisers (Keith Promislow, Mary Catherine Kropinski, Sadika Jungi
, LindsayHughes) and mentors (Ra
hel Kuske, Colin Please, David Ross, Donald S
hwendeman, Brett Stevens).The great su

ess of the �rst three years of GIMMC shows that we have mu
h to look forward to in thefuture.Dr. Nassif Ghoussoub, Dire
torPa
i�
 Institute for the Mathemati
al S
ien
es
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PREFACEAs preparations for the fourth Graduate Industrial Mathemati
al Modeling Camp (GIMMC) atUniversity of Vi
toria are now well under way, its an appropriate time to re
e
t upon the su

ess anddire
tion of these workshops. There is no doubt that the GIMMC has grown in size from the initial oneheld at SFU in 1998. That one attra
ted 30 appli
ants and had a shoestring budget. The 
urrent editionhas appli
ations in the 100s and a permanent pla
e in the PIMS budget. But the real measure of su

essof the GIMMC has to be the impa
t on the graduate students who have attended. Unfortunately, noformal re
ords have been kept, but there is abundant ane
dotal eviden
e: Math Pays O�!Consider two students, Antonio (Tony) Cabal, a graduate student in applied math at University ofWestern Ontario who attended the 1998 GIMMC, and Tom Janiewi
z, an undergrad at Simon FraserUniversity who attended the 2000 GIMMC. Tony worked on a problem mentored by David Ross (East-man Kodak) whose goal was to model the of di�usion of surfa
tants in a thin 
owing polymer known asa 
oating 
urtain. Su
h was the impression that Tony made upon David that when a position be
ameavailable at Kodak later that year, David brought Tony in for an interview. Tony is now employed asa mathemati
al modeller with Kodak. As a member of the integrated materials and mi
rostru
tureslab he develops and applies mathemati
al models of 
uid me
hani
s and MEMS mi
roa
tuators for inkjet printers. The 
rux of Tony's work involves the analysis and numeri
al solution of nonlinear PDEs.In addition, Tony has two patents pending for inventions whi
h have grown out of his mathemati
almodels! As David explains it \Tony is doing very well here, he is very good."In Tom's 
ase, he dove into the Catalyti
 Converter problem presented by Don S
hwendeman fromRensselaer Polyte
hni
 Institute. This problem is des
ribed in Chapter 5 of this Pro
eedings. A fewmonths after 
ompleting the GIMMC, armed with his BS in applied math and the writeup of the Catalyti
Converter problem, Tom interviewed at Universal Dynami
s, a BC high-te
h engineering/software �rm.In Tom's words: \When I showed the interviewer the report on the 
atalyti
 
onverter from the workshop,he did not hesitate too long to o�er me the job." He now works in the Brainwave group at UniversalDynami
s with another programmer and two engineers on the mathemati
al underpinnings of a softwaresystem whi
h 
ontrols manufa
turing pro
esses. Tom's work uses \
ontrol theory very intensely" and hein
ludes Lapla
e Transforms, z transforms, and singular value de
ompositions among the mathemati
alte
hniques he has applied re
ently.Tom has been eager to help establish 
onta
ts between Universal Dynami
s and the PIMS universi-ties; and perhaps to bring a problem to the GIMMC or the Industrial Problem Solving Workshop in thefuture. In this way Math and the GIMMC will 
ontinue to pay dividends for future students.Keith Promislow and Mary Catherine KropinskiOrganising CommitteeDepartment of Mathemati
s and Statisti
sSimon Fraser University
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Chapter 1Catalyti
 Converter: A SimpleMathemati
al Solution toUnderstanding OperationParti
ipants: Donald S
hwendeman (Mentor), Rozita Dara, Tomasz Janiewi
z, Margaret Liang, Mo-hammad Oskoorou
hi, Mauri
e Shevalier, Maikel Sianturi.PROBLEM STATEMENT: A 
atalyti
 
onverter is used by automobiles for 
ontrolling emissions.It takes unburned gases, whi
h 
an 
ontribute to smog, and \burns" them. The \burning" involves a
hemi
al rea
tion 
atalyzed by an inert metal lo
ated within the 
onverter. The 
hemi
al rea
tions aretemperature dependent and do not o

ur until the 
onverter rea
hes a 
riti
al temperature.In this workshop, the pro
esses involved in a 
atalyti
 
onverter are examined, heat transfer, masstransfer, and the 
hemi
al rea
tions. A mathemati
al model of the 
onverter is developed. The modelis then used to simulate the 
onverter, whi
h is similar to the work done by Oh and Cavendishi [3℄.
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2 CHAPTER 1. CATALYTIC CONVERTER1.1 Problem Des
riptionWhen a 
ar starts, the 
atalyti
 
onverter, whi
h is 
old, is exposed to hot gases. The 
onverter isslowly heated in a non-uniform manner, during whi
h time no 
onversion rea
tion o

urs. When the
onverter rea
hes the 
riti
al temperature, the rea
tion o

urs. Many of the rea
tions are exothermi
and add to the heating of the 
onverter. The 
onverter then heats the exhaust gas passing over it whi
hthen 
ontributes to the heating of the 
onverter not yet at the 
riti
al temperature. The 
on
entrationof gases undergoing the rea
tion de
reases as more of the 
onverter is heated. Ideally, when the entire
onverter rea
hes the 
riti
al temperature this 
on
entration will go to zero.In this model many simpli�
ations are made. One simpli�
ation involves the 
hemi
al spe
ies whi
hundergo the 
atalyti
 rea
tion. In this model only CO is 
onsidered to rea
t. The rea
tion involved isas follows: CO + 12O2 �! CO2In this model a 
on
entration of O2 is assumed to be 
onstant. Further the only sour
e of CO2 isassumed to be from the 
atalyti
 rea
tion, so the 
on
entration of CO2 is inversely related to CO.The se
ond major simpli�
ation involves the 
atalyti
 
onverter. It 
onsists of many tubules em-bedded in a 
erami
 matrix. The 
erami
 is 
oated with platinum. Instead of 
onsidering thousands oftubules, an average tubule whi
h is one dimensional in length is 
onsidered. It has a platinum 
oatingon top and bottom of the 
erami
. Through the 
enter of the tubule the exhaust gas 
ows.In the su

eeding se
tions, a simple one dimensional model is developed. The model is then non-dimensionalized and solved both analyti
ally and numeri
ally for the gas and 
erami
 temperature, aswell as the CO 
on
entration.1.2 Methodology of SolutionWe derive the equations based on two prin
iples, 
onservation of mass and 
onservation of heat. Thevariables we will attempt to solve for are,
g = Con
entration of gas in free spa
e.
s = Con
entration of gas on the surfa
e of the solid.Tg = Temperature of gas inside the 
onverter.Ts = Temperature of the solid.The Equation for Conservation of Mass in Open Spa
e isddtA Z ba 
gdx| {z }i = uA
0g| {z }ii �uA
�g| {z }iii +Pk Z ba (
s � 
g)dx| {z }iv ;where(i) is the rate of 
hange of mass of gas inside 
ontrol volume [a; b℄, A is the 
ross se
tional area,(ii) is the 
ux of gas at inlet a, u is the velo
ity of gas,(iii) is the 
ux of gas at outlet b,(iv) is mass transfer of gas to the surfa
e of the solid, here P is the parameter of the area of theopen spa
e and k is the mass transfer 
oeÆ
ient.Terms ii and iii 
an be written as a single integral, and sin
e a and b are arbitrary we 
an eliminatethe integrals. After some simpli�
ations we end up with the following equation:A� ��t
g + u ��x
g� = Pk(
s � 
g): (1.1)After adding up all the 
ontributions from various sour
es of heat, we will end up with the followingequation:



CHAPTER 1. CATALYTIC CONVERTER 3ddtA Z ba �
gTg�gdx| {z }I = uA�
gT 0g �g| {z }II �uA�
gT �g �g| {z }III +Ph Z ba (Ts � Tg)dx| {z }IV :where(I) is the rate of 
hange of heat inside 
ontrol volume [a; b℄, �
g is the spe
i�
 heat of the gas, and �gis the density of gas.(II) is the heat 
ux at a, T 0g is the temperature of gas at a.(III) is the heat 
ux at b, T �g is the temperature of gas at b.and,(IV) is the heat transfer to the surfa
e of the solid, h is the heat transfer 
oeÆ
ient.For reasons similar to equation (1.1) this equation simpli�es to the following:A�
g�g � ��tTg + u ��xTg� = Ph(Ts � Tg): (1.2)This is the equation for Conservation of Energy in Open Spa
e.The 
onservation of mass on the surfa
e of solid is obtained by balan
ing the following two quantitiesZ ba (A+B)~aRdx| {z }� = � Z ba �gPk(
s � 
g)dx| {z }�� ;where,* is moles of the gas generated by rea
tion on the surfa
e from a to b, here ~a is the area of platinumon the surfa
e of the solid, B is the 
ross se
tional area of the solid, and R is the rea
tion rate.** is the mass transfer of gas from the surfa
e.After eliminating the integrals we end up with the Equation for Conservation of Mass on Surfa
e:(A+B)~aR+ �gPk(
s � 
g) = 0: (1.3)The 
onservation of energy in the solid is represented by the following relationshipddtB Z ba �
s�sTsdx| {z }1 = DB�Ts�x jx=b| {z }2 �DB�Ts�x jx=a| {z }3 + Z ba Ph(Tg � Ts)dx| {z }4 + Z ba Pqdx| {z }5 ;where1 is the rate of 
hange of heat inside the solid in the 
ontrol volume in [a; b℄, �
s is the spe
i�
 heatof the solid, �s is the density of the solid.2 is the heat 
ux in solid at b, here D is the di�usion 
oeÆ
ient.3 is the heat 
ux in solid at a.4 is the heat transfer from solid to gas.5 is the heat generation due to rea
tion and q is the heat energy due to rea
tion.If we 
ombine term 2 and 3 into a single integral, eliminate the integrals from the above equation wewill have the equation for the Conservation of Energy in the Solid:B�
s�s �Ts�t = BD�2Ts�x2 + Ph(Tg � Ts) + Pq (1.4)If we analyze the exhaust from the engine we 
an 
ome up with the temperature and 
on
entrationof gas. These will give us insight into initial and boundary 
onditions. Thus Tg and 
g are known at



4 CHAPTER 1. CATALYTIC CONVERTERx = 0. Furthermore at any given time Tg is known as is 
g at the inlet. Sin
e at any instan
e there is noheat 
ux to the surrounding environment sin
e air is a good insulator, so �Ts�x jx=0;L = 0. Finally, sin
ethe 
onverter is initially at room temperature Tsjt=0 is known.The next step in the analysis of the above four equations is non-dimensionalization. After 
onsideringfour di�erent time s
ales: the path length time s
ale the mass transfer time s
ale, the energy time s
ale,and the temperature built up time s
ale, we de
ided that the last is the most appropriate one for a
onsideration of the warm up problem. Upon s
aling the variables, our equations transform into thefollowing non-dimensional system:u ��x
g = �(
s � 
g) (1.5)u ��xTg = �(Ts � Tg) (1.6)a�
se
Ts = 
g � 
s (1.7)��tTs = Æ �2�x2Ts + �(Tg � Ts) + �a�
se
Ts ; (1.8)where � = PkLAuR � = PhLA�
g�guR Æ = DtRL2�
s�s 
 = E�TRT 2s :Here L is the length of the 
onverter, uR is the velo
ity of the gas, E is the a
tivation energy, and �is a 
onstant of the rea
tion of CO with O2.The initial and boundary 
onditions translate as follows:� Sin
e s
aling eliminated time dependen
e in equations (1.5) and (1.6), we 
an drop Tg jt=0 and
gjt=0.� Tgjx=0 = 0.� 
gjx=0 = 1.� �Ts�x jx=0;L = 0.� Tsjt=0 = �1.1.3 Results1.3.1 Analyti
al SolutionThere are two stages for this problem. The �rst stage is the gentle heating of the 
onverter, and these
ond stage is the rea
tion of 
hemi
al spe
ies.In the heating stage, the temperature of the solid is almost independent of the lo
ation, so �2Ts�x2 issmall. sin
e Æ is small, we 
an ignore the se
ond derivative term in equation (1.8). Sin
e 
 is big andTs = �1 initially, e
Ts is small, so we 
an also 
ross out the exponential term in equation (1.8). Solvingthe modi�ed equation (1.5)- (1.8), we get 
g = 
s and they both de
rease slowly. The temperature of thegas de
reases as it moves down the 
onverter and heats up the solid. As a 
onsequen
e the temperatureof the solid in
reases slowly.When the solid rea
hes its 
riti
al temperature, 
hemi
al rea
tion starts, and we rea
h the se
ondstage. In this stage, Ts > 0, so we 
an not ignore the exponential term in equation (1.8). Inside the
onverter, the temperature does not 
hange mu
h before and after the rea
tion, so �Ts�t = 0, and �2Ts�x2 = 0.



CHAPTER 1. CATALYTIC CONVERTER 5Equation (1.8) be
omes: �(Tg � Ts) + �a�Cse
Ts = 0:Solving equations (1.5)- (1.8) gives: 
g = �(1� Ts)� � ��e
Ts1+�e
Ts :Plot of Ts versus 
g is shown below:
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Figure 1.1: Temperature of the 
onverter vs. 
on
entration of pollutantEquations (1.5) with (1.7) show that 
g is a de
reasing fun
tion of lo
ation x. 
g equals 1 at x=0,and we must follow the 
urve in �gure above with de
reasing 
g . At the spot where the 
urve turns,the path must jump to the bran
h of the 
urve that is hot, where Ts � 1, whi
h is also shown in thenumeri
al analysis below.1.3.2 Numeri
al SolutionThe equations used in the numeri
al solution are equations (1.5)- (1.8). The solution obtained was thesimplest and most straight forward. Equations (1.5) and (1.6) are ordinary di�erential equations butthey have a 
s and Ts dependents. The 
s dependents of equation (1.5) is removed by substitutingequation (1.7) and assuming Ts is known. Solving for 
g yields the following:
g = exp�Z x0 �u � �a�e
Ts1 + a�e
Ts � dx� : (1.9)Ts is assumed to be known along dis
rete points on x. This equation is solved using the trapezoidal rule.Equation (1.6) is also an ordinary di�erential equation with the following form:T 0g + �uTg = �uTs:The solution has a homogeneous and parti
ular part whi
h 
an be written asTg = e��u x Z x0 �uTse �u sds: (1.10)



6 CHAPTER 1. CATALYTIC CONVERTERThis equation is also solved using the trapezoidal rule.Equation (1.8) is a partial di�erential equation. The �rst term on the right hand side is repla
ed bythe 
entral di�eren
e formula. This then 
onverts it to an ordinary di�erential equation whi
h is solvedusing a modi�ed Euler Method.The te
hnique to solve the system of equations is as follows:1. Equation (1.9) is solved for 
g using an initial value of Ts.2. Equation (1.10) is solved for Tg using an initial value of Ts.3. The new Ts is solved for using the modi�ed Euler's Method.This new Ts is then substituted into step 1 and the loop is repeated until Tsjx=0 > 0:80. The resultsof the simulations are shown in Figures 1.2, 1.3, and 1.4.
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Figure 1.2: Temperature of the gas vs. the 
onverter lengthFigure (1.2) shows the temperature of the gas over the 
onverter length as a fun
tion of time. Initiallyat t = 0 and x = 0 the gas has the 
ondition of Tg = 0. Over the length of the 
onverter the temperaturedrops to �1 at x = 1. This is expe
ted sin
e the heat from the gas is absorbed by the 
onverter. As timeprogresses the temperature of the gas does not drop as mu
h over the length of the 
onverter. Thereis a point where the temperature of the gas in
reases. This is due to the 
onversion rea
tion o

urringand the gas absorbs heat from the 
onverter. As time 
ontinuous to progress the temperature of the gasin
reases until it is in equilibrium with the temperature of the 
onverter.Figure (1.3) shows the temperature of the 
onverter over its length as a fun
tion of time. Initially att = 0 the entire 
onverter is at its initial temperature of �1. As time progresses the temperature of the
onverter in
reases due to heat absorption from the gas. There is a point in time where the temperatureof the 
onverter is greater than that of the gas. This is due to the onset of the 
onversion rea
tion. Fromthis point in time on the temperature of the 
onverter raises sharply due to more 
onversion rea
tiono

urring. This temperature front travels towards the inlet lo
ated at x = 0 due to heat di�usion withinthe 
onverter.Figure (1.4) shows the 
on
entration of CO over the length of the 
onverter as a fun
tion of time.Initially the 
on
entration of CO does not de
rease, be
ause the temperature of the 
onverter is lowerthan the 
riti
al temperature. As time progresses the 
on
entration of CO de
reases as a fun
tion oflength due 
onsumption by the 
hemi
al rea
tion. At the end of the simulation the 
on
entration ofCO is 1 at the inlet and de
reases to 0 at the outlet. This indi
ates that the 
onverter is at optimumtemperature resulting in the optimum 
onversion rea
tion o

urring.
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Figure 1.3: Temperature of the 
onverter vs. its length
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Chapter 2Queue Compatible Gray Codes andAppli
ationsParti
ipants: Brett Stevens (Mentor), Paul Buskell, Paule E
imovi
, Cristian Ivanes
u, AnamariaSavu, Abid Malik, Tzvetalin Vassilev, Boting Yang, Zhiduo Zhao.PROBLEM STATEMENT: Our group treated the following aspe
ts of Gray Codes: k-subset of ann set and the problem of the shortest 
ir
ular 
overing n-word. In the pro
ess of investigating theseproblems, we en
ountered several interesting appli
ations of Gray 
odes, some of whi
h will be des
ribedbelow.
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CHAPTER 2. QUEUE COMPATIBLE GRAY CODES AND APPLICATIONS 92.1 All Subset Covering Words2.1.1 Formal Problem StatementProblem: What is the shortest 
ir
ular word on n-letters f1; 2; 3; : : : ng su
h that every subset off1; 2; 3; : : : ng appears at least on
e as a sub-word (k 
onse
utive letters for a size k subset).f(n) � nXk=0 k� nk � = n2n�1For the above upper bound, it is loose a

ording to the numeri
al results we have some approa
hes inimproving that: e.g.let Pnk=0 k� nk �=S;Pnk=0 k� nk + 1 �=SS;Pn�1k=0 k� nk �=SA;Pn�2k=0 k� nk �=SB;We have some results for these fun
tions as below:f(1)=1 f(2)=2 f(3)=3 f(4)=8 f(5)=13S(1)=1 S(2)=4 S(3)=12 S(4)=32 S(5)=80SS(1)=0 SS(2)=1 SS(3)=5 SS(4)=17 SS(5)=49SA(1)=0 SA(2)=2 SA(3)=9 SA(4)=28 SA(5)=75SB(1)=0 SB(2)=0 SB(3)=3 SB(4)=16 SB(5)=55From the table, we get better upper bound fun
tion SB. That surpasses fun
tion S.The fun
tion f(n) de�nes the length of the 
orresponding gray 
odes. e.g:n Gray 
ode1 12 123 12314 241234135 1234531425345We have the known lower bound � nbn2 
 �.2.1.2 Triangulational Gray CodesIn this se
tion, we des
ribe a kind of Gray 
ode whi
h is motivated by triangulations. Let S be a �niteset of points in the Eu
lidean plane. A triangulation of S is a maximal straight-line plane graph whoseverti
es are the points of S. By maximality, ea
h fa
e is a triangle ex
ept for the exterior fa
e, whi
h isthe 
omplement of the 
onvex hull of S. Without loss of generality, we 
an assume that all the points are



10 CHAPTER 2. QUEUE COMPATIBLE GRAY CODES AND APPLICATIONSin the general position, that is, no three points are 
ollinear. For ea
h edge whose endpoints are in S, we
an assign a number to it, for example, 1; 2; 3; � � � ; n(n� 1)=2. Let n = n(n� 1)=2. Ea
h triangulation
an be represented by a word of bits (i.e., numbers) X i = (x(i)1 ; x(i)2 ; � � � ; x(i)m ), where m is the number ofedges in the triangulation. m is 
onstant for ea
h triangulation when S is given. Thus, we have a 
odeword set X = fX1; X2; � � � ; XNg where N is the number of all the triangulations of S. Let T (S) be atriangulation of S, then an edge e of T (S) is 
ippable if it is adja
ent to two triangles whose union is a
onvex quadrilateral. So, the 
ip of e is an operation of removing e from T (S) and repla
ing it by theother diagonal of the 
onvex quadrilateral. In this way, we get a new triangulation T 0(S), and we saythat T 0(S) is a 
ip of T (S). It is well known that for any two X i and Xj in X there exists a series of
ips to transform X i to Xj , say, X i ! X i1 ! � � � ! X ij ! Xj . Thus, (X i; X i1 ; � � � ; X ij ; Xj) is a kindof Gray 
odes.The triangulational Gray 
ode is a sequen
e X i0 ; X i1 ; � � � ; X ik of distin
t m-bit n-ary 
ode wordssu
h that adja
ent words di�er in exa
tly one bit (regardless of the position). The 
ode may be de�nedby giving X i0 and the transition sequen
e T = (t0; t1; � � � ; tik�1), where tl is the labelling number of theedge in whi
h the 
ode words X il and X il+1 di�er.An important problem in the triangulational Gray 
ode is to 
ompute the shortest distan
e betweenany two 
ode words, where the shortest distan
e means the smallest number of 
ips needed to transformone word to the other. For this problem, we investigate a spe
ial 
ase, that is, where S is a 
onvex pointset. We use the greedy algorithm to atta
k this problem.The one-vertex emission triangulation is a triangulation ea
h interior edge of whi
h has the sameendpoint. For ea
h word in X , there exists a triangulational Gray 
ode su
h that this 
ode 
an betransformed to a one-vertex emission triangulation. So, we have the following algorithm.Algorithm (greedy strategy).Step 0. Given two words X i and Xj in X .Step 1. Sele
t one vertex v in X i whi
h has the maximum degree.Step 2. Computer the triangulational Gray 
ode whi
h transforms X i to the v-vertex emission triangu-lation.Step 3. Compute the triangulational Gray 
ode whi
h transforms the v-vertex emission triangulation toXj .We have observed that the approximation ratio of Algorithm is less than 2.Triangulation in three dimensions is more 
ompli
ated than that in two dimensions. A 3D triangu-lation is a partition of the input domain, point set or polyhedron, into a 
olle
tion of tetrahedra, thatmeet only at shared fa
es (verti
es, edges, or triangles).In three dimensional Eu
lidean spa
e, a stri
tly 
onvex hexahedron formed from �ve verti
es 
anbe triangulated in two ways: either as a pair of tetrahedra separated by a fa
e, or as three tetrahedrasurrounding an interior diagonal. A 3D 
ip is one in whi
h two (three) adja
ent tetrahedra of the 3Dtriangulation form a stri
tly 
onvex hexahedron, then one repla
e the tetrahedra by the other possible3D triangulation of the hexahedron 
ontaining three (two) tetrahedra. The 
ip 
an be 
onsidered to bea fa
e \
ip", where one interior fa
e is \
ipped" for three interior fa
es or vi
e versa.Similarly, we 
an de�ne the 3D triangulational Gray 
ode. The 3D triangulational Gray 
ode is asequen
e X i0 ; X i1 ; � � � ; X ik of distin
t m0-bit n0-ary 
ode words su
h that adja
ent words di�er in exa
tlyone bit (regardless of the position), where n0 = n(n�1)(n�2)=6 and m0 
an vary in words. So the lengthof the words may di�er. However, if the length of the adja
ent words is di�erent, then the di�eren
e ofthe length is 1.An important problem on the 3D triangulational Gray 
ode is whether for two words in 3D, whetherthere must exist a 3D triangulational Gray 
ode to 
onne
t them. For this problem, we just 
onsiderwhether there exists a 3D triangulational Gray 
ode whi
h 
an transform a two-emission 3D triangulationto a one-vertex emission triangulation, Unfortunately, even so spe
ial 
ase, we 
annot obtain signi�
antresult. We are going to 
ontinue this work.



CHAPTER 2. QUEUE COMPATIBLE GRAY CODES AND APPLICATIONS 112.2 Universal 
y
les for k-subsets of an n-setA universal 
y
le for k-subsets of f1; : : : ; ng is a 
y
li
 sequen
e of � nk � integers with the propertythat all subsets of f1; : : : ; ng of size k appear exa
tly on
e 
onse
utively in the sequen
e. As an examplethe word 1 2 3
ontains f1 2g f2 3g and f3 1g only on
e i.e. all 2-subsets of f1; 2; 3g.Problem: Given n and k is there any universal 
y
le and if there is how 
an we �nd it within a reason-able amount of time?A ne
essary 
ondition for the existen
e of the word is:k divides � n� 1k � 1 �There are some trivial 
ases:� k = 1 the universal 
y
le is 1 2 3 : : : n� k = n the universal 
y
le is 1 2 3 : : : n� k = n� 1 the universal 
y
le is 1 2 3 : : : nA nontrivial 
ase is k = n� 2.Result: We have established that is impossible to 
onstru
t a universal 
y
le in this 
ase even when thene
essary 
ondition is satis�ed (i.e. n is odd)Next we des
ribe the ideas whi
h led us to this result.Assuming that su
h a word exists then the following must happen:� Somewhere in the word, there is a length n subword that is the n-set 1 2 3 : : : nProof: We 
an assume wlog that the universal 
y
le 
ontains:1 2 3 : : : n� 2 x y zSin
e 2 3 : : : n�2 x is a (n�2)-subset x must be 1; n or n�1. If x is 1 then the subset 1 2 3 : : : n�2is repeated. So we may assume wlog x = n � 1. The allowed values for y are 1 or n. If y is n weare done. Otherwise y = 1 and the next position z is 2 or n. Continuing in this way if n does notappear we get a 
ontradi
tion: 1 2 3 : : : n�2 appears twi
e. So n has to appear whi
h implies thatthe 
y
le has to 
ontain 1 2 3 : : : n� If m � k then a m-subset 
an appear at most:1n�m+1�k � n� 1k � 1 � times� We already know that the pattern 1 2 3 : : : n appears somewhere inside of the 
y
le. If we provethat 2 3 : : : n� 1 are for
ed after 1 2 3 : : : nposition : 1 2 : : : n n+ 1 n+ 2 : : : 2n� 2number : 1 2 : : : n 2 3 : : : n� 1



12 CHAPTER 2. QUEUE COMPATIBLE GRAY CODES AND APPLICATIONSthis will 
ontradi
t the fa
t the n � 2-subset 2 3 : : : n � 1 appears just on
e and so the word 
annot exist.Proof:We look for the numbers whi
h 
an appear on positions n+ 1 n+ 2 n+ 3 : : : 2n� 2.position : 1 2 : : : n n+ 1 n+ 2 : : : 2n� 2number : 1 2 : : : n ? ? : : : ?The �rst position in whi
h 2 
an appear is n+1, the �rst position on whi
h 3 
an appear is n+2,...,the �rst position in whi
h n� 1 
an appear is 2n� 2.So n � 1 is for
ed to be in position 2n � 2 be
ause otherwise 1 2 3 : : : n � 2 are in positionsn+1 n+2 : : : 2n� 2, not ne
essarily in this order and so a subset is repeated. Also n� 2 is for
edto be in front of n� 1 and so on. This is proved by the indu
tion whi
h follows.Suppose that for a 
ertain i � 1 we have the pattern, so n-i-1 is not in this position.pos : �i : �1 1 : n� i� 2 : n� i+ 1 : n n+ 1 : 2n� i� 2 2n� i� 1 : 2n� 2num : ? : ? 1 : n� i� 2 : n� i+ 1 : n 1 : n� i� 2 n� i : n� 1In the �i; : : : ;�1 position 
an be any i-subsequen
e of fn�i; : : : ; n�1; n; g. But any i-subsequen
eof fn� i; : : : ; n� 1; n; g 
an be joined with f1; 2; : : : ; n� i� 2g and this gives a n� 2 subsequen
ewhi
h appears twi
e.This relies on the fa
t that the 
ase k = n� 1 is trivial and an universal 
y
le is 1 2 : : : n. To seethis remove f1; : : : ; n� i� 2g from the pattern and getn� i+ 1 : : : n n� i : : : n� 1whi
h is a

eptable for k = n� i and the set fn� i; : : : ; n� 1 ng q.e.d.On
e we know that a universal 
y
le does not exits we may ask what is the largest word whi
h does not
ontain a n� 2-subset twi
e. In general this word has the length 2n� 3 and is:1 2 3 : : : n 1 2 3 : : : n� 3 nAnother nontrivial 
ase is n� k = 3The ne
essary 
ondition for the existen
e of the word is n = 1; 2 (mod 3). Hen
e when n is multiple of 3the 
y
le does not exist. For the other values of n we 
ould not prove or disprove that a universal 
y
leexists in general ex
ept the values shown below. The 
omputer sear
h shows some 
ases when a 
y
ledoes exist:� k = 4 n = 7The 
y
le whi
h 
ontains all the 5-subsets of f1; 2; 3; 4; 5; 6; 7g is:1 2 3 4 5 1 2 3 6 4 1 2 7 5 3 1 6 7 4 2 5 6 3 7 4 1 5 6 2 7 3 4 5 6 7 1� k = 5 n = 8The 
y
le whi
h 
ontains all the 5-subsets of f1; 2; 3; 4; 5; 6; 7; 8g is: 1 2 3 4 5 6 1 2 3 4 7 5 1 2 3 86 4 1 7 3 8 5 4 2 7 6 3 8 1 5 4 7 6 8 2 5 3 7 6 1 2 5 8 4 6 1 2 7 8 4 3 6 5 7 8� k = 7 n = 10 (Example found by Brad Ja
kson) The 
y
le with 5 fold symmetry whi
h 
ontainsall the 7-subsets of f1; : : : ; 10g is:2 3 4 5 6 8 1 2 3 5 6 7 10 2 5 8 9 3 7 10 4 5 9 2 3 4 7 8 10 2 3 5 7 1 2 6 10 4 7 10 1 2 4 ...General results that we found are the following:� Somewhere in word, there is a length n� 1 word that is the n� 1-set 1 2 3 : : : n� 1Proof: is similar to that in 
ase n� k = 2� A n� 4-subset will appear at most twi
e inside of the 
y
leUsing the results obtained for n� k = 1; 2; 3 we 
an not say what happens for general n and k.



CHAPTER 2. QUEUE COMPATIBLE GRAY CODES AND APPLICATIONS 132.2.1 ExampleConsider the 
ir
ular word 1234531425345Note that it 
ontains as subwords (respe
ting the 
ir
ular nature) all subsets of the 5-element setf1,2,3,4,5g, 
alled the alphabet of the word.Here is how I arrived at this word. First, I looked at the shortest words 
ontaining all subsets of aone, two, three, and four-element alphabet. These are, respe
tively:
1   

1   2

1   2   3 

1   2   3   4   1   3   2   4Starting with the above word 1, write ea
h word as a row in an array, followed underneath by thesame word with everything shifted to the left by one spa
e (remember that ea
h is a 
ir
ular word).Continue until as many rows as there are letters in ea
h word have been added. The resulting arraysare:
2   1

1   2 1   2   3

2   3   1

3   1   2

1   2   3   4   1   3   2   4

2   3   4   1   3   2   4   1

3   4   1   3   2   4   1   2

4   1   3   2   4   1   2   3

1   3   2   4   1   2   3   4

4   1   2   3   4   1   3   2

3   2   4   1   2   3   4   1

2   4   1   2   3   4   1   3

1

Note that ea
h main anti-diagonal 
onsists entirely of the highest letter in ea
h alphabet, and thegeneral \striped" appearan
e of the anti-diagonals.Looking at su

essive pairs of arrays, we see that the larger array 
ontains a portion of the smallerone, whi
h is boxed below:
2   1

1 1   2 1   2   3

2   3   1

3   1   2

1   2   3   4   1   3   2   4

2   3   4   1   3   2   4   1

3   4   1   3   2   4   1   2

4   1   3   2   4   1   2   3

1   3   2   4   1   2   3   4

4   1   2   3   4   1   3   2

3   2   4   1   2   3   4   1

2   4   1   2   3   4   1   3This led me to see if an extension of the last array 
ould produ
e a larger array 
ontaining a wordon a �ve-letter alphabet with the desired property.To understand my motivation, note that ea
h of the \stair
ase" stru
tures below:
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2   1

1 1   2 1   2   3

2   3   1

3   1   2

1   2   3   4   1   3   2   4

2   3   4   1   3   2   4   1

3   4   1   3   2   4   1   2

4   1   3   2   4   1   2   3

1   3   2   4   1   2   3   4

4   1   2   3   4   1   3   2

3   2   4   1   2   3   4   1

2   4   1   2   3   4   1   3are simply formed by k-
y
les on ea
h k-alphabet a
ting on the original boxed areas. This led me tolook for a 4-
y
le that I 
ould put in the following spa
e in a larger array:
.    .    .    .    .    .    .    .    .   .

5                      5

4   5                     5

3   4   5                     5

2   3   4   5                     5

1   2   3   4   5                     5

.    .    .    .    .    .    .    .   .    .   

.    .    .    .    .    .    .    .   .    .The striping phenomenon would then allow us to retrieve the word from the top row of the array.I soon hit upon the following:
5   3   1   4   2   5

.    .    .    .    .    .    .    .   .    .   

.    .    .    .    .    .    .    .   .    .

.    .    .    .    .    .    .    .    .   .

1   2   3   4   5   3   1   4   2   5

2   3   4   5   3   1   4   2   5

3   4   5   3   1   4   2   5

4   5   3   1   4   2   5

The top row as it sits only 
ontains all of the 2-subsets of the 5-alphabet. It was found to la
k the 3-subsets 1,4,5 and 2,3,5; adding 345 to the end gave the word shown at the beginning, whi
h does 
ontainall subsets of the 5-alphabet as 
ir
ular subwords. In the 
ourse of our investigation, we 
omputed thatthe lower bound for su
h a word turned out to be thirteen 
hara
ters, rather than �fteen. Analogouswork on �nding a word on six letters 
ontaining all subsets of 6 letters 
ontinues.2.2.2 AttemptsInitially, the problem of generating 
overing n-words and their substrings attra
ted our attention fromthe point of view of the following data stru
ture motivated by binary gray 
oding of a given alphabet.Let fa1; a2; : : : ; amg be an m-alphabet. Then, the following data stru
ture will store all the k-words,where k 2 f1; 2; : : : ; ng:



CHAPTER 2. QUEUE COMPATIBLE GRAY CODES AND APPLICATIONS 15
c

c

c

11

ij

2   mw
2

a   a  .....   a1 2     m
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ij

ij

ij
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This matrix is three dimensional and 
ontains the following information. The rows represent anordering of the given m-alphabet, from the �rst 
hara
ter to the last. The rows represent k-wordsformed from 
hara
ters of the given alphabet, as follows. The elements of this matrix are binary digits,with 1 in the 
olumn and row of the matrix if the given word 
ontains the given 
hara
ter in the givenrow. Thus ea
h row represents a word with a given sequen
e of the 
hara
ters of the alphabet representedas a bit string. Along the third dimension are all the k! permutations of a word of length k over the m-alphabet. En
oding the permutations of a given brought us to seek a binary Gray 
ode for permutations.We 
onsidered 
anoni
al de
omposition of permutations into transposition sequen
es unique to withina permutation of the natural ordering of the neutral element of the permutation group. Assuming ea
htransposition 
ould be applied at most on
e and in a unique sequen
e, we 
onsidered a least 
hangeordering of binary transposition sequen
e 
odes representing a given permutation. This would be thebinary Gray 
ode representing a given permutation.Our purpose in retaining a binary 
oding s
heme in the entire data stru
ture was to enable a boolean
omparison of the 
overing word w1 with all its sub-words w2 : : : w2n su
h that if the 
overing word insome boolean 
ombination with all its sub-words yields 0 (a \
ollapsing fun
tion") then the 
overing wordwould 
ontain all sub-strings made from its 
hara
ters as sub-words, whi
h would indi
ate a solution tothe problem for a given word length.



Chapter 3Optimal Design of aMi
ro-Ele
tri
al-Me
hani
al SystemsA
tuatorParti
ipants: David Ross (Mentor), Kyle Biswanger, C. Sean Bohun, Lloyd Bridge, Leevan Ling, Do-minique Noel, Simal Saujani, Daniel Spirn, Fridolin Ting.PROBLEM STATEMENT: Fundamental to the design of an inkjet printer is pre
ise delivery of inkfrom the printer to the paper. One proposed method is to manufa
ture a tiny beam of metal in su
ha way that when one end is heated, the beam bends thereby proje
ting a tiny volume of ink onto thepaper.A preliminary beam has been manufa
tured at Eastman Kodak with the overall dimensions 100�m�20�m�5�m. This parti
ular beam 
onsisted of two materials, aluminium (Al) and sili
on dioxide (SiO2)in a ratio of 3:2. A voltage pulse of 10�s was applied to the beam heating it up to about 400K andresulting in a maximum rate of de
e
tion of about 0:2ms�1.The problem set forth was to �rst model the beam des
ribed above in the hopes of understanding theunderlying physi
s. The se
ond goal was to generalize the model to design a beam with perhaps morelayers that a
hieves a maximum de
e
tion rate of at least 1ms�1. Be
ause of the nature of the 
uid, thetemperature of the beam must not ex
eed about 400K. In addition, the overall dimensions of the beamare required to be about the same as the preliminary beam dis
ussed above. As a result, the only freeparameters are the 
hoi
e of materials for the beam and in whi
h amounts they should be 
hosen.
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CHAPTER 3. MICRO-ELECTRICAL-MECHANICAL SYSTEMS ACTUATOR 173.1 Introdu
tionSolving the equations for the full beam/
uid 
ow, even numeri
ally, is a formidable task, and now weshall pro
eed to simplify the model as mu
h as possible. Of 
ourse, we intend to justify this pro
ess inthe subsequent analysis.The assumptions:� We may treat the problem with one spa
e dimension. Moreover, we shall negle
t 
al
ulation of the
ow �eld and opt to model the e�e
t of the 
uid on the beam with a parameterization s
heme.� The 
ow 
arries little 
uid away (relative to the length s
ale of the beam) and so the 
onve
tiveterm in temperature 
onservation equation may be dropped.� We assume ea
h layer of the beam to be homogeneous and the heating to be uniform; 
onse-quently, we expe
t a uniform temperature pro�le. Furthermore, we assume linear elasti
ity theoryis suÆ
ient to model the beam, and that boundary 
onditions may be applied at the initial (un-stret
hed/
ontra
ted) positions. We shall also negle
t the thermal expansion of the oxide.These simpli�
ations are impli
it in what follows.3.2 Heat Transport in the SystemOf 
entral importan
e in the modelling of this problem is the transport of heat from the Al into theSiO2 and surrounding Isopar 
uid. A 
urrent is supplied to the aluminium, whi
h generates an amountof heat. Sin
e the thermal expansion 
oeÆ
ient of Al is large with respe
t to SiO2, the beam will bend.If we 
ould determine the temperature of the aluminium as a fun
tion of time, we 
ould approximatethe displa
ement of the end of the beam and thus estimate the beam speed.Listed below are some of the thermal properties of of Al, SiO2 and the surrounding Isopar 
uid. Thedensity of a material is denoted as � while the spe
i�
 heat and 
ondu
tivity are denoted as 
v and krespe
tively. Material � (g 
m�3) 
v (J g�1K�1) k (J 
m�1s�1K�1)Fluid (Isopar) 0.77 2.1 1� 10�3Sili
on Dioxide 3.4 0.7 1:38� 10�2Aluminium 2.7 0.5 2.31With these values, the �rst question that we ask is 
an we disregard temperature variations inthe oxide? If the temperature variations in the oxide layer are negligible, then thermally, we 
ouldsimply model the beam as being made out of aluminium. The rule of thumb is that in time �t, heatdi�uses a length �x given by the expression �x = (k�t=�
v)1=2. Hen
e for SiO2, heat di�uses a lengthapproximately 1�m in 5�s. Sin
e the depth of the SiO2 is approximately 3�m, we 
annot disregard thetemperature variations in SiO2. Therefore, we must a

ount for both materials.The equations governing the heat 
ow are:�f 
vf�t = kf�xx (Fluid)�ox
vox�t = kox�xx (Sili
on Oxide)�Al
vAl�t = kAl�xx +Q (Aluminium) (3.1)where Q = 5:35� 107 Watts 
m�3. The boundary 
onditions are determined by the empiri
al fa
t thattemperature is 
ontinuous and energy is 
onserved a
ross the interfa
e boundaries. These 
onditionsimply �(interfa
e�) = �(interfa
e+)k��x(interfa
e�) = k+�x(interfa
e+) (3.2)
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Isopar Oxide Al Isopar
t = 1�s
t = 5�s
t = 10�s

� � �0(K)

x (�m)Figure 3.1: Temperature through a 
ross se
tion of the beam as heat is applied.at any interfa
e. In addition, at in�nity the system should be at room temperature so that �(x =�1; t) = �0 = 300K.We de
ided to limit our s
ope to the one dimensional problem. Noti
e that the one dimensional heat
ow equation in aluminium 
an be greatly simpli�ed by integrating. As a result, we get�Al
vAl ��t = kf�x���
 � kox�x���bLAl +Q (3.3)where ��t is the rate of 
hange of the average temperature of aluminium, LAl is the width of the aluminium,and b and 
 denote boundaries oxide/aluminium and aluminium/
uid respe
tively. Sin
e the 
ondu
tivityk of aluminium is so high, it 
an be assumed that the temperature variation a
ross the aluminium iszero. Hen
e the temperature of aluminium is spatially uniform. This fa
t greatly improves the eÆ
ien
yof our numeri
al s
hemes. The numeri
al s
heme we use did not make use of equation (3.3) but ourresults justify this approximation. The resulting temperature pro�le is displayed in �gures 3.1 and 3.2.3.3 Modelling the BeamFor the beam we 
onsider a laminated beam with N layers labelled f1; 2; : : : ; Ng where layer j has aYoung's modulus of Ej , a density of �j and a thi
kness of hj �hj�1. With this notation, we take h0 = 0and hN = H the overall height of the laminated beam. When the beam is bent the surfa
e outside the
urve is stret
hed while the surfa
e inside the 
urve is 
ompressed. Internal to the beam there must besome surfa
e whi
h is neither stret
hed or 
ompressed. This surfa
e is known as the neutral surfa
e.The lo
ation of this neutral surfa
e, y0, is found by summing the stress (for
e per unit area) in ea
h of
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� � �0(K)

t (�s)Figure 3.2: Temperature of the aluminium layer for a t = 10�s heating pulse.the layers and noting that the resultant stress is zero. This pro
edure givesy0 = NXj=1Ej(h2j � h2j�1)2 NXj=1Ej(hj � hj�1) : (3.4)It is interesting to note that if the Young's modulus was the same for all of the N layers then the aboveexpression be
omes a teles
oping series and the neutral surfa
e would lie at hN=2 = H=2 whi
h is theheight of the 
entre of mass if the layers also all have the same density.3.3.1 Beam EquationHaving lo
ated the neutral surfa
e, one 
an determine the beam equation for this laminated stru
ture.This is a

omplished by 
omputing the moment in ea
h of the N layers at two horizontal positions,x = x0 and x = x0 + �x. The details of this derivation are simple yet tedious. The resulting beamequation is �Hutt +Duxxxx = Pwhere �H = NXj=1 �j(hj � hj�1); D = 13 NXj=1Ej(y � y0)3���hjhj�1 (3.5)
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omposite 
exural rigidity respe
tively. and P is the external pressure.If Ej = E 8j then using (3.4) we �nd D = EH3=12 as one would expe
t for a uniform beam of thi
knessH . The value of E and � for the various materials are listed below.Material E (g 
m�1s�2) � (K�1)Sili
on Dioxide 6� 1011 ' 0Aluminium 20� 1011 16� 10�63.3.2 Boundary ConditionsIn order to be well posed, the equation for the beam requires a number of boundary 
onditions andinitial 
onditions. The initial 
onditions are simply that the beam has no velo
ity and is not bent. Thatis, u(x; 0) = 0 = ut(x; 0).There are four boundary 
onditions. Sin
e the beam is �xed and 
lamped at the origin x = 0 weeasily identify the 
onditions u(0; t) = 0 and ux(0; t) = 0. In addition, the free end, x = L, does notexperien
e any shear stress and as su
h, uxxx(L; t) = 0.The fourth boundary 
ondition arises from the appli
ation of heat. Sin
e the beam is laminated,ea
h of the layers will expand at di�erent rates when heated. This imbalan
e in the strains of the variouslayers 
reates a moment at the end x = L. We derive this temperature dependent moment next.We �rst re
all that the stress and strain are related byFjAj = Ej�ljlj (3.6)where Ej is the Young's modulus of the jth layer. Therefore a layer with Aj =W (hj � hj�1) will haveFj = EjW (hj � hj�1)�lj=lj . The magnitude of lj will depend on the layer. Before any heating takespla
e, ea
h of the layers has a length denoted as l0 and if we now heat the beam, ea
h of the layersexpands at a di�erent rate. Let �j denote the expansion rate of the jth layer so that lj = (1 + �j�)l0is the amount the jth layer would have expanded at the temperature � if it was not 
onne
ted to theother layers. If we set l to be the mean amount of expansion of the beam as a whole after the variouslayers have expanded we have for the jth layer thatFj = EjW (hj � hj�1) l � ljlj :However, these individual for
es must 
an
el out so that PNj=1 Fj = 0. Solving for l givesl = NXj=1Ej(hj � hj�1)NXj=1 Ejlj (hj � hj�1) : (3.7)The quantity of interest is the the ratio (l� lj)=lj and using the fa
t that even for temperatures on theorder of 400K, �j� � 1 so using (3.7) gives the approximationFjAj = Ej l � ljlj ' �Ej(��� �j) where �� = NXj=1Ej�j(hj � hj�1)NXj=1Ej(hj � hj�1) : (3.8)
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h layer satis�es �Ej(����j) = Ej(y� y0)uxx(L). Multiplying by a fa
torof (y� y0) and integrating over the layers, one �nds the total e�e
tive moment at the point x = L to beuxx(L; t) = �(t)2D NXj=1Ej(��� �j)(y � y0)2���hjhj�1 = ��(t) (3.9)whi
h is linear with respe
t to the applied temperature.3.4 Beam Fluid Intera
tionConsider the following version of the beam equation that a

ounts to at least a �rst order approximation,for both the drag and the vis
osity of the 
uid(� + �H)utt = �Duxxxx � kut: (3.10)An expression for the natural frequen
y of the beam 
an be obtained by using separation of variables.Let u(x; t) = F (x)G(t) and 
onsider a slightly simpli�ed version of the boundary 
onditions where thebeam is not heatedu(x; 0) = ut(x; 0) = u(0; t) = ux(0; t) = uxx(L; t) = uxxx(L; t) = 0:Under the separation, one obtains two expressions. For the spatial variableF iv � �4D F = 0; F (0) = F 0(0) = F 00(L) = F 000(L) = 0and for the temporal variable(� + �H)G00 + kG0 + �4G = 0; G(0) = G0(0) = 0: (3.11)Fo
using on the spatial equation, we �nd thatF (x) = A �sin� �xD1=4�� sinh� �xD1=4��+B �
os� �xD1=4�� 
osh� �xD1=4��where A and B are 
onstants. The eigenvalues for � arise from the boundary 
onditions at x = L.Computing the se
ond and third derivatives at L leads to the 
ompatibility 
ondition���� � 
os � � 
osh � sin � � sinh �� sin � � sinh � � 
os � � 
osh � ���� = 0 with � = �LD1=4 :This implies that the eigenvalues satisfy 1 + 
os � 
osh � = 0 whose solutions are given by �0 = �1:8751and �n ' �(2n+ 1)�=2 for n 2 N. The fundamental frequen
y and damping of the beam 
an now bedetermined by looking at the temporal equation.3.4.1 Determining � and kWe observe from the experimental data available that, throughout its motion, the beam os
illates aboutsome varying mean de
e
tion. Not only this, but it is 
lear that, on
e the heat supply to the beam isturned o�, the amplitude of these os
illations in the 
uid de
reases in time. Thus, into our model, wein
orporate terms asso
iated with a damped harmoni
 os
illator system, whi
h will model the e�e
t ofthe vis
ous 
uid on the motion of the beam.Sin
e our model is one dimensional, we shall 
onsider the free end of the beam, os
illating in onedimension in the 
uid, as analogous to the mass in a mass-spring-dashpot system. For a mass m,
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hed to the free end of a spring with spring 
onstant 
, and moving in a dashpot 
ontaining 
uidwith damping 
oeÆ
ient 2b, the motion of the mass is governed bym�x+ 2b _x+ 
x = 0: (3.12)Os
illatory solutions of this equation have the formx(t) = Ae�bt=m sin rm
� b2m2 t! ;we identify the frequen
y of os
illation as (m
�b2)1=2=m and the de
ay rate as b=m. Now, the frequen
yof os
illations in 
uid appears 
onstant, and was measured as 3:45� 105 Hz. The appropriate data forfrequen
y and damping 
al
ulations is summarized in the table below.Fluid Fundamental Amplitude AmplitudeFrequen
y at 15 �s at 35 �s(MHz) (�m) (�m)Air 0.484 0.27 0.26Isopar 0.345 0.293 0.086The de
ay rate, measured over the remaining time after 20�s, is b=m = 6:13 � 104. Following theseparation of variables method we 
hoose the fundamental mode 
 = �40, and so�40m � (6:13� 104)2 = 4�2f2Isopar = 4:70� 1012;where �0 = �40D=L4. That is,m = �40D4:70� 1012L4 = 2:63� 10�12 DL4 and b = 1:61� 10�7 DL4 :A 
omparison of (3.12) with the separation of variables (3.11) method yields� = 2:63� 10�12 DL4 � �H; k = 3:22� 10�7 DL4 (3.13)as �rst approximations for the 
onstants to be used in to mat
h the given data. These numbers are latertuned to mat
h the data as 
lose as possible.3.5 ResultsAs there were two goals in this proje
t two 
ases were 
onsidered. The �rst 
ase was a beam in theratio of 2:3 of Al to SiO2 in the Invar 
uid. While in the se
ond 
ase, a ratio of 1:2 was 
hosen tomaximize the 
oupling moment indu
ed by the temperature. In this se
ond 
ase the beam is slightlythinner and therefore gets hotter for the same amount of energy input. The parameters for these two
ases are summarized below. Tmax = 397:3K in 
ase 2:3 and 402.4K in 
ase 1:2 respe
tively.Parameter Case 2:3 Case 1:2�H 1:56� 10�3 9:50� 10�4D 10.442 2.2542� 4:755� 10�2 7:985� 10�2Q 4:08� 107 6:80� 107� 1:32� 10�3 1:32� 10�3k 123 73.8
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x (�m)

t (�s)

Case 1:2
Case 2:3

Figure 3.3: Position of the end of the beam with respe
t to timeThe values of � and k are determined by mat
hing the solution to the given experimental data in the
ase 2:3. On
e these values are known, the same value of � is used in the 
ase 1:2 as the same volumeif Invar 
uid is being a

elerated in both 
ases. The value of k s
ales with the thi
kness of the beam.For a given geometry a solution of the heat equation (3.1-3.2) determines �(t). This time dependenttemperature is then applied as a boundary 
ondition for the beam equation (3.5), (3.8-3.10). Numeri
alsolutions for the two 
ases are plotted below along with the experimental points. The agreement isastounding.3.6 Con
lusions and Dire
tionsOur initial goal was to a

elerate Isopar 
uid to a speed of 1ms�1 over 10�s using a beam that de
e
tswhen heated. Our �rst obje
tive was to develop an appropriate physi
al model for the problem. The keysimplifying assumptions in
luded treating the problem as one dimensional, relying on the linear beamequation and negle
ting the details of the 
uid 
ow.We were able to reprodu
e experimental results with high agreement. Furthermore, applying the theory,we were able to improve the speed of the 
uid by a fa
tor of 2.Although we did not obtain our obje
tive, we did make signi�
ant progress. The next step would be to
onsider more than two layers and possibly di�erent materials. Despite the inherent diÆ
ulties, studyingthe two dimensional problem would be of interest. There's also eviden
e that an insulating layer wouldin
rease speed; this may in
rease the relaxation time beyond a

eptable limits.



Chapter 4Temperature E�e
ts on a River orEstuary Due to the Constru
tion ofa Power StationParti
ipants: Colin Please (Mentor), Ibrahim Agyemang, Matthew Bolton, Samantha Carruthers,Irina Dinu, Sha�qul Islam, Jung Min Lee, Lila Rasekh, Sirod Sirisup, John Frederi
k Williams.PROBLEM STATEMENT: It is expe
ted that the 
onstru
tion of a power station on a river willhave some pollution e�e
ts. We are parti
ularly interested in the e�e
t of the in
rease in temperature
aused by the release of 2� 109 J s�1 of heat from the power plant. The 
on
ern is that this in
rease intemperature may have possible e
ologi
al e�e
ts on the river.Three di�erent situations are modelled.

24
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ondenser
1 2 3v1; l1; T1 v2; l2; T2 v3; l3; T3

Figure 4.1: Idealized river with power station. v1 = 0:2m s�1; l1 = 10m; T1 = 288K.4.1 Introdu
tionWe assumed that both river and estuary are 
hannels with 
onstant width. We also assume that withouta power station the temperature remains 
onstant and does not vary with depth. The density of thewater is assumed 
onstant be
ause the temperature does not vary enough for it to be signi�
ant. Finally,the 
ow rate of the pipe to and from the power plant are taken to be 100 m3s�1.Three situations are 
onsidered. The �rst is where we have a power station on a river and the intakepipe is upstream from the out
ow. The se
ond is where we reversed the position of the intake and out
owpipes. In the above instan
es, we 
onsidered the 
ase where there is no heat loss to the surroundingsand the 
ase where there is a natural heat loss whi
h is linearly dependent on the temperature. The�nal situation is the 
ase of having a power station on an estuary. Here we must take into a

ount thatthe velo
ity is time dependent, and the temperature is dependent on both time and spa
e.The following variable notation is used throughout.v := the velo
ity of the river (assumed plug 
ow - no depth dependen
e)l := the depth of the river� := the density of water (assumed 
onstant - 1000 kgm�3)w := the width of the river (assumed 
onstant - 100m)T := the temperature of the riverg := the a

eleration due to gravity (9:81ms�2)Q := the heat energy added by the 
ondenser (2� 109 J s�1)E := the 
ow rate of the water through the pipes (100m3s�1)P := the hydrostati
 pressure
p := the spe
i�
 heat of water (4:186 kJkg�1K�1)h := the surfa
e heat transfer 
oeÆ
ient (30 J s�1m�2K�1)To model these situations we 
onsidered what was o

urring a
ross the three boundaries of the river (see�gure 4.1) using the 
onservation laws of: mass, for
e, and energy. We assumed that there is no heat
ondu
tion in our model and the heated water is dis
harged verti
ally from the outlet.4.2 Solution of Idealized Models4.2.1 Case 1. Intake Upstream of Out
owNote that the variable subs
ripts refer to the region from whi
h thee 
orresponding quantities are taken.Also note that vp refers to the velo
ity inside the pipe (assumed 
onstant: 2m s�1), and Tp is thetemperature inside the pipe.
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uid entering any jun
tion must equal the amount of 
uid leaving the jun
tion. Thisgives two relations, �v1l1w = �v2l2w + �E (1{2 jun
tion)�v2l2w + �E = �v3l3w (2{3 jun
tion)For
e Balan
e (Newton's se
ond Law)Balan
ing the for
es at ea
h jun
tion also gives two expressions, where the the hydrostati
 pressure isgiven by Pi = (li � z) �g + Pair.w �R l10 P1dz � R l20 P2dz � R l1l2 Pairdz� = �wl1v21 � �wl2v22 (1{2 jun
tion)w �R l20 P2dz � R l30 P3dz � R l3l2 Pairdz� = �wl2v22 � �wl3v23 (2{3 jun
tion).Conservation of EnergyFinally, equating the energy a
ross any jun
tion gives,wv1l1 � 12�v21 + �
pT1��E � 12�v2p + �
pT1� = wv2l2 � 12�v22 + �
pT2� (1{2 jun
tion)wv2l2 � 12�v22 + �
pT2�+E � 12�v2p + �
pTp� = wv3l3 � 12�v23 + �
pT3� (2{3 jun
tion)where the added heat from the power station is �E
pTp = �E
pT1 +Q.S
alingThese nonlinear algebrai
 equations pose a formidable problem. In order to simplify the equations,appropriate dimensionless s
alings were introdu
ed in the hope that small parameters would be foundthat may be negle
ted. We setli = (1� Æi)l1; vi = �iv1; Ti = (1� �i)T1where i 2 f2; 3g. In addition we identify the following dimensionless parameters:�1 = Ev1l1w � 12 ; �2 = v21gl1 � 4:1� 10�4; �3 = v212
pT1 � 1:7� 10�8;�4 = v2pv21 = 100; �5 = 2QE�v21 1:0� � 106:SolutionWith these s
alings the equations be
ome: 2 = 2�2(1� Æ2) + 1 ;1 = �3(1� Æ3) ;1� (1� Æ2)2 = 2�2[1� �22(1� Æ2)℄ ;(1� Æ2)2 � (1� Æ3)2 = 2�2[�22(1� Æ2)� �23(1� Æ3)℄ ;C1 = �3�2(1� Æ2) + �2(1� Æ2)(1� �2) ;�32�3(1� Æ2) + (1� �2)(1� Æ2)�2 + C2 = �3(1� �3)(1� Æ3) + �33�3(1� Æ3)



CHAPTER 4. TEMPERATURE EFFECTS OF A POWER STATION 27where C1 = 1 + �3 � �1�3 � �1 and C2 = �4�1�3 + �1 + �5�1�3. Re
ognizing the fa
t that manyparameters in the system are so small that they are negligible, the system is easily solved to leadingorder: Æ2 = 0 ; �2 = 0 ; �2 = 0:5 ;Æ3 = 0 ; �3 = ��1�3�5 ; �3 = 1 :Physi
ally this means that the height of the river is essentially un
hanged, the temperature in
reasesby approximately 2:3ÆC at the out
ow, and the velo
ity in region two is half the normal velo
ity of theriver.4.2.2 Case 2 - Reversed FlowWith an understanding of the important s
alings in this problem we 
an repeat the analysis for the 
asewhere the in
ow and out
ow are reversed. From the analysis above, we 
an immediately write down thesolution to the new problem. Æ2 = 0 ; �2 = ��1�3�5 ; �2 = 2 ;Æ3 = 0 ; �3 = ��1�3�5 ; �3 = 1 :Physi
ally this means that the temperature in
reases only at the out
ow and by the same amount asobtained earlier. This is be
ause instead of the 
entral se
tion moving more slowly, now it moves faster.The fa
t that the re
ir
ulated water does not get hotter and hotter may seem 
ounterintuitive at �rstglan
e. However, in this 
ase the out
ow mixes with the entire volume of the in
ow diluting the amountof heat added. In summary this analysis has shown that the temperature downstream must in
rease bythe same amount regardless of whether the out
ow is upstream or downstream.4.2.3 Case 3 - Heat LossWith some insight into the problem, we 
an 
onsider the more 
ompli
ated 
ase of a

ounting for heatloss. Assuming temperature loss is linearly proportional to the di�eren
e between the temperature at aposition x and the natural temperature T1, where the proportionally 
onstant h = 30 J s�1m�2K�1, wehave the energy equation: dTdx = h�l
pv [T1 � T (x)℄ ; T (x0) = T1One 
an easily solve to �nd T (x) = T1 h1 + e�
(x�x0)i ; x � x0where x0 is the distan
e between the intake and out
ow pipes and 1=
 = �l
pv=h � 280 km. Thus, thetemperature de
ays exponentially as you go downstream with a de
ay length of approximately 280 km.This means that the temperature di�eren
e de
ays by a fa
tor of e for every 280 km you go.4.3 Flow in an EstuaryAn estuary is a river system that is a�e
ted by large tides. To understand the 
ow in an estuary, weassume a river as in se
tion 2 with the addition of a dam at one end. Through a weir in the dam, weimagine a 
onstant rate of 
ow into the water. This models feeding into the river upstream from thetide without having to worry about 
hanging water levels in the water network upstream. We know thatthe tide rises and falls periodi
ally whi
h gives us a time dependent boundary 
ondition at one end ofour estuary.By 
onsidering 
onservation of mass and energy we have the shallow water equations�l�t + �(vl)�x = 0 ; �(vl)�t + ��x �12gl2 + v2l� = 0
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R Dam O
eanFigure 4.2: An idealized estuary.with the boundary 
onditionsR = l(0; t)v(0; t)w ; l(x0; t) = l0 + l1 
os(!t)where R = 1400m3s�1, w = 100m, l0 = 10m, l1 = 1m, ! = 2�=12:4 hrs, x0 = 100 km.In dimensionless form we then have�h�� + ��(uh)�y = 0 ; �(uh)�� + � ��y (u2h+ �1h2) = 0with u(0; �)h(0; �) = �2 ; h(1; �) = 1 + � 
os �and where � = !t, l0h = l, x0y = x, v0u = v,v0 = !l1x0l0 � 1:4ms�1 ; � = l1l0 = 110 ; �1 = l0g2v20 � 24:8 ; �2 = Rl0wv0 � 1 :Assuming that h = 1 + �h1(y; �) and u = 0 + �u1(y; �) ;we get �h1�� + ��u1�y = 0 and �u1�� + 2��1 �h1�y = 0 :Cross-di�erentiating we obtain the wave equation for the 
orre
tion to the height�2h1��2 � 
2 �2h1�y2 = 0with 
2 = 2�1�2 and boundary 
onditionsh1(1; �) = 
os �; �h1(0; �)�y = 0 :Detailed analysis of this equation, and re
alling our physi
al s
alings suggests that a reasonable 
ow inthe estuary generated by the tidal motion is of the formv = uv0 = v1 + v0 
os(!t); l = l0h = l0 :The spatial variation has been negle
ted as it varies over a s
ale mu
h larger than we are 
onsidering.Although the height truly does vary in time, it does so slowly and relatively little and is thus not themost important e�e
t.
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Figure 4.3: Temperature variation in the idealized estuary.4.4 Temperature Variation on an EstuaryIn our model of an estuary we will make all the same assumptions as above for the geometry and physi
alproperties of the estuary and power plant. From our analysis of the algebrai
 
ase and of the previousmodelling of the estuary, we also assume that v = v1 + v0 
os(!t) in the river and that the height of theriver is 
onstant. We will take the mean velo
ity to be very small, that is v1v0 = Æ � 1. Writing downthe dimensionless energy balan
e with heat loss as we had done earlier, we have���� + u(�)���y = �
� ;where u = 
os(�) + Æ for � y� < y < 0u = 
os(�) + �2Æ for 0 < y < y� ;with 
onservation a
ross the outlet by the equationÆ �(�2 � 1) + ��2�(y��; �) � �(y�+; �)� 
os ��+ �1 �1 + �(0; �) + ��(y��; �) � �(y�+; �)� 
os �� = 0 :Although in the no loss 
ase we have a simple-looking adve
tion equation, we are 
onfounded from�nding an analyti
al solution by the 
ompli
ated velo
ity term and the nonlo
al jump 
ondition a
rossthe outlet. Instead we 
onsider a numeri
al solution.To solve the problem numeri
ally we have assumed that the sour
e and outlet are at the same lo
ation.This is reasonable due to the s
ale - the separation is usually less than 1 km but we are interested in as
ale of hundreds of kilometres. For these 
omputations we used an expli
it up-winding �rst-order �nitedi�eren
e method.This lets us answer the questions posed by our mythi
al engineer, what is the temperature distributionin spa
e and how hot does the water near the station get? As one would expe
t, we get an os
illatorysolution slowly drifting down river and de
aying slowly when heat loss is 
onsidered. The two importantparameters in this problem are the heat loss 
oeÆ
ient h and the mean river velo
ity v0.
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lusionsA model of the temperature distribution in an idealized 1-D river has been 
onstru
ted. As a �rst study,mass, for
e and energy 
onservation arguments were used to obtain the steady state solution for 
onstantriver velo
ity. This model was then re�ned to in
lude heat loss su
h that an estimate for the length s
aleof temperature de
ay downstream of the power station 
ould be obtained. The problem of a tidal estuary(with heat loss) was addressed, and the resulting nonlinear adve
tion equation was solved numeri
ally.As one would expe
t, when the mean 
ow velo
ity is small the temperature distribution is lo
alised andthe peak temperature is high; when it is large the temperature is spatially more spread out, and the peaktemperature is lower. The numeri
al model provides a method to 
al
ulate the important quantitativeinformation required to assess the environmental impa
t of the power station on the estuary.



Chapter 5Optimal Poli
ies for Disk ControllersParti
ipants: Ra
hel Kuske (Mentor), Ni
ola Costanzino, Bru
e Rout, Calin Anton, Cristina Popes
u,Leonid Mo
ofan, Amir Sepasi, Nathan Krislo
k, Zhihui Xue.PROBLEM STATEMENT: The problem we 
onsider is one of trying to maximize the amount ofinformation pro
essed by a system 
onsisting of a CPU and a RAID disk 
ontroller. We envision asituation where the information to be pro
essed 
onsists of write data, read data, read requests and asmall amount of other mis
ellaneous jobs. We make the distin
tion between read data and read requestsbe
ause a request to retrieve data from, say, the hard drive or the 
a
he is very small in size, while thea
tual data that is retrieved and read may be very large. On the other hand, the data to be writtenis a

ompanied with a write request that is very small in size 
ompared to the average size of datathat is to be written. For this reason, we don't distinguish between a stream that 
onsists of writedata a

ompanied by a write request, and a stream 
onsisting of just write data. The CPU pro
essesthese requests by sending them (and any asso
iated data) to the disk 
ontroller. Sin
e we assume thatour CPU 
an only pro
ess serially, the job of the disk 
ontroller is to manage a

ess to the hard disks,su
h that the total time the CPU spends pro
essing information is redu
ed from the time it would takewithout the 
ontroller.Our job is to �rst propose a simple model for the system in question and identify the important andne
essary parameters. On
e this is done, we 
onsider a few 
ases where we try to optimize the pro
essingability of the system by tuning the parameters of the disk 
ontroller.
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32 CHAPTER 5. OPTIMAL POLICIES FOR DISK CONTROLLERS5.1 Methodology of SolutionBelow is a s
hemati
 of the system we 
onsider in this report.
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rWe des
ribe this system using a 
uid model, whi
h assumes that the data is 
owing in and out ata fairly regular rate. This approa
h has been very su

essful in situations where there is more-or-lessuniform usage, or that the time s
ale in whi
h we monitor the 
ow of information is large 
omparedto the time interval between the dis
rete bat
hes being sent to the CPU. Using this approa
h, we 
anmodel the data and requests as a 
uid-like steam quantities, and des
ribe everything in terms of rateswith units of blo
ks per unit time. The parameters of the model are de�ned as follows:�w : rate of in
oming write data�r : rate of in
oming read requestsXw : amount of write data yet to be pro
essed by CPUXr : amount of read requests yet to be pro
essed by CPU�w : rate CPU 
an write data to 
a
he (Megabytes per se
ond)�r : rate CPU 
an pro
ess read requestsfw : fra
tion of time CPU spends writing datafr : fra
tion of time CPU spends writing write requestsYw : amount of write data in the 
a
heYr : amount of read data in the 
a
hed : ratio between average read data size and average read request size
w : rate 
ontroller pro
esses writes to HD
r : rate 
ontroller pro
esses read requestsgw : fra
tion of time 
ontroller spends writing data to HDgr : fra
tion of time 
ontroller spends pro
essing read requestsZw : amount of write data written to HDZr : amount of read data written to 
a
he�� : rate CPU 
an pro
ess read dataf� : fra
tion of time CPU spends reading datafo : amount of time 
ontroller spends dealing with other jobs
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essed by CPUYmax : maximum data the 
a
he 
an holdT : the amount of time so that the system is 
ompletely pro
essedConsider a situation as in the previous s
hemati
. For the analyti
al portion of this report, we willwork in the regime where the 
a
he never gets full. Using the notations above we arrive at the followingmodel of a CPU- 
ontroller system:_Xw(t) = �w � �wfw _Xr(t) = �r � �rfr_Yw(t) = �wfw � 
wgw(t) _Yr(t) = �rfr � 
rgr(t) d_Zw(t) = 
wgw(t) _Zr(t) = 
rgw � f���_Wr(t) = ��f� (5.1)where we set fw = � ~fw if Yr + Yw + Zr < Ymax0 otherwise ,and f� = � ~f� if Zr > 00 otherwise .This form for fw ensures us that the 
a
he is never full, and likewise the 
hoi
e for f� ensures us thatwe only spend time reading from the 
a
he if there is data in the 
a
he to be read. Clearly, we need toimpose some 
onditions on the state variables in order that we 
an pi
k out optimal gw and gr. For theanalyti
al portion of this report, we will 
onsider the 
ase where we never �ll up the 
a
he. Under thisassumption we have the 
onstraintsYr > 0; Yw > 0; Zr > 0; Yr + Yw + Zr < Ymaxfr + fw + fo + f� = 1; gr + gw = 1: (5.2)We pi
k out parameters gr and gw su
h that the average throughput E is maximized, where our 
ontrolE is given by E := 1T Z T0 [Zw(gw)(t) +Wr(gr)(t)℄dt (5.3)5.2 ResultsWe analysed three 
ases. The �rst 
ase is one in whi
h the disk 
ontroller has a �xed ratio for thededi
ation per
entages gw and gr. The se
ond 
ase is one in whi
h we assume that the dedi
ationper
entages vary with time in a way that is proportional to the amount of data in the 
ontrollers 
a
he.Finally, we numeri
ally 
onsider a sto
hasti
 generalization of the �rst 
ase.5.2.1 CASE 1We �rst 
onsider maximizing the throughput over all 
onstant values of gr and gw, that is, we maximizeE over the set A := fgw 2 [0; 1℄g:In this 
ase, a qui
k look at (5.3) 
onvin
es us that E is maximized by maximizing gw. However, the
onstraints limit the size of gw. Analyzing the requirements of (5.2) yields:



34 CHAPTER 5. OPTIMAL POLICIES FOR DISK CONTROLLERSYr > 0 =) 1� gw < �rfr
r d 2 (0; 1℄Yw > 0 =) gw < �wfw
w 2 (0; 1℄Zr > 0 =) gw > ��f�
r 2 (0; 1℄:Hen
e our optimal poli
y for this 
ase is to set the disk 
ontroller dedi
ation per
entages togw = min��wfw
w ; 1� ��f�
r � gr = 1� gw: (5.4)Example 1:As a demonstrative example, we 
hoose �w = 1; �r = 1=20; �w = 2�r = 20; fw = 1=2; fr = 1=400; d =1=100; 
w = 4=3; 
r = 8=3; �tau = 8=3 and f� = 1=4. These parameters satisfy all the inequalities andtell us that the optimum dedi
ation per
entages for the disk 
ontroller for this strategy is gw = 3=4 andgr = 1=4.5.2.2 CASE 2We now turn our attention to the 
ase where we setgw = �(Yr(�) + Yw(�) + Zr(�))(t); � > 0 (5.5)that is, the per
entage of time dedi
ated to pro
ess the write request is dire
tly proportional to howfull the 
a
he is. This is a reasonable ansatz be
ause the fuller the 
a
he is, the more time we shoulddedi
ate to emptying it out (re
all that we are working under the requirement that the 
a
he never getsover
owed). For this 
ase we have the nonlinear programmax 1T Z T0 [Zw(gw)(t) +Wr(gr)(t)℄dtover all gw su
h that gw := �(Yr + Yw + Zr)satis�es (5.2). In this 
ase we must still solve the ODE system (5.1), but this time we substitute ouransatz (5.5) for gw. This leads to the system _v = Av + bwhere A = 0� ��
w ��
w ��
w��
rd ��
rd ��
rd��
r ��
r ��
r 1A ;_b = 0� �wfw�
rd+ �rfr
r � f��� 1A :and
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v = 0� YwYrZr 1A :Example 2:Equations for the full nonlinear program (i.e. without putting in any values for the parameters) arehorrendously long and unintelligible, so for simpli
ity we 
onsider a parti
ular example for the parame-ter values given in the previous 
ase. For this the solutions to the ODE's areYr(t;�) = 0:04848t� 1� (0:002877� 0:0002877e�4:00�t)Yw(t;�) = 0:09381� (4:5298�t+ 1:53347(1� e�4:00�t))Zr(t;�) = �0:47343t+ 0:287717� (1� e�4:00�t):With some 
omputations, we see that the problemmax 1T Z T0 [Zw(gw)(t) +Wr(gr)(t)℄dtsubje
t to (5.2) is equivalent to max� f�(Yr(t;�) + Yw(t;�) + Zr(t;�)gunder the same 
onstraints. The feasible set for � is given throughYr > 0 =) � 2 (�1:360755=T; 0)[ (0:76365� 10�8;1)Yw > 0 =) � 2 RZr > 0 =) � < 0:5365675=T .whi
h implies that � 2 (�1:360755=T; 0) [ (0:76365 � 10�8; 0:5365675=T ). After solving the nonlin-ear program we �nd that the optimal value of � is� = 0:5365675=T; (5.6)and thus putting this value of � in the formula for gw, we getgw(�t; T ) : = 0:5365675(�0:4249499666�t+ 0:5356811791� 0:5356811791T e�2:144839153�tT+ 0:1748382854(2:430531537�tT + 1:533466752� 1:53346755e�2:144839153�tT )T )=T:Representing the gw as a fun
tion of t and T we get the pi
tures from �gure (5.1), where Dt representsthe total time the experiments is run for. As it 
an be seen, gw tends to stabilize at a value around 0.Therelatively small value of gw 
an be interpreted as a proof that the disk 
ontroller is kind of "intelligent".5.2.3 CASE 3Here we 
onsider a 
ase where the input data has an asso
iated stationary distribution. For the simula-tions, a standard poisson distributed write and read input data stream was randomly generated having
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Figure 5.1: gw as a fun
tion of t and Tan averages �w and �r respe
tively. For the parameters, we used the sample values found in Examples1 and 2.The model assumed a disk 
ontroller bu�er size of 4 Megabytes for our simulations taking time stepsof 3.75 se
onds before 
learing the bu�er. The �rst �gure (5.2) shows the distribution of data beinginput to the CPU and the \output" stream as read requests. The se
ond �gure (5.3) shows the states ofthe 
ontroller bu�er. It 
an be seen that the bu�er is being 
leared ea
h time step under our parametersbut is being nearly fully utilized throughout the run. The intermittent stream represents data sent tothe bu�er before it is 
leared by the 
ontroller (in the middle of time steps). The data lines a
ross thebottom of the graph represent amounts of data in the 
a
he at the end of ea
h time step.The third �gure (5.4) shows expe
ted amounts of input and output data. In the model the inputdata is in a bu�er and has to wait for the CPU to send it to the 
ontroller's 
a
he. The output streamrepresents the expe
ted read requests servi
ed in ea
h time step.It 
an be seen from this �gure that over 11 hours of simulation the parameters predi
t the system
an keep up to the demands of reads and writes to the hard drives provided the CPU has a

ess to aninput bu�er of 180 Megabytes. The expe
tation of output hits a maximum of 40 Megabytes of readrequests. Here we have assumed the read request size is an average of 1/100 of the a
tual output datastream.The model makes 
ertain assumptions. It �rst �lls the 
a
he with in
oming data. It then de
ideshow mu
h data to input by 
he
king that it does not over
ow the 
a
he. The model also 
al
ulates themaximum amount of data that the CPU 
an write to the 
a
he as �w; fw;�t. The model puts into the
a
he whatever is less, the amount to �ll the 
a
he or the maximum it 
an write in the time allotted.After the data during that time step has been handled, the CPU then loads the in
oming data requestsinto the 
a
he, again after 
he
king that the 
a
he doesn't overload and de
iding on the least value ofeither how mu
h data it has to handle as read requests, �lling the bu�er or how mu
h data the CPU
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Figure 5.2: The distribution of data being input to the CPU and the \output" stream as read requests.
an handle, namely �r; fr;�t.After the CPU has loaded the bu�er as mu
h as it 
an, the model swit
hes its attention to the
ontroller. The 
ontroller �rst empties data from the 
a
he and writes it to the hard drive. The modelde
ides on the least value between the amount of write data in the 
a
he and the maximum amount ofdata it 
an possible handle in the time step, namely 
w; gw;�t. On
e the 
ontroller has tried to 
learthe 
a
he as mu
h as it 
an it then sends data to the CPU. Here the model has the 
ontroller de
idebetween how mu
h it has in read requests in the 
a
he to pro
ess and the maximum amount of readrequests it 
an handle. The model then also takes into a

ount the maximum amount of data that theCPU 
an output and de
ides between all three to determine the amount of data to put in the outputstream.The CPU's input bu�er is redu
ed by the amount of data sent to the 
a
he and the amount of dataexpe
ted is lowered by the amount of data in the output stream.
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Figure 5.3: The states of the 
ontroller bu�er.
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Figure 5.4: The expe
ted amounts of input and output data.
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