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1 Summary

The Pacific Institute for Mathematical Sciences (PIMS) has sponsored an
annual Industrial Problem Solving Workshop (IPSW) since 1997. The aim
of the IPSW is to create a mutually beneficial link between researchers in
industry and academic mathematical scientists. Faculty and students from
the academic community study problems brought by industrial participants
during the week-long workshop. Their results are presented at the end of
the week. The benefits of an IPSW are numerous.

In order to help train the participants for the IPSW, PIMS hosts the
Graduate Industrial Mathematics Modeling Camp (GIMMC) during the
week preceding the IPSW. The purpose of the camp is to teach gradu-
ate students mathematical modeling methods from experts in the field. A
cross-section of relevant industrial problems and modeling techniques are
presented.

The GIMMC took place June 9–13 and the IPSW took place June 16–20.
Both events were held on the University of Regina campus.

Financial support was an important consideration for these two events
because the participants had housing provided, travel support, and a food
allowance. In addition, there were five mentors whose expenses were cov-
ered. Financial support was provided by the Province of Saskatchewan,
President’s Office at the University of Regina, Faculty of Science at the
University of Regina, Department of Mathematics and Statistics at the Uni-
versity of Regina, MITACS, PIMS, NSERC Prairie Fund, and the Australian
Mathematical Sciences Institute.
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2 Participant List

Australia:
Roslyn Hickson (Australian Defence Force Acad.), Asef Nazari (Ballarat),
Giang Nguyen (South Australia), Melanie Roberts (Western Australia)

Canada:
Taylor Barrett (Regina), Chakra Bakyar (Regina), Irma Elizabeth Diaz
Bobadilla (Regina), Michael Cavers (Regina), Shannon Collinson (Guelph),
Janice Cotcher (Regina), Bridget Fortowsky (Regina), Ortho Flint (Wa-
terloo), Asef Ganjehlou (Regina), Shaughnessy Hawkins (Guelph), Matt
Hennessy (Ontario Institute of Technology), Yuhui Huang (Regina), Parisa
Hudson (Western), Stephen Hudson (Western), Harish Kashyap (Regina),
Zanin Kavazovic (Laval), Dong Won Kim (Regina), Petko Kitanov (Guelph),
Nathan Krislock (Waterloo), Xiaoping Liu (Regina), Heidi Muller (Guelph),
Sadia Mwangangi (Regina), Dominic Nelson (Guelph), Fridahus Oloude
(Western), Hugo Ordonez (Regina), Sarah Plosker(Regina), George Price
(Regina), Mary Jane Richardson (Guelph), Justin Schwark (Regina), Notice
Ringa (Guelph), Ryan Tiefenbach (Regina), Ewout van den Berg (UBC),
Yongjun Xing (Regina), Sheena Zhang (Waterloo)

Greece:
Nikolas Karalis (Athens)

Mexico:
Angélica Caudillo-Mata (CIMAT), David de la Rosa (CIMAT), Norberto
Flores (CIMAT), Javier Vigueras-Gómez (CIMAT)

USA:
Aren Arakelyan (City College), Hernando Bermudez (Montana), David Clark
(Michigan Tech), Ha Dang (Long Beach), Yogesh Joshi (NJIT), Manmeet
Kaur (NJIT), Harish Krishnamurthy (Northeastern), Lois Kwon (WSU),
Rachel Robertson (Michigan Tech), Yegor Sorokin (Iowa)

3 Mentor List

The mentors play a vital role in the GIMMC by providing training on how
to approach typical industrial problems. The mentors are expected to play
a strong role in the IPSW week as well, but they have no specified duties.
Some will stick with a particular problem while others float between several
problems providing guidance as appropriate. The mentors for these two
workshops were
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• Laura Cowen (University of Victoria)

• Ed Doolittle (University of Regina)

• Neville Fowkes (University of Western Australia)

• Don Kreher (Michigan Technological University)

• Roge Mamon (University of Western Ontario)

In addition to the mentors, Michael Kozdron, from the Department of
Mathematics and Statistics at the University of Regina, played a vital role
in the IPSW. Dr. Amir Amiraslani attended as an observor, was very helpful
throughout both weeks, and will be coordinating future workshops from his
position in the Department of Mathematics and Statistics at the University
of Calgary.
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4 Graduate Industrial Mathematical Modeling Camp

In this section we present summaries of what was done in each of the five
groups during the GIMMC week.

4.1 Group 1: Laura Cowen, Mentor

Mark Recapture with batch marks but no remarking

Ha Dang, Yuhui Huang, Rachel Robertson, Elizabeth Diaz, David de la
Rosa, Flavio Vigueras, Ryan Tifenbach, and Harish Kashyap.

Mark-recapture experiments can be used to estimate the size of a popula-
tion. However, when tagging individuals, usually unique tags are employed.
We look at the complication of marking fish by date (batch marking) and
develop methodology to estimate population size.

The joint hypergeometric maximum likelihood estimator (JHE) can be
used for batch marked individuals (Neal et al 1993); however, it does not
allow for immigration or emigration. Neal et al (1993) extend the JHE
to incorporate immigration and emigration (IEJHE) which is implemented
in program NOREMARK (White, 1996); however, the number of marked
animals in the study area are assumed to be known for each occasion.

Study Design and Data
At a single location in a lake, an initial sample of fish was obtained and

fish were batch marked with coloured tags before release. On 5 subsequent
occasions, a sample of fish was obtained, the fish currently tagged were
counted and a random sample of untagged fish were given a different colour
batch tag. A final sample was obtained where fish were counted but tagging
did not occur.

Table 1 provides the data from a 2004 study. In addition to the tagged
fish, the total number of fish in the sample was recorded. For example, on
occasion 2, 922 fish were captured of which 4 had green marks and 403 were
given yellow marks. The remaining fish were released with no marks.

Batch marking fish means there is no way to identify the fish individually
using the tag. Additional concerns with this study were that the system is
assumed to be an open population, thus there may be immigration, emigra-
tion, recruitment or mortality. It is assumed that capture probability was
homogeneous. The objective of this project was to obtain an estimate of
population size.
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Table 1: Batch marked data from a 2004 study.

Release Number Tag Recovery Occasion
Occasion Marked Colour 2 3 4 5 6 7
1 323 Green 4 8 2 13 3 2
2 403 Yellow 23 4 48 13 12
3 407 Red 2 47 14 16
4 245 Orange 17 5 5
5 373 Green Tail 15 14
6 749 Yellow Tail 14
Total Sampled 922 1760 1035 4190 2650 1820

Notation
Statistics

k the number of sampling occasions.
rij the number of fish tagged and released at occasion i and recovered

at occasion j, i = 1, 2, ..., k − 1; j = i+ 1, ..., k.
Ri0 the number of fish tagged and released at occasion i with colour i.
ui the number of untagged fish captured and released at occasion i.

Parameters
pi the probability of capture at occasion i.
φi the probability of surviving and remaining in the population between

occasions i and i+ 1, given the fish was alive and in the population
at occasion i.

Ui the total number of unmarked fish in the population at occasion i.
Bi the number of births (immigration) into the population at occasion i.

Model Development
We modeled the number of recovered fish (rij) using a binomial distribu-

tion, rij ∼ Binomial(Ri0, φiφi+1...φj−1pj). For example, the probability a
fish tagged and released at occasion 1 and recaptured at occasion 2 is φ1p2;
the fish survives from occasion 1 to occasion 2 (φ1) and is recaptured at
occasion 2 (p2). Similarly, the probability that a fish tagged and released
at occasion 2 is recaptured at occasion 5 is φ2φ3φ4p5. Thus we can develop
the likelihood for the probability of recapture (marked fish) (1).
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L(φ, p)marked =
k−1∏
i=1

k∏
j=2

(
Ri0
rij

)
(φiφi+1...φj−1pj)rij (1−φiφi+1...φj−1pj)Ri0−rij

(1)
Similarly, we can develop a likelihood for the unmarked fish, again mod-
eling the number of unmarked fish with a binomial distribution, uj ∼
Binomial(Uj , pj) (2).

L(p)unmarked =
k∏
j=2

(
Uj
uj

)
p
uj

j (1− pj)Uj−uj (2)

As the marked and unmarked fish are considered independent, we can ob-
tain the overall likelihood by multiplying together the two likelihoods: L =
Lmarked × Lunmarked.

Parameter Estimates and Model Selection
There are no closed form estimators for the parameters, however they

can be estimated analytically using a Newton-Raphson type estimator. We
can estimate the total number of unmarked animals in the population at
occasion i (Ui) as Ûi = ui

p̂i
. Further, we can estimate the number of births

at occasion i as B̂i = Ûi+1 − Ûiφ̂i. Finally, the number of animals alive
at time i can be estimated as the estimated number of unmarked fish plus

the estimated number of marked fish in the population, N̂i = ui
p̂i

+
∑i−1

j=1 rij
p̂j

.

Standard errors for Ûi, B̂i and N̂i can be obtained using the delta method.
R statistical software (R Development Core Team, 2008) was used to

maximize the likelihood, obtain standard error estimates and calculate AIC
(Akaike’s Information Criterion) for model selection purposes. Due to lim-
ited time, we considered only three models: constant survival and capture
probabilities (φp), constant survival probabilities and capture probabilities
varying over time (φpt), and survival and capture probabilities varying over
time with the last survival probability fixed to 1 (φtpt, φ6 = 1). In this
last saturated model, the last survival probability is fixed to 1 due to non-
identifiability of the parameters φ5p6.

Results
Table 2 shows the AIC values for the three considered models and the

number of parameters in each model. As the φtpt, φ6 = 1 model had the
lowest AIC value, it was chosen as the best model. As the other models had
large ∆i values, model averaging was not employed.
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Table 2: Akaike’s Information Criterion (AIC), the number of parameters
(K), and delta AIC values (∆i = AICi − AICmin) for the three considered
models.

Model AIC K ∆i

φp 2478.3 2 118.7
φpt 2392.3 7 32.6
φtpt, φ6 = 1 2359.6 11 0

Parameter estimates and standard errors for the φtpt, φ6 = 1 model are
shown in Table 3. All survival probability estimates were high (> 0.80) and
recapture probabilities estimates were low (< 0.15).

Table 3: Maximum likelihood parameter estimates for the model φtpt, φ6 =
1, along with the standard error estimates underneath.

Occasion
Parameter 1 2 3 4 5 6
p 0.012 0.043 0.009 0.114 0.040 0.031

0.00004 0.00006 0.00001 0.00006 0.00011 0.00003
φ 1.105 1.039 0.817 0.929 0.863 -

0.000 0.000 0.012 0.042 0.038 -

Population estimates were obtained for each of the sampling occasions.
These ranged from 20000 to 120000. Standard errors for these estimates
were not obtained due to a lack of time.

Discussion and Future Work
There are several modeling issues that still need to be addressed. First,

some of the survival estimates are above 1, this could be alleviated through
the use of design matrices and the use of a logit-link function which would
constrain the parameter to be between 0 and 1 (Lebreton et al, 1992). Fur-
ther the interval of time between occasions was not constant, thus survival
parameters are defined over different time periods. This could be adjusted
for by modeling survival probabilities as a function of time. Finally, vari-
ances estimates and confidence intervals need to be obtained for the popu-
lation size at each occasion.
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It is possible that in similar studies, fish may be lost on capture. This
can be dealt with by expanding the model to incorporate these losses as was
done by Schwarz and Arnason (1996).

Acknowledgements
Treveor Haynes (Department of Geography, University of Victoria) pro-

vided the data. Carl Schwarz (Department of Statistics and Actuarial Sci-
ences, Simon Fraser University) provided direction concerning the model.
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4.2 Group 2: Ed Doolittle, Mentor

Snowplowing The Streets Of Regina

David Clark, Mary Jane Richardson, Nikolas Karalis, Nathan Krislock, Gi-
ang Nguyen, Ewout Van Den Berg, Notice Ringa, and Ortho Flint.

The problem statement was to design an efficient snow removal plan for
the City of Regina. (Several members of the team live in places where there
is no snow, but their contributions demonstrate that mathematicians don’t
need physical experience to work successfully on a problem.) Most of the
second day was spent learning about the local snow removal situation and
general snow emergency strategies employed in North America. For several
participants with limited or no experience with snow, it was fascinating to
learn new concepts such as deadheading (traversing without plowing) and
sand/salt spreading. The team quickly agreed on the motto “No Street Left
Behind.” Coming from diverse research backgrounds, there were very dif-
ferent ideas about how to approach the problem. There was even a heated
debate on what efficient meant! In the end, the team divided into two
groups: cycle decomposition and single commodity network flow.

The commodity flow group adapted a Mixed Integer Linear Programming
model [1], to appropriately incorporate their problem specific assumptions
and constraints. Then they used CPLEX solver to solve the model and
identify which streets to plow or to deadhead during given periods and cor-
responding frequencies. The final step was to use Fleury’s algorithm to find
an Eulerian cycle determining the order of visits for these streets. They also
created an interactive MATLAB simulation to demonstrate their solution
on a simplified map of the city of Regina. Their first presentation was to
inform other groups about the problem and intended approach. The second
presentation (held on the last day, when the presenter’s laptop was still as
functional as a brick) was to present a final solution. The team was de-
lighted that a representative from the city of Regina council attended that
talk, and so they carefully avoided phrases like more efficient or much better
when presenting their solution.

To go from not knowing that there were street priorities during snow re-
moval to presenting a final route map — over five intensive days and two
late nights — was a long, frustrating and exciting journey for all of the team.
Even though the model had a lot of room for improvement, they were proud
of their achievement.
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4.3 Group 3: Neville Fowkes, Mentor

There were three separate subgroups working under Neville’s supervision.
There is a report from each of the subgroups.

Piped Water Cooling of a Concrete Slab

Shannon Collinson, Janice Cotcher, Asef Nazari Ganjehlou
Zanin Kavazović, Heidi Muller, George Price, and Hugo Rodŕıguez

A First Model

Figure 1: The first model

Concrete is the most widely used building material in the world. It is
composed of cement; water; cemetitious materials such as fly ash and slag
cement; aggregate—gravel, limestone or sand—and chemical admixtures.
After mixing with water and placement, concrete solidifies due to the chem-
ical process known as hydration. Through hydration, the cement bonds the
other components together and forms a rock like structure. If the hydration
process occurs too quickly the concrete will not form strong bonds so it is
desirable to slow down the reaction by cooling. Furthermore. The hydration
reaction process is highly exothermic and the cooling of this poses a major
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problem in construction since the heating of the material can compromise
the structure of the concrete.

One place where the difficulties posed by the exothermic reactions is
seen in building a dam. A dam is constructed by pouring concrete slabs of
dimension 10m × 10m × 3m. The issue of the exothermic reaction occurs
since the conductivity of concrete is very small; it can take many years
for concrete to cool, if left to its own devices. The exothermic reaction
and the low conductivity of concrete creates an environment such that the
temperature within the concrete can change by up to 150K. If the concrete
is not cared for, the temperature of the concrete can change up to 323K,
at which point thermal stress occurs leading to structural weakening and
construction delays. To reduce the build up of temperature and increase
the strength of the concrete, cold water is piped through until the end of
the curing process; this process takes about 28 days in perfect conditions -
controlled temperature and humid atmosphere. After the curing process is
complete, the pipes are filled in with concrete. The objective is to determine
the length, radius, and temperature and flux of water through the pipes, as
well as the required spacing and geometric arrangement of pipes in the water
network to achieve a cost effective way to cool the concrete; a complex and
difficult initial task. In order to better understand the physics, we first
consider the heat exchange between a single pipe of radius a carrying water
with a ‘sleeve’ of concrete of radius R surrounding it; 2R can thought to
be the spacing between pipes in the network. Eventually R needs to be be
determined to optimize the system.

The problem breaks up into two connected parts: a heat transfer problem
for the concrete sleeve and a heat transport equation for the water in the
pipe.

Heat diffusion within the concrete cylinder

Assuming the heat transfer occurs mainly in the radial direction, the
equations governing the heat transfer through the concrete, are given by:

∂Tc
∂t

= κc

(∂2Tc
∂r2

+
1
r

∂Tc
∂r

)
+

H

ρcCc
, (3)

with boundary and initial conditions

∂Tc
∂r

(R, t) = 0

−κc
∂Tc
∂r

(a, t) =
q

ρcCc
= − γw

ρcCc
(Tc − Tw),
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T (r, 0) = T0

where Tc(r, z, t) is the temperature of the concrete, and H = H(t) is the heat
production rate per unit volume associated with hydration, and −q is the
heat flux per unit area from the concrete into the pipe given approximately
by

q = γw(Tc − Tw), (4)

where γw is the heat transfer coefficient for (turbulent) flow through the
pipe, and Tw(z, t) is the temperature of the water at the r = a. We assume
the pipe is thin and a good conductor, so the temperature difference between
the inside and outside surface of the pipe is negligible. Here κc = kc/ρcCc,
is the diffusivity of concrete, where ρc, Cc, kc are the density, specific heat,
and conductivity of the concrete.

The boundary conditions for (3) are Neumann and Robin, respectively.
The Neumann condition is imposed on the ‘exterior’ of the radius of the
concrete so that we did not have to consider heat flux out of the concrete
cylinder nor did we have to consider heat flux of a theoretical neighbouring
cylinder. The Robin condition is necessary for the flux of heat across the
cement-water interface. The pipe is considered as part of the water interface
because the amount of time that it takes to heat the pipe is irrelevant as the
amount of time that it takes for the heat to diffuse through the concrete is
extremely long.

Heat transfer along the pipe

The equation for heat transfer for the water running through the pipe is

∂Tw
∂t

+
Q

πa2

∂Tw
∂z

=
2q

aρwCw
,

where Q is the volume flux of water through the pipe, assumed constant.
We have assumed here that water temperature variations across a section
are negligible so that Tw = Tw(z, t), where z is the distance measured along
the pipe from the entry point. This becomes

∂Tw
∂t

+
Q

πa2

∂Tw
∂z

=
−2γw
aρwCw

(Tc − Tw) (5)

using (4). We need to impose the initial condition

Tw(z, 0) = T0,
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and need to ensure that
Tw(0, t) = Tw0,

where Tw0 is the temperature of the water entering the pipe. The pipe
thickness is assumed to be negligible so

Tc(a, z, t) = Tw(z, t). (6)

The describing equations are now in place; the coupling between the two
problems occurs at the interface between the regions and is seen in equations
(4, 6).

The coupling occurs in this model because of the concrete-water inter-
face: at the point of the interface is the boundary of the concrete, moreover,
the concrete-pipe interface provides a boundary for the water pipe. The
Robin boundary condition for equation (3), is considered at a, which is the
length of the radius of the water pipe.

Scaling

Our primary concern is to determine the time scale tR for significant
changes in the concrete temperature, the length scale zR for significant
changes in temperature along the pipe, and the temperature scale ∆T for
variations in the system. To find these we need to scale the system by
writing

tR = the time scaling factor

zR = the length scaling factor

∆T = Tc − Tw; the temperature scaling factor

In making the following substitutions we must remember that

R = a fixed value which corresponds to the radius of the concrete cylinder

∆T = the temperature scaling factor for the concrete and the water is the same

T∞ = an arbitrary value of the temperature far away from the concrete cylinder;
note that T∞ is usually taken as ambient temperature.

The substitutions into equations (3) and (5), to non-dimensionalize our
model.

r = R r̃,

z = zR z̃,

t = tR t̃,
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(Tc − T∞) = ∆T T̃c,

(Tw − T∞) = ∆T T̃w,

where the radius of the concrete sleeve R is assumed known. Since conduc-
tion through the concrete drives the process we choose

tR =
R2

κc
. (7)

After rearrangement, and using (7), the concrete heat conservation equation
(3) becomes Step No 1[

∆T
tR

]
∂T̃c

∂t̃
=
[
κc ∆T
R2

] (∂2T̃c
∂r̃2

+
1
r̃

∂T̃c
∂r̃

)
+
[
H

ρcCc

]
Step No 2[

∆T
tR

R2

κc ∆T

]
∂T̃c

∂t̃
=
(∂2T̃c
∂r̃2

+
1
r̃

∂T̃c
∂r̃

)
+
[
H

ρcCc

R2

κc ∆T

]
Step No 3

∂T̃c

∂t̃
=
(∂2T̃c
∂r̃2

+
1
r̃

∂T̃c
∂r̃

)
+
[
H

ρcCc

R2

κc ∆T

]
.

To properly nondimensionalize our model and determine the correct
scales, it is necessary to ensure that the correct balance of terms in the
defining equations is achieved. We expect the heat input due to hydration
to be balanced by the conductive heat transfer through the concrete; a result
that can be achieved by setting H

ρcCc

R2

κc∆T = 1, which gives

∆T =
H

κc

R2

ρcCc
,

the temperature scaling that we sought. After all of the above manipulations
and finding our specific dimensionless group, the dimensionless equation for
equation (3) is

∂T̃c

∂t̃
=
(∂2T̃c
∂r̃2

+
1
r̃

∂T̃c
∂r̃

)
+ 1.

We perform the same type of calculations on the water heat conservation
equation (5). After scaling as above we get Step No 1[

∆T
tR

]
∂T̃w

∂t̃
+
[
Q

π a2

∆T
zR

]
∂T̃w
∂z̃

= −
[

2 γw
a ρw Cw

∆T
]

(T̃c − T̃w)
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Step No 2[
∆T
tR

π a2 zR
Q∆T

]
∂T̃w

∂t̃
+
∂T̃w
∂z̃

= −
[

2 γw
a ρw Cw

∆T
π a2 zR
Q∆T

]
(T̃c − T̃w)

Step No 3[
π a2 zR
tRQ

]
∂T̃w

∂t̃
+
∂T̃w
∂z̃

= −
[

2 γw
ρw Cw

π a zR
Q

]
(T̃c − T̃w),

and again we must choose the appropriate dimensionless group and set it
equal to one. We expect the heat flow into the pipe to determine the water
temperature changes along the pipe so we set

η =
[ 2γw
ρwCw

πazR
Q

]
= 1.

From this we are able to determine the required length scale zR as

zR =
ρwCw

2π
Q

aγw
.

At this point, we will substitute tR and zR into η, which gives

η =
[πa2zR
tRQ

]
.

Finally, the dimensionless equation for water is:

η
∂T̃w

∂t̃
+
∂T̃w
∂z̃

= −(T̃c − T̃w).

Along with nondimensionalizing the equations in the model, it is nec-
essary to nondimensionalize the initial and boundary conditions. For the
initial conditions in concrete and water, respectively, we have

T̃c(r̃, t̃ = 0) = 0 ∀r̃ ∈ (ε, 1]; ε =
a

R

and
T̃w(r̃, t̃ = 0) = 0 ∀r̃ ∈ [0, ε]; ε =

a

R

T̃w(z̃, t̃ = 0) = 0 ∀z̃ ∈ [0, 1].

For the boundary conditions for concrete we have:
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∂T̃c
∂r̃

(r̃ = 1, t̃) = 0 ∀t̃ ∈ [0, 1]

∂T̃c
∂r̃

(r̃ = ε, t̃) = µ(T̃c − T̃w) ∀t̃ ∈ [0, 1];

ε =
a

R

where µ is dimensionless group given by

µ =
[ γwR

ρcCcκc

]
.

For water, the boundary condition is:

T̃w(z̃ = 0, t̃) = 0 ∀t̃ ∈ [0, 1].

The equation set is now in an appropriate form for further analysis either
analytic or numeric.

Oil Detection - Analogous Heat Equation Problem

Roslyn Hickson and Melanie E. Roberts

Introduction

Due to the complexity of the electromagnetic waves in the full oil de-
tection problem, an analogous heat flux problem is considered. For this
approach, an oscillating heat source is applied at the surface of the medium,
x = 0. As depicted in Figure 2, the medium has three distinct layers, within
which the conductivity and diffusivity are constant. Layers ‘0’ and ‘2’ are
saltwater saturated and denoted by the subscript g, whilst layer ‘1’ refers
to the ‘oil’ or ‘gas’ reservoir and is denoted by the subscript s. Throughout
this work we make the approximation that the density variation between
the oil/gas and the saline water is able to be neglected, and thus the ratio
of conductivities of the oil/gas and the saltwater layer is equivalent to the
ratio of diffusivities.

Stage one: Semi-infinite layer of constant conductivity
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Figure 2: Schematic of the simplified heat flux approach. The heat equation
is solved in the three layers and matched at the interfaces using appropriate
boundary conditions.

Variations in the temperature profile are investigated at the surface by
first considering a semi-infinite layer of constant conductivity and diffusivity,
as shown in Figure 3. That is, the ‘reservoir’ or thin strip of material, layer
1, is neglected. This allows us to determine the characteristic length of
penetration of the heat flux. The heat equation

∂Tg
∂t

= κg
∂2Tg
∂x2

(8)

is solved subject to the surface condition of an oscillating heat flux

q = q0e
iωt, x = 0 (9)

and the requirement that the temperature achieves the ambient value far
from the surface,

∂Tg
∂x

= 0, x→∞, (10)

where the heat flux is given by q = −kg ∂T/∂x with κg and kg the diffusivity
and conductivity of the ground respectively, Tg(x, t) is the temperature, q0 is
the magnitude of the heat flux and ω its frequency, x is the vertical extent
taken positive down, and t is time.
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DRAFT - After Meeting

Watertable Response to the Tidal Forcing of a Phreatic Aquifer

Melanie E. Roberts

June 19, 2008

1 Introduction

Layer 0

H Tg

kg

q = q0 exp(iωt)

1

Figure 3: Schematic of the single layer problem.

The temperature profile in the domain, as illustrated in Figure 4, is an
exponentially decaying wave of the form

Tg(x, t) = F (x)eiωt. (11)

While the structure of T is of little direct interest, we note the amplitude
corresponding to approximately 1% of the maximum temperature variation
is

4

√
2κg
ω
, (12)

indicating that the typical depth of penetration of the heat flux is a
function of the diffusivity of the ground and inversely related to the fre-
quency of oscillation, ω. The typical detection depth is shown as a function
of frequency in Figure 5. It is evident that the detection depth is greater
for smaller frequencies, and thus an appropriate detection scheme is to vary
the frequency slowly to determine when a variation in the temperature is
first detected. This will be further investigated through the second model,
which introduces the oil or gas reservoir.

Stage two: Semi-infinite reservoir layer

We investigate the variation in the temperature at the surface relative
to the single layer case by introducing a semi-infinite layer of oil/gas at the
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Figure 4: Temperature profiles as a function of depth at time intervals ∆t =
0.5, with kg = 1, and q0 = 1. The typical depth of detection, corresponding
to a wave amplitude of approximately 0.01q0, is shown by the red line.

unknown depth x = H, as shown in Figure 6. This ‘reservoir’ layer has
a significantly different conductivity and diffusivity. The problem is scaled
such that the solutions are relevant to any frequency and amplitude of the
heat source, and depth of the ‘reservoir’ layer. This also allows the solution
to easily be related back to the original electromagnetic scenario.

The typical depth of detection x̂ =
√
κg/ω is used to scale the x-

direction, the heat flux is scaled by the amplitude q0, and time is scaled
as the inverse of the frequency of oscillation, ω. Together with the surface
boundary condition, (9), and setting the ratio of conductivities as equiva-
lent to the ratio of diffusivities, this implies the appropriate scale for the
temperature is T̂ = q0x̂/kg = q0/

√
kgω. From the temperature scale, T̂ , it

is evident that the variation in temperature at the surface will be a function
of both the conductivity of the ground and the frequency of the heat source.

20



0 5 10 15 20 25 30 35
1

2

3

4

5

6

7

8

angular frequency (!)

de
te

ct
io

n 
de

pt
h

Figure 5: Typical depth of detection as a function of the angular frequency,
ω, with kg = 1

The scaled variables are therefore given by

x? =
x

x̂
, t? = ωt, q? =

q

q0
, and T ? =

T

T̂
, (13)

where the star is dropped for notational simplicity.
After this scaling, the system of equations governing this model are

∂Tg
∂t

=
∂2Tg
∂x2

, x < H (14)

∂Ts
∂t

= kr
∂2Ts
∂x2

, x > H (15)

with

Tg = Ts
qg = qs

}
x = H (16)

where kr = ks/kg is the ratio of the conductivities, and equations (16) fulfill
the requirement of continuity of temperature and heat flux at the interface
x = H. To recover the results obtained in Section 4.3, we simply set kr = 1.
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Figure 6: Schematic of the dual layer problem, the heat equation is solved for
Tg and Ts in each layer with temperature and heat flux matching conditions
across the interface.

The variation of temperature at the surface is then given by a function
of the conductivity ratio and depth of the reservoir, as shown in Figure 7.
From this figure it is evident that for H < 1, the temperature difference is
monotonically approaching zero as the depth of the reservoir approaches the
typical depth of detection (H = 1). Beyond this threshold, the amplitude
of the temperature difference is small, and thus of little interest.

Of note is the change in sign of the temperature difference at some
reservoir depth beyond the typical depth of heat source penetration (x = 1).
Beyond this point, the depth of the reservoir is ambiguous, and is not able
to be determined uniquely from a given recorded temperature variation.
Therefore, a threshold on the minimum recorded temperature variation from
which a reservoir depth can be determined is implicit in the model.

Stage Three: Finite depth reservoir

Finally, the thickness of the layer is incorporated into the problem, as
shown in Figure 8, to determine its effect on the recorded temperature. The
resulting equations are solved using the same method as that employed in
Section 4.3. The variation of temperature is then expressed as a function
of both the ratio of conductivities and the ratio of the reservoir thickness
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Figure 7: Observed temperature difference as a function of the depth of the
oil field for various conductivity ratios.

to its depth below the surface. Rewriting the expression for the recorded
temperature variation as a series expansion in the ratio of D to H, that
is the thickness of the reservoir to its distance below the surface, gives, to
leading order:

∆T =
D

2
e−(1+i)

√
2H(1 + eit) − D

2kr
(e−(1+i)

√
2H(1 + eit)). (17)

This indicates that the temperature difference is a function of both the
thickness of the layer and the ratio of conductivities. This result is depicted
in Figure 9, showing the temperature difference monotonically approaching
zero as the ratio of the depth, H, to the thickness, D, increases. This
indicates a significant temperature variation will not be detected where the
layer is beyond the typical depth of detection, or if the layer is too thin.

Discussion

Solution of the analogous heat flux problem indicates that the signal
difference recorded on the sea-floor due to the detection of a layer of oil or

23



Layer 0

H Tg

q = q0 exp(iωt)

Layer 1
D

Ts

Layer 2

L Tg

3

Figure 8: Schematic of the thin layer problem. The heat equation is solved
in each of the three layers, with heat flux and temperature conditions across
each of the interfaces.

gas is a function of both the ratios of the two conductivities kr = ks/kg,
and the ratio of the depth of the layer to its thickness. It is therefore not
possible to separate the depth of the layer from the conductivities explicitly,
and thus a deep layer of relatively low conductivity gradient can replicate a
shallow oil or gas reservoir.

Furthermore, it is evident that the signal difference is inversely propor-
tional to the signal frequency, thus small frequencies are able to detect layers
at greater depths. This suggests that an appropriate search technique is to
slowly decrease the frequency until a signal difference is identified, obtaining
an indication of the depth of the oil layer.
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Figure 9: Observed temperature difference at the surface as a function of
the ratio of the depth of the oil field and its width.

4.4 Group 4: Don Kreher, Mentor

Bounds On Mixed Covering Arrays

Taylor Barrett, Hernando Bermudez, Shaughnessy Hawkins, Sarah Plosker,
Yongjun Xing, and Yuxin (Sheena) Zhang,

Abstract

In this note we discuss the lower and upper bounds on covering
arrays which we discovered during the Graduate Industrial Modeling
Camp held at the University of Regina as part of the 2008 PIMS in-
dustrial Problem Solving Workshop.

Introduction

Covering arrays are used to test multi-parameter software or equipment
for possible abhorrent behavior. A trial consists of setting the parameters
to specific values, running the software, and observing the results. Thus it
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may be prohibitively expensive in terms of time and or money to evaluate
the behavior over all possible trials. Instead we choose to find a minimal
number of trials such that every combination of say t values for every subset
of t parameters is tested. Usually t is small, say t = 2 or 3, because we
believe that if there is a problem it will likely occur in the interaction of
a small number of the parameters. Covering arrays may be thought of as
an experiment in which the parameters are the factors of the experiment.
The cardinality of a given factor is the level number for that factor and is
the number of possible parameter settings for the parameter that the factor
represents.

A strength t Covering Array with k factors and N trials on F1,F2, . . . ,Fk,
is a k by N array whose columns are members of F1 × F2 × · · · × Fk having
the property that for any t-tuple R = [i1, i2, . . . , it]t of t rows and every
t-tuple T = [xi1 , xi2 , . . . , xit ]

t ∈ Fi1 × Fi2 × · · · × Fit there is a column that
contains T on the rows specified by R. The type of a covering array is the
multi-set F = {`1, `2, . . . , `k}, where `i = |Fi|. We use ca(N ; t, k,F) to
denote a strength t covering array with k parameters, N trials, and type
F . In Figure 10 an example of a ca(24; 3, 6, {2, 2, 2, 2, 2, 4}) is provided.
If n` = |{i : |Fi| = `}| be the number of parameters that have ` possible
values, then it is also our custom to write

∏
` `
n` for the type of the array.

A covering array of type nk is said to be uniform and is simply denoted by
ca(N ; t, k, n). The non-uniform covering arrays are called mixed covering
arrays and some authors use the acronym mca for them although it is
unnecessary to do so. The covering array in Figure 10 is in this notation
a (24; 3, 6, 2541). C. J. Colbourn gives extensive tables of uniform covering
arrays on his web-site

http://www.public.asu.edu/~ccolbou/src/tabby/catable.html

A useful equivalent set-system formulation to the covering array is the
transverse covering design. A set S is transverse to the partition

H = {H1, H2, . . . ,Hk}

if |S ∩ Hi| ∈ {0, 1} for all i = 1, 2, 3, . . . , k. A transverse covering design
with parameters tcd(t, k, v) is a triple (X,H,B), where X is a v-element
set of points, H = {H1, H2, . . . ,Hk} is partition of X into holes, and B is
a collection of k-element subsets of X transverse to the holes called blocks
such that every t-element subset of X transverse to the holes is contained in
exactly one of the blocks. The type of a tcd(t, k, v) is the multiset of hole
sizes and it is again our custom to write the type as

∏
` `
n` when there are

n` holes of size `.
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Theorem 4.1 A tcd(t, k, v) of type
∏
` `
n` exists if and only if

a ca(N ; t, k,
∏
` `
n`) exists.

Proof. Let (X,H,B) be a tcd(t, k, v) of type
∏
` `
n` , where

H = {H1, H2, . . . ,Hk}

is the set of holes and
B = {B1, B2, . . . , BN}

be the set of blocks. For each j = 1, 2, . . . , N , define the j-th trial to be
Tj = [x1, x2, . . . , xk]t, where xi = Bj ∩ Hi. Then it is not difficult to see
that

[T1, T2, . . . , TN ]

is a ca(N ; t, k,
∏
` `
n`).

Conversely supposeA is a ca(N ; t, k,
∏
` `
n`), with parameters sets {F1, F2, . . . , Fk}.

Then let Hj = Fj × {j} and set X = ∪kj=1Hj . If Tj = [x1, x2, . . . , xk]t is
the j-column of A, i.e. the j-th trial, define Bj = {(xi, i) : i = 1, 2, . . . , k}
and let B = {B1, B2, . . . , BN}. Then it is easy to see that (X,H,B) is a
tcd(t, k, v) of type

∏
` `
n` .

The covering array number can(t, k,F) is the minimum number of tri-
als N such that a ca(N ; t, k,F) exists, and a ca(N ; t, k,F) is an optimal
covering array if N = can(t, k,F).

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 1 1 0 0
0 1 0 1 1 1 1 0 1 0 0 0 0 1 0 1 1 1 0 1 0 1 1 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 1 0 0 1
1 1 0 1 0 0 0 0 1 0 1 1 1 1 0 1 0 0 1 1 0 1 0 0
1 0 0 1 0 1 0 1 1 0 1 0 1 0 0 1 0 1 1 0 0 1 0 1
0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3

Figure 10: A ca(24; 3, 6, {2, 2, 2, 2, 2, 4} or ca(24; 3, 6, 2541)

Lower and upper bounds

Let (X,H,B) is a tcd(t, k, v). Then the derived transverse covering
design with respect to x ∈ Hi, is (X \ Hi,H \ {Hi},B′), where

B′ = {B \ {x} : x ∈ B ∈ B}.

Clearly the derived transverse covering design is a tcd(t− 1, k − 1, v − |Hi|).
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Theorem 4.2 (Lower bound) can(t, k,F) ≥ ` · can(t − 1, k − 1,F \ {`}),
for all ` ∈ F .

Proof. Suppose there is ca(N ; t, k,F) and let ` ∈ F . Then by Theo-
rem 4.1 there exists a tcd(t, k, v) with N blocks and a hole H of size `. For
each x ∈ H, the derived transverse covering design with respect to x is a
tcd(t− 1, k − 1, v − `) which has Nx ≥ can(t − 1, k − 1,F \ {`}), blocks,
because by Theorem 4.1 it is equivalent to a ca(Nx; t − 1, k − 1,F \ {`}).
Therefore, summing over the ` possible values of x, we obtain the result.

If B is a collection of subsets of a set X and x /∈ X is a new point, then
B + x denotes the collection of subsets

B + x = {B ∪ {x} : B ∈ B}.

Theorem 4.3 (Upper bound) If `2 > `1, then

can(t, k,F ∪ {`2}) ≤ can(t, k,F ∪ {`1}) + (`2 − `1)can(t− 1, k,F).

Proof. Let (X,H,B) be a tcd(t− 1, k,F) with |B| = can(t− 1, k,F) and
let (X ∪ J,H ∪ {J},B′) be a tcd(t, k,F ∪ {`1}) in which J is a hole of size
`1 and |B′| = can(t, k,F ∪ {`1}). Let K ∪ J be a hole of size `2 and set

B? = B′ ∪

(⋃
x∈K
B + x

)
.

Note that |K| = `2 − `1. It is an easy exercise to check that

(X ∪K,H ∪ {K},B?)

is a tcd(t, k,F ∪ {`2}), with

|B?| = can(t, k,F ∪ {`1}) + (`2 − `1)can(t− 1, k,F).

Strength 2 Covering Arrays of type 2ku1

In practical applications most of the parameters have only two possible
values: either on or off. It is reported by Sloane in [5] that the situation
for ca(N ; 2, k, 2k)s was completely solved by Rényi [4] (for N even) and
independently by Katona [2] and Kleitman and Spencer [3] (for all N).
They report that N = can(2, k, 2) if and only if

k =
(
N − 1
dN2 e

)
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The array A is constructed by taking as the first column the zero vector and
the remaining N − 1 columns are taken to be the characteristic vectors of
all the dN2 e subsets of an N − 1 set. Because N grows monotonically as a
function of N it is not difficult to show that

N ≥ 1 + dlog2 ke. (18)

In fact it can be shown that for large k, the minimal N satisfies

N = log2 k +
1
2

log2 log2 k + · · ·

Another interesting but non-optimal construction for a ca(N ; 2, k, 2) is to
first construct a k by 1 + ` array B by taking a column of all zeros and
then filling in the rows by taking the characteristic vectors of any k of the
2` subsets of an ` set where ` = dlog2 ke. If B is the array obtained by
making the bit complement of the entries in B, then it is not difficult to see
that [B,B] is a ca(N ; 2, k, 2) with N = 2dlog2 ke + 2. We find this array
interesting because it is self complementary, i.e. the bit-complement of any
column is again a column. We use the arrays A and B to establish the
following theorem.

Theorem 4.4

1. If u ≥ dlog2 ke+ 1, then can(2, k + 1, 2ku1) = 2u.

2. If u < dlog2 ke+1, then can(2, k+1, 2ku1) ≤ N+u, where N satisfies
k =

(N−1
dN

2
e
)
.

Proof. First suppose u ≥ 2dlog2 ke + 1 and let m = dlog2 ke + 1. We
use the array [B,B] to construct a ca(2u; 2, k+1, 2ku1) as follows. First set
V t
m = [0, 1, 2, . . . ,m] and Jt

k = [1, 1, . . . , 1︸ ︷︷ ︸
k times

]t. Then

[
B B 0Jk 0Jk · · · 0Jk Jk Jk · · · Jk
V t
m V t

m m+ 1 m+ 2 · · · u m+ 1 m+ 2 · · · u

]
is the required ca(2u; 2, k + 1, 2ku1). It is optimal, because a factor with u
levels must occur with a binary factor in at least 2u columns.

If on the other hand u < dlog2 ke + 1, then we use the array A. By
Equation 18 we see that N , the number of columns of A, exceeds dlog2 ke+
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1 > u and so we set V = [1, 2, . . . , u], and U ∈ {1, 2, . . . , u}N−u taken
arbitrarily. Now [

A A
′

[V,U ] V

]
,

where A′ is the bit complement of the first u-columns of A, is easily seen to
be a ca(N + u; 2, k + 1, 2k, u1), where N satisfies k =

(
N−1
dN2e

)
.
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4.5 Group 5: Roge Mamon, Mentor

The quantification of market risk

Chakra Bakyar, Michael Cavers, Yogesh Joshi, Manmeet Kaur, Dong Won
Kim, Xiaoping Liu, Fridahus Oloude, and Yegor Sorokin.

Objectives and Motivation
We aim to quantify the total risk in a portfolio of financial assets. The
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measurement of such risk, especially risk of large losses, is a central con-
cern to corporate treasurers, fund managers and central bank regulators.
Two fundamental questions that must be taken into account in market risk
measurement are considered: (i) what sort of mathematical/statistical mod-
els accurately and conveniently describe the respective movements and co-
movement in the individual and multiple sources of risk in a given portfolio?
and (ii) how does the portfolio value affected by the changes in the under-
lying sources of risk? Here, Monte Carlo simulation is employed in the
estimation of the profit and loss distribution of a portfolio.

Certain approaches are considered in addressing the problem of estimating
the probability of large losses that involve simulating rare but significant
events (e.g., market crashes). A common metric in risk measurement is the
so-called value-at-risk (VaR). In addition to VaR, the determination of con-
ditional VaR (CVaR) within the framework of rare but significant events is
of practical importance. CVaR refers to the expected loss during a period
of several days given that we are in the left tail of the distribution.

The Problem
The members of the group took the role of employees working for the trea-
sury department of a firm that has a portfolio of assets and investments such
as stocks, options, bonds and perhaps, other derivatives. At the end of the
day, they must tell the company “we are X% confident that the value of the
company’s portfolio will not drop by more than $V within the the next N
business days. The level V is called the value-at-risk (VaR). For example,
when X = 99, N = 10, it is desired to calculate V .

Typically, we wish to generate the distribution of profits or losses resulting
from the market changes, say over a two-week period. VaR is demonstrated
graphically in Figure 1 with X = 99 and N = 10 (the 2-week period is
assumed to have 10 business days).

Why calculate VaR and how to calculate it?
Quantifying the total market risk in a portfolio is an important aspect of
risk management. VaR is one particular measure in assessing the market
risk. In particular, we calculate VaR because of the following important
considerations:
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Figure 11: Illustration of the concept of VaR via the Profit and Loss distri-
bution.

• Regulators base the capital they require banks to keep on VaR.

• The market risk capital is k times the 10-day 99% VaR where k is at
least 3.0.

• VaR is the loss level that will not be exceeded with a specified proba-
bility. Thus, it captures an important aspect of risk in a single number.
It is also easy to understand.

• It asks the simple question: “How bad can things get?”.

We certainly do not know what will happen tomorrow. However, we can use
a probability distribution of portfolio’s loss or profit level. To this end, we
simulate scenarios to calculate the VaR. The simulation can be done using
the following techniques:

• Historical simulation

• Monte Carlo simulation (using a multivariate normal distribution)

• Jump diffusion models

• Heavy-tailed distribution or possibly mixture of normals
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During the first two days of the one-week workshop, the group calculated
VaR via the historical simulation method. The other techniques were con-
sidered in the remaining days of the workshop.

The company’s assets and investment holdings
The group split into four different hypothetical departments, with one per-
son designated as Risk Manager. Each Risk Manager for a particular line
of business will perform the VaR calculation in his department and this will
be consolidated by a designated Over-All Risk Manager. The company is
assumed to have investments in the following:

Foreign Currency Options

• long position in 10,000 CAD-USD put options

• long position in 10,000 CAD-AUD put options

• short position in 10,000 CAD-GBP call options

• short position in 10,000 CAD-EUR call options

Commodity

• long position in 20,000 call options on gold price

Equity

• 100,000 shares of Microsoft

• 100,000 shares of IBM

• 100,000 shares of Bombardier

• 100,000 shares of Exxon Mobil Co

• long position in 100,000 call options in NASDAQ index

Fixed Income

• $200,000 investment in 2-year Canadian Treasury notes

• $200,000 investment in 6-month Canadian Treasury bills
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Simulation experiment
The mentor provided datasets that participants could use in the simulation
analysis. The datasets for the foreign exchange rates and yield rates were
downloaded from the Bank of Canada website whilst the datasets for the
commodity and shares prices were downloaded from Yahoo Finance website.
We wish to calculate VaR for the day 04 Jan 2006 using historical simulation
with data from the past five years (2000 Jan – Dec 2005). The choice for the
date of 04 Jan 2006 was made in order to have an opportunity to backtest
the model using the data in the past.

For historical simulation, we follow the following steps: (i) Create a database
of the daily movements in all market variables underlying the portfolio. (ii)
The first simulation trial assumes that the percentage changes in all market
variables are as on the first day; the second simulation trial assumes that
the percentage change in all market variables are as on the second day; and
so on. (iii) Suppose we use m days of historical data (say from 5 years of
trading) and let vi be the value of a variable on day i. (iv) There are m− 1
simulation trials and the ith trial assumes that the value of the market vari-
able tomorrow (i.e., on day m+ 1) is vm

vi
vi−1

.

For simplicity, it is assumed that roughly the portfolio changes on successive
days come form independent identically distributed normal distributions.
This enables us to calculate the 10-day, 99% VaR from the 1-day, 99% VaR
as:

10-day VaR =
√

10× 1-day VaR.

Here, we provide samples of numerical outputs from two sub-groups of stu-
dents working in the fictitious commodity and equity departments. In Figure
2, we show a snapshot of the Excel simulation spreadsheet for the Profit/Loss
of a long position in 20,000 call options on a gold price. Figure 3 depicts
the Profit/Loss distribution for the equity investments together with the
computed value for the 1-day and 10-day VaR. In Figure 4, the Profit/Loss
distribution for the equity holdings minus the option investment on NAS-
DAQ is displayed. One may observe that without the NASDAQ, the dis-
tribution obtained is more tapered and smoother in the tails. Indeed, the
presence of NASDAQ investment seems to cause pronounced distortion in
the profit/loss distribution. Each group also considered back-testing. This
tests how well the VaR estimates would have performed in the past. Essen-
tially, it addresses the question “how often was the actual 1-day loss greater
than the 99% per day VaR?”.
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Example: long position in 20,000 call options on gold price (Today: Gold Price: 597.69;  C = 208.364)

C(S,T) gives the option price under the 
Black-Scholes model. 

Figure 12: A spreadsheet snapshot demonstrating the historical simulation
for the option investment with gold as the underlier.

Profit / Loss Distribution

0

20

40

60

80

100

120

140

-9
50
00
00

-8
50
00
00

-7
50
00
00

-6
50
00
00

-5
50
00
00

-4
50
00
00

-3
50
00
00

-2
50
00
00

-1
50
00
00

-5
00
00
0

50
00
00

15
00
00
0

25
00
00
0

35
00
00
0

45
00
00
0

55
00
00
0

65
00
00
0

75
00
00
0

85
00
00
0

95
00
00
0

M
or
e

Figure 13: Profit and Loss distribution for the investments linked to equity.
The 99% 1-day VaR=$9,514,977 whilst the 99% 10-day VaR=$30,088,999.
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Profit / Loss Distribution (without NASDAQ)
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Figure 14: Profit and Loss distribution for all equity investments but without
the option linked to NASDAQ. The 99% 1-day VaR=$918,472 whilst the
99% 10-day VaR=$2,904,527.

Model Building
An alternative to historical simulation is model building. Under this frame-
work, we made the assumptions that (i) the change in the value of the
portfolio is linearly dependent on percentages in market variables and (ii)
the percentage changes in market variables are multivariate normally dis-
tributed.

Since not all participants had programming background but everyone had
access to Microsoft Office, it was decided that the participation could be
maximised if the simulation could be performed using the Data Analysis
toolpak in Excel. In the simulation experiment, students typically would
only generate 1000 scenarios due to the limited capability of Excel. Surpris-
ingly, whilst this number is not large, it already gives them good results.
The mentor’s emphasis was on the theoretical underpinnings of the models
and the algorithms useful for implementation regardless of the software that
one may utilise. Since the company considered has a multi-asset portfolio,
simulation from a multivariate normal distribution needs to be carried out.
Students were taught on how simulate sample paths of stochastic processes
by making appropriate discretisations of stochastic differential equations.
The procedures on generating n correlated random samples from normal
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distributions were adopted from Hull (2006).

A more realistic setting
Since we are interested in the left tail of the distribution, the VaR calculation
will be more accurate if we could capture the impact of rare but extreme
events. This could be addressed by involving heavy-tailed distributions. One
can simulate from t-distributions, which have fatter tails than those gener-
ated by the normal distribution; see Figure 5. A heavier-tailed distribution

Figure 15: The t-distribution showing heavier tails than those of the normal
distribution.

can also be obtained by mixing several normal distributions with different
means and variances as put forward in Hamilton (1994). This preludes
the use of regime-switching models such as those discussed in Buffington
and Elliott (2002), Guo and Zhang (2004), and Erlwein and Mamon(2009),
amongst others.

Since jumps in the level of market variables such as foreign exchange rates,
stock indices, commodity prices, interest rates, etc are common, jump-
diffusion models (e.g., Merton (1976)) can be employed in conjunction with
Monte Carlo simulation. The jump component can be modelled by a Pois-
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son process and consequently, the unconditional distribution of the market
variable, such as the stock price, is a Poisson mixtrue of lognormal distribu-
tions. The discretisation and simulation of such a process can be found in
Glasserman (2004).

When a portfolio contains options, the change in the portfolio value is not
linearly related to the percentage changes in the market variable. An ap-
proximate quadratic relationship can be derived between the change in the
portfolio value and percentage changes in the market variables. This re-
lationship can be used to calculate the moments of the portfolio changes.
The skewness of the distribution for the portfolio changes can then be in-
corporated. For example, the Cornish-Fisher expansion can be applied to
estimate percentiles of the probability distribution from the moments.

Concluding remarks
Throughout the one-week workshop, participants learn one fundamental as-
pect of financial modelling, which is to quantify the market risk associated
in a portfolio of assets. They were equipped with the basic theoretical back-
ground and mathematical tools on how to discretise and simulate models
based on Brownian motion. When returns from a basket of investments or
assets are considered and perhaps, these returns are more likely to be corre-
lated too, participants learn how to perform simulation from a multivariate
normal distribution. Finally, participants were exposed to further directions
in improving VaR estimates by considering simulation from fat tailed distri-
butions by a simple procedure. In particular, suppose one wishes to simulate
a random variable of zero mean and unit variance, but with a given degree
of tail-fatness (fourth moment). Sticking to the more or less bell-curved
shapes for the probability density of returns (and ignoring skewness), one
can utilise the idea that a random variable has fat tails if it can be expressed
as a random mixture of normal random variables with different variances.

Overall, the participants were pleased to learn certain aspects of measuring
risk of market fluctuations affecting the company’s portfolio. In addition,
from the standpoint of practical importance, they learn how to implement
stochastic models using simulation-based techniques within a financial mod-
elling context using only the spreadsheet platform, which continues to be
ubiquitous in the industry sector. It has be noted that majority of the stu-
dents in the group knew nothing about finance to begin with, let alone its
jargons and the various financial terminology. But in the end, they were
able to appreciate the concepts and pick up gradually some of the core and
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related-issues that are of prime considerations in quantitative finance.
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5 Industrial Problem Solving Workshop

In this section we present summaries of what was done for each of the five
problems presented during the IPSW week.

5.1 An Analysis of Blackjack and Other Table Games for the
Saskatchewan Gaming Corporation

Solution Team: Ha Dang, David de la Rosa, Bridget Fortowsky, Irma Eliz-
abeth Diaz Bobadilla, Yuhui Huang, Michael J. Kozdron, Donald L. Kreher,
Sarah Plosker, Yegor Sorokin, and Sheena Zhang.

5.1.1 Opening remarks

The problem under study here was proposed by Les Cloutier, the Director
of Table Games Development for the Saskatchewan Gaming Corporation
(SGC), who wished to develop an algorithm to help analyze the table games
at Casinos Regina and Moose Jaw, enabling him to detect any anomalies
that might require management attention. Ideally, the casino would like to
make a profit as close to the theoretically expected house profit as possible
(computed using the industry-accepted house advantage) with few large wins
or large losses. Ultimately, they would like to detect such “rare” wins or
“rare” losses at each gaming table on a daily basis. Blackjack was the
particular table game on which this investigation focused. The primary
reason for analyzing blackjack is that blackjack is the most common table
game played at Casinos Regina and Moose Jaw and so blackjack is the
Saskatchewan Gaming Corporation’s table game with the most available
data. We believe that our analysis and conclusions for blackjack can be
applied with only minor modifications to the other table games such as
baccarat, craps, roulette, caribbean stud poker, red dog and three card
poker.

Blackjack is an inherently random game. (Indeed, this is true of all
casino table games.) Calculations can determine the probability of a win or
a loss, but cannot, with 100% certainty, predict the outcome of a particular
game. Expected values can help determine the house advantage, but again
this only provides a theoretical framework for what the house is likely to win.
It does not offer any guarantee for what the house will win. Furthermore, it
does not negate the possibility that the house will suffer an extremely severe
loss on a given day. Conversely, however, it does not negate the possibility
that the house will garner an extremely large profit on a given day. Thus,
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our solution to the above problem of analyzing the table games at Casinos
Regina and Moose Jaw will necessarily be probabilistic (i.e., no absolute
solution is possible; there will always be randomness involved). In fact, the
main conclusions that we reach are that daily large losses a! nd daily large
gains are to be expected. We attempt to give a sense of how likely such
“rare events” are to occur, and show that witnessing a few rare events every
month or so is not at all unexpected.

5.1.2 The theoretically expected house profit for blackjack

It is well-known that the house advantage is the result of the casino not
paying winning wagers according to the true odds of the game. The house
advantage is formally defined as the casino’s expected profit expressed as a
percentage of the player’s original bet.

Example 5.1 For instance, in double-zero (or American) roulette, there are
38 numbers (18 black, 18 red, and 2 green zeros) but payouts are based on 36
numbers. That is, if a player makes a $1 bet on a “red” and a “red” appears,
then the player receives $2 (his original $1 plus a profit of $1). However,
there is only a 18/38 chance of that number appearing. This means that
the player’s expected profit on such a $1 bet is(

18
38
× (+1)

)
+
(

20
38
× (−1)

)
=

18
38
− 20

38
= − 2

38
= −0.0526 = −5.26%.

Thus, the house advantage is said to be 5.26%.

It is widely accepted that for a player following blackjack basic strat-
egy1, the house advantage is 0.55%. In other words, for every $1000 bet
at blackjack by players following basic strategy, the casino expects to earn
$5.50. Basic strategy is the strategy which maximizes the player’s average
gain playing one hand against a complete shoe. This calculation of house ad-
vantage is based on a number of assumptions and may not necessarily apply
at every casino since different casinos all use slightly different house rules.
Furthermore, the calculation is based on a complete shoe and, of course, the
cards remaining in the shoe changes from hand-to-hand. In addition, not
every blackjack player follows basic strategy. As a result, the casino’s true
(but unknown) house advantage is often much higher. Casinos Regina and
Moose Jaw estimate that their true house advantage is 1% and use this as

1Upon request by a player, Casinos Regina and Moose Jaw will provide a wallet-sized
“Blackjack Basic Strategy Card.”
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their figure for determining complementary compensation (a.k.a. comps) for
their Player’s Club rewards program.

5.1.3 Current practice

Currently, casinos use hold percentage as a management tool for determining
the performance of games. Table Games Hold Percentage is the percentage
of money that is held by the table when measured against the total money
spent at the table. Formally, we have

Hold percentage =
amount of money the casino wins back

amount of chips bought at the table
.

The amount of chips bought at the table is also known as the drop. It
is important to note that chips are NOT required to be used at the table
at which they are bought. That is, suppose that a player enters the casino
wanting to play in the poker room, but the poker room is full. While waiting,
the player buys $100 worth of chips at the blackjack table BJ01. After
playing a few hands at BJ01 and winning $30, that player learns that a
spot has opened up in the poker room and decides to leave the blackjack
table. The player does not need to sell back his remaining chips at BJ01,
but rather can use those same chips at the poker table. Suppose that the
player then loses his $130 at poker and leaves the casino. In this example,
although the casino has experienced a net profit of $100 from this player, the
corresponding hold percentage at BJ01 is negative (and equals −30/100 =
−3%) whereas the corresponding hold percentage for the poker room is
positive (in fact, i! t is “infinite” since the player did not drop any “new”
money at the poker room).

Thus, substantial deviations in hold percentage may not represent real
problems for the casino (such as cheating at play, fraud by a staff member,
or malfunctioning equipment), but rather the movement of players between
tables. Since there is no easy way to track the movement of chips between
tables, this “false drop” renders hold percentage as an inadequate measure-
ment tool for analyzing particular table games.

5.1.4 Our measurement tool

Instead of using hold percentage, we have decided that a more reliable mea-
sure is results per table-hour. By table-hour (TblHr), we mean one hour of
blackjack played at one table. For example, if there are two blackjack tables
open for three hours each, then there are six total table-hours. Denote by
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result the net profit for the blackjack tables under consideration. That is,

result = total money in− total money out

and so
result

total table-hours
= result/TblHr.

There are three categories of blackjack tables at Casino Regina; those with
a $5 table minimum, those with a $10 table minimum, and those with a $25
table minimum. On any given day, there are a variable number of blackjack
tables open. Hence, our four statistics of interest will be

• result/TblHr for all $5 tables,

• result/TblHr for all $10 tables,

• result/TblHr for all $25 tables, and

• result/TblHr for all tables combined.

We have chosen to omit those tables with zero table-hours since this indicates
that the table was not open for play.

The data provided by the Saskatchewan Gaming Corporation consisted
of blackjack table data for 2004. From this data, we computed estimators
for the mean of our four statistics of interest as shown in Table 4 below.
We have also included the sample standard deviations (SD), as well as the
sample range. Notice that the sample sizes near 365 indicate that blackjack
tables were open for at least one hour on most of the days of the year. The
smaller sample size for the $25 tables indicates that there were two days in
2004 on which no $25 tables were open.

It should be noted that we followed standard statistical procedure and
trimmed the most extreme 0.5% of our data to eliminate outliers caused by
potentially unexplainable events such as clerical errors in data entry.

Table Sample Mean Sample SD Sample Range Sample Size
$5 118.19 198.66 (−431.28 , 593.48) 362
$10 397.35 728.52 (−1876.18 , 2352.52) 362
$25 165.85 528.880 (−1312.00 , 1848.00) 360

Overall 683.34 915.47 (−2120.21 , 3073.46) 362

Table 4: Sample statistics for result/TblHr based on 2004 data
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It is reasonable to approximate the daily result/TblHr distribution by
a normal distribution. Formally, if we let Y denote a daily result/TblHR,
then Y has a normal N(µ, σ). As neither the true mean µ, nor the true
standard deviation σ is unknown, we approximate this from the data. In
particular, our data yields

• $5 tables: Y is approximately N(118.19, 198.66),

• $10 tables: Y is approximately N(397.35, 728.52),

• $25 tables: Y is approximately N(165.85, 528.880), and

• overall: Y is approximately N(683.34, 915.47).

Having found the distribution of daily result/TblHr to be approximately
normal, it is now possible to use a normal model to determine prediction
intervals of non-rare wins or losses for daily result/TblHr (categorized by
table grouping). These prediction intervals are shown in Table 5 below.

For example, if Y denotes the overall daily result/TblHr, then we are
98% confident that Y falls between −$1446.37 and $2813.04. If Y is outside
of this interval, then it is categorized as a rare event that may require further
review by management.

Table 92% 96% 98%
$5 (−229.60 , 465.97) (−289.80 , 526.17) (−343.95 , 580.33)
$10 (−878.05 , 1672.75) (−1098.84 , 1893.54) (−1297.43 , 2092.13)
$25 (−760.06 , 1091.77) (−920.34 , 1252.05) (−1064.52 , 1396.22)

Overall (−919.37 , 2286.04) (−1196.81 , 2563.49) (−1446.37 , 2813.04)

Table 5: Prediction intervals of non-rare events

We end this section by reviewing how to compute prediction intervals.
Suppose that we label the data as y1, . . . , yn. The sample mean is given by

y =
y1 + · · ·+ yn

n
=

1
n

n∑
i=1

yi

and the sample standard deviation is given by

s =

√
(y1 − y)2 + · · ·+ (yn − y)2

n− 1
=

√√√√ 1
n− 1

n∑
i=1

(yi − y)2.
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A level C prediction interval is given by

y ± z∗s
√

1 + (1/n) = (y − z∗s
√

1 + (1/n) , y + z∗s
√

1 + (1/n))

where the critical value z∗ is chosen so that there is area (1− C)/2 in each
tail of the normal density curve.

Table 6 below shows the value of value of the critical value z∗ corre-
sponding to the levels 92%, 96%, and 98%.

Prediction level C value of z∗

92% 1.751
96% 2.054
98% 2.326

Table 6: Critical values for various prediction levels

For example, in the case of the $5 tables, the sample mean is y = 118.19
and the sample standard deviation is s = 198.66. Since there are n = 362
sample points, a 92% prediction interval is given by

y ± z∗s
√

1 + (1/n) = 118.19± (1.751)(198.66)
√

1 + (1/362)
= (118.19− 348.33, 118.19 + 348.33)
= (−230.14, 466.52).

The reason for the slight discrepancy between this result and the result
presented in the first row, first cell of Table 5 is accounted for by the fact that
in this explicit computation we have rounded our sample mean and sample
standard deviation to two decimal places and our critical value has been
rounded to three decimal places. The computer software used to construct
Table 5 had much more accurate precision.

5.1.5 Are rare events really that rare?

It is seemingly paradoxical that rare random events actually happen since,
by their very nature, rare events are “rare.” However, as we will attempt to
explain below, just because an event has a very small probability of occurring
at a given fixed time, that does not prevent that event from happening at
over some period time. Of course, in the present context, a rare event
corresponds to either a big win or a big loss for the casino.

For each of the following charts, the first column denotes the “probability
of a rare event on a particular day,” and the remaining three columns denote

45



the “probability of at least k rare events in N days” for N = 30, 90, and
365.

Prob of a rare event on a given day Prob of at least 1 rare event in
N = 30 days N = 90 days N = 365 days

p = 0.08 0.9180 0.9994 1
p = 0.04 0.7061 0.9746 1
p = 0.02 0.4545 0.8377 0.9994
p = 0.01 0.2603 0.5953 0.9745

Prob of a rare event on a given day Prob of at least 2 rare events in
N = 30 days N = 90 days N = 365 days

p = 0.08 0.7042 0.9951 1
p = 0.04 0.3388 0.8795 1
p = 0.02 0.1205 0.5396 0.9947
p = 0.01 0.0361 0.2273 0.8804

Prob of a rare event on a given day Prob of at least 3 rare events in
N = 30 days N = 90 days N = 365 days

p = 0.08 0.4346 0.9785 1
p = 0.04 0.1169 0.7030 1
p = 0.02 0.0217 0.2688 0.9773
p = 0.01 0.0033 0.0619 0.7074

Prob of a rare event on a given day Prob of at least 4 rare events in
N = 90 days N = 365 days

p = 0.08 0.9359 1
p = 0.04 0.4874 1
p = 0.02 0.1067 0.9345
p = 0.01 0.0129 0.4960

Prob of a rare event on a given day Prob of at least 5 rare events in
N = 90 days N = 365 days

p = 0.08 0.8555 1
p = 0.04 0.2920 0.9990
p = 0.02 0.0348 0.8553
p = 0.01 0.0022 0.3028
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The calculations in the previous tables are particular cases of the fol-
lowing general result. If a rare event occurs with probability p, then the
probability of no rare events in N days is

Pr{no rare events in N days} = (1− p)N .

That is, on a given day, no rare event occurs with probability 1− p, and so
the only way for no rare events to occur in N days is for no rare event to
occur on any single day. By the multiplication principle, this happens with
probability

(1− p)× (1− p)× · · · × (1− p) (N times).

Hence, the probability of at least 1 rare event in N days is

Pr{at least 1 rare event in N days} = 1−Pr{no rare events in N days} = 1−(1−p)N .

In fact, this formula can be generalized. For k = 0, 1, 2, . . ., as a result of
the binomial theorem, the probability of exactly k rare events in N days is

Pr{exactly k rare events in N days} =
N !

k!(N − k)!
pk(1− p)N−k

where N ! = N × (N − 1) × · · · × 2 × 1 (and 0! = 1 by convention). Thus,
the probability of at least k + 1 rare events in N days is

Pr{at least k + 1 rare event in N days}
= 1− Pr{no rare events in N days} − Pr{exactly 1} − Pr{exactly 2} − · · ·
− Pr{exactly k}

= 1− (1− p)N −Np(1− p)N−1 − N !
2!(N − 2)!

p2(1− p)N−2 − · · ·

− N !
k!(N − k)!

pk(1− p)N−k

= 1−
k∑
j=0

N !
j!(N − j)!

pj(1− p)N−j .

This formula can easily be implemented by computer software to gener-
ate more extensive tables than the ones presented here.
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5.1.6 Combining rare events and our measurement tool

In Table 5 we computed prediction intervals an in the previous section we
explained that rare events will happen (with alarming frequency). For in-
stance, the 92% prediction interval for all tables combined is

(−919.37 , 2286.04).

Thus, if we define a “rare event” as having an overall result/TblHr loss of at
least $919, then this is a rare event that happens with probability p = 0.04.
(Recall that a 92% prediction interval corresponds to a 4% chance of a large
profit and a 4% chance of a large loss.) As shown in the previous charts, we
see that there is a probability of 0.292 of seeing at least 5 such losses in a
given month, and a 0.9990 chance of seeing at least 5 such losses in a given
year.

In other words, the casino must realize that simply by chance occurrence
there will be days when it realizes a large loss. Conversely, however, there
is exactly the same chance that the casino will see 5 days per year for which
there is a result/TblHr of at least $2286 (profit).

5.1.7 Other concerns

A number of other issues were raised by the SGC Director of Table Games
Development who initially thought that, perhaps, an analysis of the black-
jack table data might provide clues as to other, more serious issues including
money laundering, player theft, dealer theft, and collusion. Unfortunately,
the available data is aggregate daily data. As such, it is not possible to use
this “global” table to detect “local” phenomenon, and so we cannot deal
with these issues directly using the data provided. Our best advice is to
suggest that, if any of the above are suspected, the casino send additional
staff to the floor for observation.
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5.2 Supply Chain Optimization for the North American Op-
erations of the Evraz Group

Solution Team: Hernando Bermudez, Mike Cavers, Yogesh Joshi, Man-
meet Kaur, Zanin Kavazovic, Dong Won Kim, Nathan Krislock, Asef Nazari,
Fridahus Oloude, and Rachel Robertson.

5.2.1 Introduction

The Evraz group makes a monthly scrap metal purchase consisting of ten
main grades of scrap that are sold by a number of suppliers. Each month, it
is determined how much of each grade of scrap will be needed for the next
month. Then the company must buy what it needs. However, each supplier
has a limited quantity of certain grades of scrap to sell. The suppliers are
located throughout Canada and the United States. The price of scrap varies
between suppliers, as does the transportation costs to get the scrap to the
plant. There are some contracts and gentlemen’s agreements already in
place which determine the purchases of a certain amount of scrap that the
company must buy, but there is also a certain amount of scrap each month
that can come from any of the suppliers. It is also important that the
company spreads around their purchases in order to maintain good business
contacts with many suppliers.

Evraz’s plant in Regina, SK, needs approximately 35–40 million dollars
worth of scrap each month to keep running. Scrap costs about $450 per
ton and transportation costs are somewhere between $20–45. These are the
two main costs associated with this process. There is an inventory cost as
well. Evraz likes to keep about three weeks worth of scrap at their facility,
however, this cost is hard to calculate, and the shipments do not necessarily
arrive when scheduled.

The main consideration is to buy enough of each grade of scrap to keep
the plant running at the lowest cost, while still satisfying contracts that are
already in place. Evraz would also like a spreadsheet tool that they can use
monthly to determine the cheapest way to purchase what they need.

The remainder of the report is as follows: The problem is stated in
Subsection 2; the model is described in Subsection 3; we present the results
in Subsection 4 and finally in Subsection 5 we conclude and discuss of some
future work.
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5.2.2 Problem Statement

Evraz Regina Steel manufactures approximately 100 kms. of pipe and 3,000
tons of steel on a daily basis. To keep this monster operation flowing, its
Supply Chain/Logistics Team procures over 80,000 tons of scrap metal every
month. To avoid both high scrap inventories and the risk of running short on
supply, the monthly scrap buy is a balancing act between cost and delivery
times.

Analyze all relevant supply chain variables such as freight cost, scrap
costs and transit times. Evraz wanted us to optimize their monthly scrap
purchase as a function of the price differential and associated transportation
costs. They wanted a spreadsheet-based tool that takes all supply chain
variables into account—such as costs and transit—to optimize their monthly
scrap buy. This tool, combined with experience and market trends, will be
used to efficiently plan the scrap purchasing.

5.2.3 Model

Based on the information we have from the problem description and the
company, in the simplest case we are dealing with a transportation problem.
There is a certain number of providers and certain amount of scrap they can
provide in different types. Actually, the amount of different types of scraps
from each provider would change by time or season, but at the first stage we
think they are fixed. If i (i = 1, 2, . . . , n) is for cities and j (j = 1, 2, . . . ,m)
for types of the scrap, we have the following information:

• n number of providers,

• m number of types of scrap,

• xij the decision variable that the company is going to buy that amount
of scrap type j from provider i,

• cij the total cost to bring scrap type j from provider i. This cost
includes purchase cost, transportation, etc.,

• mij the least amount of scrap type j to buy from provider i,

• Mij the maximum amount of scrap type j available from provider i.

Using this information, one mathematical model for this problem is:

min
n∑
i=1

m∑
j=1

cijxij
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subject to

0 ≤ mij ≤ xij ≤Mij i = 1, . . . , n j = 1, . . . ,m

As mentioned, this is the simplest possible case and we can solve this
problem by deciding about each scrap grade independently. However,
if there are some more constraints, for example, if there is a limitation
in company’s budget, this model is not valid anymore. If we want to
extend this model, we would account for some more consideration of
the company, and some more stochastic nature of scraps and providers.

5.2.4 Results

The primary goal of this project is to develop an Excel document which will
allow EVRAZ to compute the minimum cost monthly scrap metal purchase
under some given constraints easily and quickly. Since the overall minimum
cost can be obtained by finding the minimum cost to purchase the necessary
amount of each grade separately, we created individual spreadsheets to op-
timize the purchase of each grade. We also included a summary sheet which
allows easy entry of the required amount of each grade of scrap metal and
displays the minimum cost purchase computed by the optimization solver
from the individual grade spreadsheets.

Each spreadsheet lists all the suppliers from which the grade of metal
may be purchased. The variables over which we optimize are the number of
rail cars of scrap metal to order from each supplier. It is convenient to use
the number of rail cars ordered as the variables since this is typically how
the order is placed. Furthermore, we now have the option to insist that these
variables are integer if this becomes an important factor in the future. Given
the average amount in tons that a rail car holds, we can now compute the
total amount of scrap metal to order from each supplier. This total amount
is then compared to both the minimum amount of scrap EVRAZ has agreed
to purchase from the supplier, and the maximum amount of scrap available
from that supplier. Finally, we compute the cost based on the freight price
and the scrap metal price provided by the supplier. Summing this over all
the suppliers gives us our total cost, which is the amount we would like to
minimize.

This mathematical model is a linear optimization problem and can be
efficiently solved by the Tools→Solver command in Excel. In the solver, we
need to specify the lower/upper bound constraints on the amount of scrap
metal to order, and the demand constraint on the total amount of scrap to
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order. Choosing the option in the solver to assume a linear model, we let
the solver minimize the total cost by varying the number of cars of scrap
metal to order from each supplier.

In addition to being a useful tool for EVRAZ to compute the minimum
cost scrap metal purchase quickly and to investigate different scenarios with
ease, this Excel document has also been seen to compute purchase plans
which provide significant savings over historical purchase plans. We com-
pared the purchase plans for a past month and found that the savings ob-
tained were roughly 2%; since this purchase plan may need to be slightly
modified, we expect the savings to be on the order of 1%. However, given
the monthly cost of scrap metal, even a 1% savings is of great benefit for
EVRAZ. Given the many advantages mentioned, we feel this Excel docu-
ment will greatly assist EVRAZ in making informed business decisions and
enhance their scrap metal purchasing techniques.

5.2.5 Conclusion/Future work

The model presented is a simple linear program that minimizes the total
cost of EVRAZ’s monthly scrap purchase by taking both scrap and freight
costs into account. However, there are many factors that the current model
does not consider. We feel it would be beneficial to the company to look at
similar models to optimize other facets of the operation while at the same
time keeping costs at a minimum.

Currently, the linear program presented is to be solved each month in
Excel by using the scrap prices for each supplier for that month. In the
future, we would like to add multiple time periods to the model. This will
allow us to incorporate future prices and demands into the model to further
reduce the total long term costs the company incurs. However, by doing
this we must also incorporate inventory capacities and inventory costs into
the model. This is because it may be in the company’s best interest to order
more scrap during the current month for future use, so long as the cost to
store the scrap is not too high.

Since future prices and demands are generally unknown, we may consider
the problem as having a stochastic element present in the data. Thus, it
may be best to consider the problem as a stochastic program, from which
can obtain a solution that is optimal over a set of scenarios.

Also, by adding multiple time periods we can account for the seasonal
nature of suppliers, and further, ensure the proper amount of stock is in
inventory so that the company can continue its operations even if a shipment
is missed.
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Finally, the reliability of the current model needs to be checked. Some
tweaking may be necessary by the company since the optimal solution pro-
vided by the program may not be realistic.
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5.3 Plow, Plow, Plow the Field with Accutrak

Solution Team: Ewout van den Berg, David Clark, Melanie E. Roberts,
Edward Doolittle, Roslyn Hickson, Norberto Flores Guzmán, Javier Flavio
Vigueras.

5.3.1 Introduction

Our problem was presented by Dr. Ron Palmer of Accutrak. Accutrak
is a Regina-based company that produces autosteering machines for farms,
which assist farmers by automatically steering tractors within a field. The
system reduces overlapping of plow lanes and optimizes plow routes, which
reduce the resource consumption and distance traveled by each tractor.

To identify a tractor’s position, the Accutrak autosteering systems use
radio beacons mounted around the perimeter of each field. These beacons
communicate with a receiver on the tractor, using wireless communication
which is subject to multipath errors. All beacons transmit at the same
frequency (usually 300 MHz) using time-division multiplexing.

The position of a tractor within a field is calculated using the approxi-
mate distance to each beacon from the tractor. This distance is expressed as
a number of complete wavelengths, plus a fractional number of wavelengths,
between the beacon and the tractor.

For example, suppose we have a wavelength of 0.50 meters. If the signal
from a beacon requires 6 complete wavelengths plus 0.20 wavelengths to
travel to the tractor, then the tractor is 0.50× 6.2 = 3.1 meters away from
the beacon. However, the radio equipment in use reports only the fractional
part of the number of wavelengths. In the example above, we only know
that the beacon is n.2 wavelengths away, for some integer n. The major
part of this problem is to identify the value of n for each beacon. Typically,
10 such “fractional” readings per second are taken from each beacon.

If the integer and fractional parts of the number of wavelengths to each
beacon are known, then the position of the tractor can be calculated using
a linear least-squares fit. Once this is known, existing software uses further
readings to keep track of the tractor’s position to a high degree of accuracy.

Unfortunately, there are several limitations and sources of error.

• Each beacon has an unknown amount of systemic bias, resulting in an
incorrect (but consistent) error in the reading of the fractional part of
the wavelength. This is caused by various parts of the system, such
as the antenna length, cables, and (to a certain extent) the terrain in
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the area. Experimentally, this error is at most 1/8 of the wavelength,
or about 12.5%.

• The positions of the beacons are known to within approximately 10
cm.

• Unpredictable errors in the fractional portion of the wavelength may
occur as a result of atmospheric interference and similar effects. These
are typically transitory.

• The fractional portion of the wavelengths are quantized at the receiver
into 256 levels. This introduces measurement errors and effectively
limits the accuracy of all calculations. However, this level of quanti-
zation is changeable with some effort.

• Accutrak wishes to minimize the amount of time and effort necessary
to initially determine the values of n for each beacon. It also prefers to
avoid any special driving patterns or detailed instructions that drivers
must follow to properly calibrate the system. In the future, this system
may be used on unmanned tractors or mowers. Thus, determining
each n should be entirely automatic and require at most a few minutes
of time.

• Accutrak does not wish to add any complexity to the radio hardware
used. Computational resources are available, although Accutrak would
prefer that a solution be implementable in integer arithmetic.

Given this information, we have identified the following problem to solve.

Problem statement: Our problem is to identify the integer number
of wavelengths between each beacon and the tractor, which is located at an
unknown starting position. We must account for several sources of error and
respect the limitations put forth above. From this information, the position
of the tractor can be calculated separately.

Accutrak also has requested that we develop a method to double-check
an existing set of integer wavelength values and ensure that they correspond
to the tractor’s expected location within a field.

We make certain assumptions about the situation:

• The systemic errors in measuring fractional wavelengths are constant.
This is not strictly true, as they may vary depending on changes in
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topography (for example, readings taken at the top of a hill may pro-
duce slightly different errors than readings taken at lower elevations).
However, these changes are very small and occur very slowly.

• The initial position of the tractor can be determined to within a 10
meter radius using GPS or other methods. This radius is not essential;
any level of precision helps as long as it is known.

• We ignore transient errors in the fractional wavelengths. To a certain
extent, the quantization of readings into 256 levels already simulates
this sort of noise.

These assumptions are generally acceptable, and are not significant bar-
riers to real-world implementation of our solutions.

The problem was approached in several ways that are described in sub-
sequent sections. The solution which is most useful from an implementation
point of view is the nonlinear programming approach which is described
next.

5.3.2 Nonlinear Programming

The technology currently in use tracks changes in the fractional wavelengths
very accurately. However, the fractional values themselves may not be ab-
solutely correct. This model primarily uses the change between subsequent
measurements to identify the integer wavelength values.

The following concept is central to our model. Suppose we take a reading
from beacon i located at (xi, yi) and obtain the fractional wavelength fi. If
the position of the beacon and the value of fi are exactly correct, then the
tractor must lie on a circle centered at the beacon, with radius λ(ni+fi) for
some nonnegative integer ni (see Figure 16), and where λ is the wavelength
used by the beacons.

However, there is some error ai in the measurement of xi, and some
error bi in the measurement of yi. Thus in reality, the position (x, y) of the
tractor satisfies

(x− xi − ai)2 + (y − yi − bi)2 − λ2(ni + fi)2 = 0

for some ai, bi, and ni. This process can be repeated for each beacon,
producing a set of k circles, one for each beacon. Note that because the
beacons use time-division multiplexing, the readings from all beacons arrive
essentially simultaneously. Details of the calculation of fi are discussed later
in this section.
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Figure 16: Schematic depicting the problem setup with beacons (red and
blue dots) and a tractor (red dot). The dotted blue circles indicate all
positions within a certain radius of each beacon.

If we take enough readings, several from each beacon, we will be able
to solve these equations for x, y, ai, bi, and ni. In order to avoid creating
too many more unknowns, we proceed as follows. We instruct the tractor
operator to move in a straight line, at a constant speed, for a short period of
time. Typically this is only a few seconds, as we need only to collect about 6
readings. Movement in a straight line at a constant speed is made possible
by existing Accutrak technology. Recall that readings from each beacon
happen at regular intervals, approximately every 1/10 of a second. Thus
after each reading, the tractor has moved the same distance in the same
direction. We denote the distance traveled d. The x and y components of
this movement are ∆x and ∆y respectively. Thus on the second reading, we
have moved from (x, y) to (x + ∆x, y + ∆y), and so on. This allows us to
write additional equations while introducing only two new unknowns.

We add one additional equation:

(∆x)2 + (∆y)2 − (αλ)2 = 0,

where λ is the wavelength used by the beacons and 0 < α < 1/2. The
term αλ represents the distance traveled between two readings. This indi-
cates that the rate of movement of the tractor is slow enough that between
readings, we have moved less than half of a wavelength. This is important
for determining our direction. Note that at the usual wavelength of 1 meter,
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a tractor traveling at 8 km/h easily satisfies this constraint.
With k beacons and r measurements over time, we have a total of 4 +

3k unknowns and 1 + kr equations. We will have more equations than
variables as long as r ≥ 4 and k ≥ 3. In an ideal world, this set of equations
would be consistent. Unfortunately, the various systemic errors preclude
this. However, it is still possible to find a least-squares solution to this
nonlinear system.

Here is a summary of the variables involved in our model. All distances
are measured in meters unless otherwise specified.

Known
(x0, y0) Estimated initial position of the tractor (±10 m)
(xi, yi) Position of beacon i (±10 cm)
k Number of beacons
λ Wavelength used by beacons
r Number of measurements taken during calibration
d Distance traveled during calibration

f ′i,j
Fractional number of wavelengths from tractor to beacon i during
measurement j. Assumed to include systemic bias.

fi,j Total of all fractional changes from f ′i,1 up to f ′i,j−1 (see below).

Unknown
(x, y) Exact initial position of the tractor.
(ai, bi) Error in position of beacon i.

(∆x,∆y) Change in position after one measurement.

ni
Integer number of wavelengths from tractor to beacon i at
the beginning of the measurement.

We first compute the fi,j from the f ′i,j . For beacon i, we have a sequence
of fractional values f ′i,j , j = 1, . . . , r. So that the value of ni need not be
changed if we “roll over” from ni to ni ± 1, we calculate a sequence fi,j , in
which fi,j represents the sum of all fractional changes from f ′i,1 up to f ′i,j−1.
There are several minor issues here. For example, suppose f ′i,j = 0.8λ
and f ′i,j+1 = 0.1λ. It appears that our change in fractional values was −0.7λ.
However, our assumption about the speed of the tractor indicates that we
could not move more that half of a wavelength between readings, and so
we must have moved from (ni + 0.8)λ to ((ni + 1) + 0.1)λ. Thus, the ac-
tual change in fractional values was +0.3λ. This effectively tells us which
“direction” we are moving compared to beacon i.
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Our problem can be formulated as this nonlinear program:

minimize ‖f‖

where f is a vector consisting of these functions:

(x− xi − ai + (j − 1)∆x)2 + (y − yi − bi + (j − 1)∆y)2

−λ2(ni + fi,j)2

for i = 1, . . . , k, and j = 1, . . . , r
(∆x)2 + (∆y)2 − (αλ)2

Subject to:

x0 − 10 ≤ x ≤ x0 + 10
y0 − 10 ≤ y ≤ y0 + 10
−0.1 ≤ ai ≤ 0.1 i = 1, 2, . . . , k
−0.1 ≤ bi ≤ 0.1 i = 1, 2, . . . , k

ni bounded based on initial box, i = 1, 2, . . . , k.

This is a nonlinear program with bounded constraints. Because of the
errors in measurement, there is not likely to be an exact solution. However,
there will be a least-squares solution.

A solution to the above linear program gives the following information:

• The ni value for each beacon, as requested.

• The position of the tractor, which may be more useful.

• The direction of the tractor’s travel.

• An approximation of the measurement error for each beacon.

As previously mentioned, Accutrak has one additional problem: to be
able to validate a set of n values, given an expected physical location. This
check is relatively simple, and is implemented as follows. We expect to be
given (x, y), which the tractor’s tracking software believes is our current
location. We are also provided with a set of ni and fi, which are the current
readings for each beacon. We also require ε, measured in meters, giving the
maximum number of meters of inaccuracy we expect as a result of beacon
positioning error and systemic errors. For our typical wavelength of λ = 1
meter, we have ε ≈ 0.2 meters.

For each beacon i, we calculate Ri = (x− xi)2 + (y − yi)2 − λ2(ni − fi).
If −2rε− ε2 ≤ Ri ≤ 2rε+ ε2, then the current ni and fi are within ε of our
current position, and thus valid.
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We arrive at this idea by again looking at circles. Let r = λ(ni + fi)
be the radius of the circle that our observed ni and fi indicate we are
on. If our current position falls on a circle of radius at most r + ε and
at least r− ε, then we are within ε of the expected location, and so our data
is assumed to be valid. Substituting our (x, y) into the equation for a circle
of radius r centered at (xi, yi), the residual must be at most (r + ε)2 − r2

and at least r2 − (r + ε)2, which give the stated results.
To implement this, we suggest the following algorithm should be applied

approximately every minute (600 measurements):

1. For each beacon, calculate d = 2rε+ ε2.

2. If all beacons satisfy −d ≤ R ≤ d, all data is valid. Continue.

3. If there is only one beacon for which −d � R � d:

(a) Replace ni with ni − 1 and ni + 1, and re-check the inequality
using each.

(b) If exactly one of the above is within bounds, change ni to ni − 1
or ni + 1 as appropriate and continue.

(c) If neither or both of the above are within bounds, stop and re-
calibrate.

4. If more than one beacon does not satisfy −d ≤ R ≤ d, stop and
recalibrate.

5.3.3 Implementation

We use the MATLAB package bcnls to find a least-squares solution to
this problem. Unfortunately, we experimentally found that our objective
function appears to have many local minima. Since we are not using a
global optimizer, the solver tends to locate a minimum value very near to
its initial position.

To alleviate this problem, we implement a multilevel mesh-based heuris-
tic search. This search works as follows. Begin with the search region
x0 − 10 ≤ x ≤ x0 + 10, y0 − 10 ≤ y ≤ y0 + 10.

1. Divide the search region into a 5× 5 grid.

2. For each grid point, run a reduced version of the nonlinear program
and record the objective value.
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Figure 17: Multigrid mesh focusing in on a tractor (the red dot)

3. Replace the search region with a new region whose sides are half the
length of the old one, and which is centered at the point giving the
smallest objective value.

4. If we have iterated fewer than 12 times, go to 1. Otherwise run the
full nonlinear program on the point giving the smallest objective value,
and return the result.

This method effectively “zooms in” on the best locations, identifying
the (approximate) area containing the globally best solution. The final step
ensures that we find the locally best point, giving a good approximation for
the global minimum. Figure 17 shows four steps of this process.

The reduced nonlinear program is a version of the full nonlinear program
in which the error tolerance level of the solver is decreased, and ai and bi
are removed, to increase speed.
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With regard to our problem constraints, note that this method could be
implemented entirely using C on simple processors. Our current implemen-
tation uses MATLAB, but bcnls is based on bcls, which is already written
as a C library.

5.3.4 Experiments and Results

Our tests have demonstrated that our method is effective and requires rel-
atively little time. A tractor’s positioning system could easily be calibrated
during the time in which the tractor is driving down a driveway into a field.
Experiments have also shown that taking additional readings (increasing r
in our model) does not typically increase the accuracy of our model, be-
yond r = 4. We believe this makes sense because that is the r value at
which there are more equations and variables. Any additional readings
essentially give the same information, with the same systemic errors and
beacon position errors.

Experiment 1: Quantization. Quantization levels significantly affect
error levels. We use a five beacon field with a typical arrangement, as
depicted in Figure 18. Four beacons are located around the outside of the
field, one per edge, and one beacon is located in the center (such as at a
rock pile).
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Figure 18: Five beacons in a typical field.

Figure 19 demonstrates a significant benefit in increasing the quantiza-
tion level to 11 bits, which corresponds to 2048 levels of quantization.

Experiment 2: Number of Beacons. We place n beacons in a circu-
lar arrangement, with n ranging from 1 to 20, as shown in Figure 20. While
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Figure 19: Error in direction and position of tractor versus quantization
level for the field in Figure 18. Note: Level 15 represents no quantization.

a larger number of beacons generally improves the accuracy of our findings,
it is not significantly different after about 5 beacons, as demonstrated in
Figure 21.
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Figure 20: A circular arrangement of beacons.

Experiment 3: Number of steps. Each step in our calibration con-
sists of one reading of the fractional portions of the wavelength. At least
two steps are needed to determine direction and position. We use the field
in Figure 18 and take increasing numbers of steps. Figure 22 shows that in
general, larger numbers of steps do not help accuracy, and indeed hurt in
some cases. We do not understand these results, however, notice that the
scale on these graphs is extremely small.
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Figure 21: Error in direction and position of tractor versus number of bea-
cons used.

We recommend increasing the quantization levels. These produce enor-
mous amounts of error compared even to measurement errors.

5.3.5 Further Work

As previously mentioned, the bounded constraint nonlinear solver that we
use tends to find local minima. It is possible that an unbounded solver, or
a solver that uses various heuristics, may be able to find better solutions,
thus reducing the need for our meshing algorithm.

In addition, our meshing algorithm could be improved. Much work has
been done using multilevel meshes, and there are many techniques that could
be applied in our case to improve location of global minima. Our current
implementation is fairly basic and can occasionally be “tricked.”
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Figure 22: Error in direction and position of tractor versus number of steps
taken.

5.4 Assessing an Off-the-Job Safety/Wellness Strategy at
Mosaic Potash

Solution Team: Laura Cowen, Ortho Flint, and Ryan Tifenbach.

5.4.1 Problem Statement

As of 2004, Saskatchewan had an injury rate that was twice the national av-
erage; accordingly, injuries are now considered an epidemic in the province.
The yearly cost of these preventable injuries to the economy is estimated
at one billion dollars province-wide. It was found that most injuries occur
off-the-job.

In 2004 and 2005, Mosaic Potash Colonsay (one of the 4 Mosaic mine
sites in Saskatchewan) kept track of the number of days lost due to workplace
injuries each year and averaged 10 days lost per year. However, OJIs (off-
the-job injuries) resulted in 50 times more average-work-days lost. Similar
results were observed for days lost due to illness. These findings drove
Mosaic Potash to develop an Off-the-Job Safety/Wellness Strategy for their
employees, families, communities, and Saskatchewan as a whole.

After these initiatives were instituted, the number of days lost due to
OJIs was compared for the first quarters of 2006/07 and 2007/08. A 14%
reduction in days lost was found between these two years.

Mosaic Potash would like to determine if their safety/wellness programs
are having an impact on reducing the number of days lost per year to OJIs
and to illness.
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5.4.2 Before After Control Impact (BACI) Studies

In this report, we will provide suggestions as to what data is important to
collect in future studies, provide a ”first draft” of a form employees could
fill out to describe their injuries when processing a claim or returning to
work, discuss potential experimental designs for assessing impact, and dis-
cuss models to determine what factors are affecting the number of days
lost. Further, we will emphasize the importance of collaboration with other
parties interested in OJIs.

The need for a control group

One of the problems with the finding of a 14% reduction in days lost
is that we don’t know if that reduction is due to the safety programs
implemented or was there a general 14% reduction during that time in
Saskatchewan. This statistic needs to be compared with a similar statis-
tic for people who did not receive safety programs for the same time period
(a control group). Two things are crucial for the mcontrol group — the same
time period, and the lack of safety programs. For instance, we cannot simply
use the data from say 2004/05, when off-the-job safety programs were not
in place, as a control, as we do not know if there was an external event that
was associated with off-the job injures that occurred in 2004/05 but did not
occur in 2007/08. For example, perhaps 2004/05 had an icy winter where
many OJIs were due to falls. Thus, time is said to be confounded with the
impact of the safety program.

Data

There is a need for collecting the number of days lost due to OJIs per year
in all of the mines as is currently done. However, we also need to collect the
number of days lost due to OJIs per year for a control group. This control
group could be another potash mining company such that the employee
demographics were similar to Mosaic Potash, a similar industry group with
similar demographics who use the same medical insurance company (this
would make data collection by the insurance company easier), or if neither of
these is possible, population data for Saskatchewan. It may also be possible
to use Mosaic Potash employees as their own controls; this would require a
rotating treatment design which is not discussed further in this report.

A 2-year study design
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For a simple 2-year study with a BACI design you would need data as in
Table 1. Here we define yijk as the number of days lost due to injury divided
by the number of people at mine site k for treatment group i and year j.
The difference between the two years can then be used to determine if there
is a treatment effect. For example, d11 would be the difference between the
number of days lost due to injury for year 1 versus year 2. These differences
are treated as two independent samples (from a control and a treatment
group) and a 2-sample t-test or confidence interval can be constructed to
determine if the treatment groups differ significantly.

Table 7: Data table for a 2-year BACI study where the treatment group
has 4 sites (Esterhazy, Colonsay, Belle Plaine and Hersey) and the control
group has 3 sites (A, B, and C).

Year Difference
Group Site 1 2 yijk − yij+1k

Treatment Esterhazy y111 y121 d11

Colonsay y112 y122 d12

Belle Plaine y113 y123 d13

Hersey y114 y124 d14

Control A y011 y021 d01

B y012 y022 d02

C y013 y023 d03

Multi-year designs

Before-after control-impact (BACI) designs appear in statistical ecology
research. They were first introduced as a tool in analysing the effects of a
disturbance or disaster on wildlife. In what might be called “traditional”
statistics, an analysis of an experiment requires that the experiment be
repeated (or, at the very least, be repeatable). But, what about experiments
that cannot or should not be repeated? The Exxon Valdez disaster is an
example. There is no way to conduct multiple experiments concerning this or
similar events. None of the classic statistical models are entirely appropriate
for such a situation, and so the BACI-type design was introduced.

How exactly can a design intended for such purposes apply to analysis
of the effectiveness of safety initiatives? In a sense, Mosaic Potash and Safe
Saskatchewan are involved in an experiment that can only be conducted
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once; once the initiatives are implemented, there is no way to “reset” the
population dynamics and start over. The beginning of these initiatives is a
one-time event that cannot be recreated feasibly (for budgetary and time-
influenced reasons).

Terminology

We refer to the event under investigation as the “treatment”; the treat-
ment may be an ongoing process. We are counting numbers of observations
of some event, object, or individual, that may or may not have been af-
fected by the treatment. A BACI-type analysis asks the question, “has the
treatment altered the number of observations?” In our case, have the safety
initiatives altered the number of work days lost to off-the-job injuries?

The design looks at observation counts taken at different times. We
refer to these times as year 1, year 2, etc., and assume that the treatment
occurred between two known years.

Required Data

In order to proceed with this type of analysis, we need a certain sort of
collection of data. The observations are recorded at a number of sites, at a
series of different times. Each site is either part of the experimental control
or it is treated (for example see Table 2).

Table 8: Example data from a 3 year study where the impact occurs between
years 1 and 2.

Year
Group Site 1 2 3
Treatment 1 35 13 12

2 16 13 3
3 10 28 6

Control 1 32 7 24
2 3 1 15

Limitations

A BACI-design is only appropriate if data from before and after the
experiment, and from both a control and an experimental group is available.
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A BACI analysis cannot be used to infer causation or correlation; it is part
of an argument for such a relationship.

5.4.3 Details

Let µijk be the number of observations under treatment i, at time j and
location k (the control is treatment 0 and the experimental group is treat-
ment 1). For example, µ1,3,5 is the number of observations at treated site 5
during year 3, µ0,2,1 is the number of observations at control site 1 during
year 2.

Let yijk be the number of observations recorded under treatment i at site
k during year j divided by some scaling factor that denotes the relative size
of site k. In this study, for example, we will take yijk to be the total number
of lost days (to off-the-job injury) divided by total number of employees at
a specific mine during a specific year.

The BACI design includes three distinct models for the random variable
yijk, we present the most basic: the untransformed additive model.

The additive model

The observation counts are assumed to be

yijk = µ+ τi + αj + (τα)ij + wik + εijk

where

• µ is the overall population mean;

• τi is the effect of treatment i;

• αj is the effect of year j;

• (τα)ij is the interaction effect between treatment i and time j;

• wik is the site effect, these are assumed to be independent identically
distributed normal random variables with mean 0 and variance σ2

w;
and

• εijk is the experimental error, these are assumed to be independent
normal random variables with mean 0.
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With these assumptions and the given data set, a variety of hypotheses
can be tested. For example, we can test the hypothesis that the treatment
has no effect on the year immediately following it as compared to the year
immediately previous. We let δ̂ik = yij2k−yij1k, where j1 and j2 are the years
immediately before and after the beginning of the treatment. We would
then perform a two-sample pooled t-test on these differences to obtain a
confidence interval for this hypothesis; this is known as the BACI-contrast.

In some cases, this model can lead to unreliable results. For example, if a
large number of relatively small counts occurs (especially counts equal to 0),
the assumption that each εijk is normal can cause difficulties. In these cases,
more advanced models such as the log-transformed multiplicative model or
the generalized linear mixed model are more appropriate. For an in-depth
discussion of the BACI-design.

5.4.4 Data Collection Survey

To determine if safety programs are addressing a particular area of safety, we
suggest monitoring where these OJI’s occur . For example, SmartRisk states
that 5% of all injuries in Saskatchewan are due to poisoning and 36% are
due to falls. If OJIs for Mosaic Potash employees were similar, then perhaps
they would implement a safety program that focussed on falling. This will
result in a spreadsheet with column headings similar to, for example, Table
3.

Table 9: Example of data that would be collected on a survey to be used in
a generalized linear model

Number of days lost per year Injury Type
10 Farm
1000 Falls
250 Poison
100 Other

We have developed a draft survey form (Appendix A) that Mosaic Potash
could use to collect this data on OJIs. By no means do we see this as
a final version, as many organizations would need to have input into this
form. If collaborating with a university, a final version would have to go
through an ethics review along with having the approval of union officials,
Safe Saskatchewan and other concerned organizations.

70



Table 10: Example of a possible contingency table resulting from data col-
lected in the Off-the-Job Injury survey.

Injury Type
Group Domestic Farm Sport Motor Vehicle Other
Mosaic Potash
Other Potash company

5.4.5 Generalized Linear Models

Linear models attempt to model a response (number of days lost per year
(n)) to covariates (such as age, sex, injury type, safety program type, etc.)
in a linear fashion. For example, if we just had sex (male=1 or female=0)
as a covariate, we could develop a simple linear regression model (assuming
n is normally distributed) along the lines of

n = β0 + β1sex+ error
where β1 would be interpreted as the change in number of person-days lost
for males versus females.

Contingency Tables

Taking data from the form described above, we could create a contin-
gency table which categorizes the number of person days lost by two or more
covariates. For example, if we were interested in categorizing the number of
days lost per year by injury type and group we could create the following
table (Table 4).

Again, a linear model could be developed, but we might have different
assumptions as to how the number of days lost is statistically distributed
(Poisson or Normal). A general model would be where we write the model
in terms of the expected number of days lost

E(n) = β0 + β1group+ β2domestic+ β3farm+ β4sport+ β5vehicle
where all covariates are indicator variables (taking on values of 0 or 1).
For example group=1 would indicate Mosaic Potash, and group=0 would
indicate not Mosaic Potash. Farm=1 would indicate a farm related injury
and farm=0 would indicate an injury other than farm. If we had five types
of injuries in the table, these can be modeled by four indicator variables.
When all indicator variables for injury type are equal to zero, this indicates
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the last category (other=not domestic, not farm, not sport, and not motor
vehicle).

When n is assumed to be Poisson distributed, some of the β parameters
have an interesting interpretation: the log odds or the log odds ratio of
events.

Odds

The odds of an event is the probability of success over the probability
of failure of that event. For example, if p is the probability of a farming
injury and 1 − p is the probability of not a farming injury, then p

1−p is the
odds of a farming injury. So for example if p = 0.8 and 1− p = 0.2 then the
odds of a farming injury would be 0.8

0.2 = 4. This is often stated as “the odds
of a farming injury is 4-to-1”. Thus odds are not probabilities of an event,
rather they are relative probabilities.

Odds ratio

An odds ratio is a method of determining if the odds of an event is the
same in two groups. It can be expressed as

OR = p/1−p
q/1−q

where p is for example, the probability of a farming injury, for say, males,
and q is the equivalent for females. An odds ratio of 1 implies a farming
injury would be equally likely for both males and females.

If we had the model:
ln(E(n)) = β0 + β1group+ β2farm+ β3group ∗ farm

where group and farm are the indicator variables defined above. Then we
can break this model into 4 cases as shown:

Case Associated part of model
1) Mosaic and farming injury ln(E(n)) = β0 + β1 + β2 + β3

2) Mosaic and non-farming injury ln(E(n)) = β0 + β1

3) Other company and farming injury ln(E(n)) = β0 + β2

4) Other company and non-farming injury ln(E(n)) = β0

Then looking at the difference between two of these cases give the log
odds. For example, comparing case 3 with case 4 gives (β0−β2)−(β0) = β2.
Thus β2 is the log odds of a farming injury versus a non-farming injury for
the other company. Similarly, (β0 +β1 +β2 +β3)−(β0 +β1) = β2 +β3 would
be the log odds of a farming injury versus a non-farming injury for Mosaic.

To compare Mosaic with he other company we look at the difference
between these two log odds to form the log odds ratio: (β2 +β3)−(β2) = β3.
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This is the log odds ratio of a farming versus a non-farming injury for Mosaic
versus another company.

5.4.6 Collaboration

To perform this study well, a great effort must be made to collaborate
between various stakeholders. Good data is collected when all parties are
informed well about the study and in particular what action Mosaic will take
in response to the results. Union representatives, the insurance company,
potential control companies, and Safe Saskatchewan are some of the parties
who will need to agree on the final survey design, logistics, etc. Finally, it is
our recommendation that a statistician be among those involved from the
beginning to help bring about a well designed study with the potential to
collect good data.

5.4.7 Conclusion

With Saskatchewan’s injury rates being among the highest in the country,
a study initiated by Mosaic Potash seems timely. Careful consideration
must go into obtaining a control group so that a BACI-type design may
be implemented. To determine which areas of injury the safety/wellness
programs should target, a survey is recommended who’s data can later be
analyzed through a general linear model. Finally, we stress that a study of
this magnitude, involving many people, would require the collaboration of
all interested parties.
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5.4.8 Appendix

Appendix A: Example of an off-the-job injury assessment survey

The purpose of this study is to determine the hazards that may occur
for employees away from work. There is no need to provide your name or
address anywhere on this questionnaire. This study is sponsored by the De-
partment of X at the University of X.

Please describe the injury.

Was the injury due to a fall?

To the best of your memory, give the date of the injury.

Day Month Year

Did the injury occur...
• before your work day at Mosaic?
• after your work day at Mosaic?
• on your weekend?
• during vacation or time off?

Where did the injury occur?
• a farm
• any public area including streets and roadways
• urban home (population 5,000 or greater)
• rural home
• other

Did the injury occur while or during...
• farming or any other agricultural activity except gardening?
• gardening or cutting grass?
• home renovations or improvements or cleaning?
• day to day household activities?
• a non-recreational motor vehicle accident?
• a recreational motor vehicle accident involving an ATV?
• a recreational motor vehicle accident involving a snowmobile?
• a recreational motor vehicle accident involving neither of the above?
• bicycling?
• swimming?
• sports or recreation other than bicycling or swimming?
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• a house fire?
• on any public transit (including planes, trains or buses)?
• a natural disaster?
• other

In your opinion, when the injury occurred, were you mostly ...
• tired?
• stressed?
• neither?

If you answered neither above, was the injury due mostly to...
• being rushed?
• not paying attention?
• distractions?
• other

In your opinion, was the injury due to a lack of attention (rather than being
tired, stressed, rushed)?

Yes No

Was a hospital stay required?
Yes No

If yes, how long?
• 1-3 days
• 4-7 days
• more than a week

75



5.5 How to Optimize Combination Chemotherapy in Cancer
Treatment?

The following problem was posed by Professor Jack Tuszynski from the Cross
Cancer Institute in Edmonton, Canada. Find ways to optimize combination
chemotherapy in cancer treatment. There were three distinct subgroups
working on this problem. We include just one approach in this abbreviated
version of the report. All approaches will be included in the final report.

Introduction

The current medical treatments for cancer include surgery, radiation ther-
apy, gene therapy and chemotherapy. Combinations of these therapies have
shown to be effective. Primarily we restricted our attention to chemother-
apy and specifically addressed the general question: ‘how can one evaluate
and best improve the outcome for a patient by changing the application
frequency of a particular drug or by using a combination of drugs’.
The outcome involves two components:

benefits The benefits can be measured in terms of the patient survival
time, or the time to metastases, or may be measured in terms of the
tumour size or death rate of tumour cells.

side effects Of course chemotherapy drugs are ‘poisons’ which destroy both
tumour and normal cells and/or effect the total physiology of the body,
so balanced against the benefits are the side effects which may be either
of short term duration and a matter of inconvenience, or of long term
duration or indeed life threatening.

Mitosis and Drugs

Individual cells (normal and tumour) go through a cell cycle, the end product
of which is a daughter cell. The cell cycle is typically 24 hours in duration
(but varies greatly depending on cell type) and has four development stages:
G1 (‘gap 1’, lasting typically 10 hrs), S (‘DNA synthesis’, tasting typically
5-6 hrs), G2 (‘gap 2’ , 4 hrs), M (‘mitosis’, 2 hrs), see Figure 24.

Mitosis is itself usually divided into different stages, see Figure 23. Tu-
mour cells generally have a shorter cell cycle and, whereas normal cells die
after a number of cycles, cancel cells continue to reproduce. This results in
uncontrolled growth and proliferation with accompanying biochemical and
environmental change (hypoxia, acid environment etc.). Conventional drugs
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Figure 23: The cell cycle

bind onto particular key molecules produced during the cell cycle. The cell is
particularly vulnerable during the ‘most active’ development stages of DNA
synthesis and cell division, so most drugs in present day use target either
one or other of these cycle stages, see Figure 24 (DNA alkylating agents,
DNA processing agents, microtubules). Other drugs act on the cellular envi-
ronment and so effect the cell at all developmental stages; anti-angiogenesis
drugs fall into this category.

There are over 100 cancer drugs and a very large number of possible drug
combinations and possible application schemes. At the present time treat-
ments are mostly based on ad-hoc empirical ‘formulas’. The Cross Cancer
Institute would like to develop a sounder theoretical basis for treatments.

Typical Drug Combinations

(Notice Ringa, Petko Kitanov)
We will first briefly describe a typical drug combination/s used for breast

cancer. This specific example will both familiarize the reader with the treat-
ment process and provide a foil for some of the work to follow. Data con-
cerning tumour cell survival rates/application levels for these drugs are used
in models presented later.
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Figure 24: Drug action
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AC chemotherapy:
The drugs administered for this treatment regime are:

• Doxorubicin, which acts at stage S of the cell cycle and has a half life
(footnote on half life?) of 55 hours, and

• Cyclophosphamide which acts at stage S of the cell cycle, and has a
half life of 3 to 12 hours.

Both drugs are given at the same time every 3 weeks. Typically the drug
reaches the tumour site (the cell DNA) in 4 hours and is active for about 48
hrs.
Some Side Effects

Side effects for both include lowered resistance to infections, bruising
and bleeding, anemia, hair loss, irritation of the bladder, diarrhea. When
used in combination immune system problems arise.

There are other treatments (eg TAC). Comparisons in outcomes are im-
portant.

In an attempt to address various features of the problem different groups
were formed and their works are presented in the following sections. The first
group produced a general probabilistic model for determining the outcome
of various treatment regimes using parameters to be determined empirically.

5.5.1 A General Procedure for Evaluating Drug Treatment Regimes

Luz Angélica Caudillo Mata CIMAT
Harish Krishnamurthy Northeastern University, Boston
Sadia Mwangangi University of Regina
George Price University of Regina
Hugo Rodŕıguez Ordóñez University of Regina

Cancer is responsible for the majority of non–accidental deaths in the
modern world and has been a major cost to health systems worldwide. Enor-
mous amounts of research time and resources have been invested in the fight
against this disease. Although still in early stages, mathematical modeling
is playing an increasingly important role in this fight.

Methods currently used to treat cancer include surgery, radiotherapy
and drug therapy. Drug therapy exists in the form of chemotherapy or anti–
angiogenesis. Chemotherapy interferes with the natural life cycle of cells
eventually causing their death while anti-angiogenesis inhibits the growth of
blood vessels near the tumor, depleting the nutrient supply while enhancing
the flow of other therapy drugs.
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The various stages of the cancer cell life cycle are described. The cell2

cycle is then generalized to M stages. A model to determine the time de-
pendence of cell populations at each stage of the generalized cell cycle is
given. In section 5.5.3 the model given in the previous section is treated as
a discrete dynamical system and its time evolution derived. In section 5.6
the model is applied to the case where two chemotherapy drugs are used.
In this case it is assumed that the drugs are administered at the same fre-
quency but the time between when the drugs are given is varied. In section
5.7 a method to estimate parameters for the model is described. In section
5.7.1 future work and conclusions are summarized.

5.5.2 The Model

The cell cycle has four basic stages:

1. A first gap stage or G1 where a cell grows in size.

2. The synthesis stage or S during which DNA is replicated.

3. A second gap stage or G2 where the cell continues to grow.

4. The mitosis or M stage, in which a cell splits into two genetically
identical child cells. The child cells then proceed to G1 and the cycle
repeats.

Each stage of the cell cycle can be divided into several substages. For
this reason, in the model that follows, the cell cycle is assumed to have M
stages. At any time t, the cell cycle is considered to be a series of “buckets”,
Sk, each one symbolising a stage in the cycle and containing the portion of
all cells that are currently at that stage (see figure 26).

Let Nk(t) be the average number of cells at phase k and time t and

N(t) =
M∑
k=1

Nk(t)

the average total number of cells. One goal is to choose a treatment plan
that forces N(t) to be a small as possible while maximizing the patients
quality of life during the treatment interval.

As cells undergo their cycle, some will migrate from a given stage Sk to
the next stage after some time. Let λk(t) be the average rate at which cells

2Throughout the remainder of this section cell will always mean cancer cell.
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Figure 25: The cell cycle

Figure 26: A simplified model for the cell cycle

transition from stage Sk to stage S(k+1) mod M at time t. In addition, let
dk(t) be the average rate at which cells die in stage Sk at time t and ik(t)
be the average rate at which cells divide in stage Sk at time t (it is expected
that only one ik is not zero).

The rate of change of average cell population in a given stage, Sk, equals
the average rate that cells flow into Sk minus the average rate that cells flow
out of Sk. This can be stated mathematically as:

dNk

dt
(t) = λk−1(t) + ik(t)− λk(t)− dk(t) (19)
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Equation (19) is a statement of conservation of average cancer cell popula-
tion at stage Sk. In the above equation it is assumed that cells can transition
from a given stage to the next but cannot skip stages.

5.5.3 Time Evolution of the Model

Equation (19) gives the time dependence of the average number of cells in
stage Sk. Since λk−1(t), λk(t), ik(t) and dk(t) refer to average rates that
cells flow between various stages it is natural to expect that these rates can
be defined in terms of transition probabilities. Let Pk(t, θ) be the transition
probability density. That is the probability that a cell transitions from stage
k to k + 1 in time interval [t, t+ β] is be given by:

Fk(t, β) =
∫ β

0
Pk(t, θ)dθ (20)

It is assumed that:

• At any time t, Pk(t, θ) is a valid probability density function.

• Pk(t, θ) = 0 for θ < 0

• Pk(t, θ) is continuous for θ ∈ [0,∞)

Fk(t, β) in equation (20) will be referred to as the transition probability
distribution. By the Fundamental Theorem of Calculus, Fk(t, β), is differ-
entiable on (0,∞) with derivative:

Pk(t, β) =
∂Fk
∂β

(t, β) (21)

If β is sufficiently small, then by the Mean Value Theorem∫ t+β

t
λk(s) ds = λk(t̃)β = Nk(t̃)Fk(t̃, β) = Nk(t̃)[Fk(t̃, β)− Fk(t̃, 0)]

for some t̃ ∈ [t, t+ β], which can be assumed equal to t for small enough β.
Therefore,

lim
β→0

Nk(t)
[
Fk(t, β)− Fk(t, 0)

β

]
= λk(t)

and finally

λk(t) = Nk(t)
∂Fk
∂β

(t, 0) (22)
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The above derivation of λk(t) can be repeated for ik(t) and dk(t). Let
P ik(t) and P dk (t) be the transition probability densities associated to ik(t)
and dk(t), respectively. In addition, let F ik(t) and F dk (t) be the transition
probability distributions associated to ik(t) and dk(t), respectively. We then
have the following equations:

ik(t) = Nk(t)
∂F ik
∂β

(t, 0) (23)

dk(t) = Nk(t)
∂F dk
∂β

(t, 0) (24)

Using equation (21) and the equivalent equations for ik(t) and dk(t) the
expressions (22), (23) and (24) can be rewritten as:

λk(t) = Nk(t)Pk(t, 0) (25)
ik(t) = Nk(t)P ik(t, 0) (26)
dk(t) = Nk(t)P dk (t, 0) (27)

Substitution of (25), (26) and (27) into (19) yields

dNk

dt
(t) = Nk−1(t)Pk−1(t, 0) +Nk(t)P ik(t, 0)−Nk(t)Pk(t, 0)−Nk(t)P dk (t, 0)

(28)
In most situations equation (28) will need to be solved numerically. Meaning
that one wants to calculate Nk(t) in time steps of β. Given Nk(t) then
Nk(t+ β) is found by integration of equation (28).

Nk(t+ β) = Nk(t) (29)

+
∫ t+β
t

[
Nk−1(s)Pk−1(s, 0) +Nk(s)P ik(s, 0)−Nk(s)Pk(s, 0)−Nk(s)P dk (s, 0)

]
ds

Where Nk(t) is the initial average population of cells at time t. Using
the Mean Value Theorem and if β is sufficiently small then equation (29)
becomes

Nk(t+ β) = Nk(t) (30)
+β
[
Nk−1(t)Pk−1(t, 0) +Nk(t)P ik(t, 0)−Nk(t)Pk(t, 0)−Nk(t)P dk (t, 0)

]
Using (30) one can define the following discrete dynamical system:
N1(t+ β)
N2(t+ β)

...
NM (t+ β)

 =


1 + C1(t)β 0 . . . PM (t, 0)β
P1(t, 0)β 1 + C2(t)β . . . 0

...
. . . . . .

...
0 . . . Pm−1(t, 0)β 1 + CM (t)



N1(t)
N2(t)

...
NM (t)


(31)
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where Ck(t) = P ik(t, 0)−Pk(t, 0)−P dk (t, 0), k = 1, . . .M . Notice further that
the system can be rewritten in the somewhat more convenient form

N1(t+ β)
N2(t+ β)

...
Nm(t+ β)

 =




1 + T0(t)β 0 . . . PM (t, 0)β
P1(t, 0)β 1 + T1(t)β . . . 0

...
. . . . . . 0

0 . . . Pm−1(t, 0)β 1 + TM (t)β

−

−


P d0 (t, 0)β 0 . . . 0

0 P d1 (t, 0)β . . . 0

0
. . .

0 . . . 0 P dM (t, 0)β





N1(t)
N2(t)

...

NM (t)

 (32)

where Tk(t) = P ik(t, 0)− Pk(t, 0), k = 1, . . .m. The first matrix encodes the
evolution of the cell population due to intrinsic (natural) causes whereas the
second one encodes the influence of the drugs in the cell population. Either
of equations (31) or (32) can be applied recursively in order to determine
the vector

N(t) = [N1(t), N2(t), . . . , NM (t)]

describing the time evolution of average cell populations of all stage in the
cell cycle. Of primary importance is N(t). From (30) have that

N(t+ β) =
M∑
k=1

{
Nk(t) + βNk(t)

[
P ik(t, 0)− P dk (t, 0)

]}
or

N(t+ β) = N(t) + β
M∑
k=1

Nk(t)[P ik(t, 0)− P dk (t, 0)]

In summary, the time evolution of the model explained in section 5.5.2
is given in equation (32). The primary effect of drugs is to modify all
P dk (t, 0), k ∈ D, where D ⊂ {1, 2, · · · ,M}. D will depend on the type
of drugs used during treatment. In order to calculate N(t) the parameters,
P ik(t, 0), Pk(t, 0), and P dk (t, 0) must be estimated and β chosen. Equivalently
F ik(t, β), Fk(t, β), and F dk (t, β) must be estimated.

5.6 Application of the Model

In what follows it is assumed that the cell cycle has 4 stages and two drugs,
A and B are administered (see figure 25). Drug A is administered at time
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t = 0 and its effect is assumed to take place αA hours later. Drug B is
administered at time τ and its effect is assumed to take place αB hours later,
in other words, τ is the time between the initial administration of the two
drugs. It is assumed that both drugs are taken with the same periodicity T .
This is summarized in Figure 27, where DA and DB are the corresponding
doses of the drugs. Furthermore, it assumed that drug A acts on stage 2

Figure 27: Dosage scenario for combination of two drugs

and drug B acts on stage 4. Figure 28 depicts the survival probabilities of
cells under the action of each of the drugs and for different values of τ .

Cell death due to natural causes will be the objective of further study
and for the time being it is assumed that the probability of a cell surviving
through time β within any stage of its life cycle is a constant 0.95. It is well
known that the concentration of either drug over time can be modeled by
exponential decay. Assuming a linear relationship between the concentration
of the drug and the probability that it kills a cell, the survival probability
under the effect the two drugs combined is given by

F sk (t, β) =


0.95−KADAe

−δA(t−αA) k = σA

0.95−KBDBe
−δB(t−αB−τ) k = σB

0.95 elsewhere

where δj is the decay rate and Kj is the proportionality constant for the
linear relationship between killing probability and concentration for drug
j = A,B, and σj is the phase in which drug j acts. This survival probability
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Figure 28: T = 100, redτ = 25, greenτ = 50, blueτ = 75

Table 11: Known data for a combination therapy

Drug Doxorubicin Cyclophosphamide
Stage of action, σD G1 M
Dosage in mg, Dj 2000 500
Half–life in hours 55 3 to 12
Decay rate, δj .0126 .09243

is related to the cell death probability by F dk (t, β) = 1−F sk (t, β). For the time
being, the interaction between the two drugs is overlooked. A combination
of two chemotherapy drugs was considered at random. Known data for these
drugs appears in Table 11. These parameters along with the artificial ones
for the two drugs are shown in Table 12 and Table 13.

Using these parameters the time evolution of average cell populations
in each stage of the cell cycle were determined using MATLAB. In Figure

3The value of the decay rate was computed using an average half–life of 7.5 hours.
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Table 12: Artificial data for a combination therapy

Drug Doxorubicin Cyclophosphamide
Proportionality constants (slopes) be-
tween concentration and effectiveness (kill
rate), Kj

1/3000 1/1000

Delay between drug application and its ef-
fect in hours, αj

0.5 0.5

Table 13: Artificial data for the cell cycle

Stage G1 S G2 M
Transition probabilities Pk 1/4 1/4 1/4 1/4
Replication probabilities P ik 0 0 0 1/4
Initial number of cells per stage N(0) 50 50 50 50

29 the average cell populations in each stage are plotted for T = 100 hours
and the initial departures of τ = 25, 50 and 75 hours. In addition, the total
number of cells, N(t), are plotted in Figure 30 for the three administrations.
Examination of the Figures suggests that the time of separation between the
initial administration of the two drugs does play a role in the overall cell
mortality. Although this example might suggest that the closer the two
drugs are administered, the more effective the combination treatment will
be, it should be kept in mind that the present model does not yet consider
drug interactions.

5.7 Estimation of parameters

Post introduction of the drug, many events happen over time. In a particular
phase, some of the main events include:

• Annihilation: The cancer cells are annihilated at each time.

• Migration: The cells in that phase transform into next phase and some
cells enter into the phase from the previous phase.

Since the number of cells are large (order of 105) and probability of a cell
either dividing or getting killed is small, the process can be characterized as
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Figure 29: T = 100, redτ = 25, greenτ = 50, blueτ = 75

88



Figure 30: T = 100, redτ = 25, greenτ = 50, blueτ = 75
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a Poisson process. Hence, at a given time t, the annihilation and migration
events can be characterized:

The probability that k1 cells are killed at time t is the random variable
A,

p(A = k1) =
λk11 × exp−λ1

k1!
(33)

The probability that k2 cells transform into next phase at time t is the
random variable T ,

p(T = k2) =
λk22 × exp−λ2

k2!
(34)

The probability that k3 cells infuse into current phase at time t is the random
variable I,

p(I = k2) =
λk22 × exp−λ2

k2!
(35)

The time taken for a cell that has just entered to migrate into next phase
is large compared to time for an existing cell to transform into next phase
and hence these events can be assumed to be independent. The drugs are
known to destroy a select portion of the tumour such as portion of the outer
layer. Hence, each of these processes can be assumed to be independent.

In order to find the joint probability of the events, one must maximize
the likelihood of the above processes

L = {p[I = k2]× p[A = k1]× p[D = k3]}

=
4∏
i=1

λ−ki
i exp−λi

ki!

Log(L) =
4∑
i=1

{(−kilog(λi)− λi)− log(ki!)}

for which experimental data could be put into this process to determine the
mentioned parameters.

5.7.1 Conclusion

This final section contains some thoughts on potential future directions for
the model described in this work. The authors concede that this is a quite
general model and that further instantiation must take place in order to
apply it to a real situation, but at the same time, they believe that the
generality described herein might potentially allow for a wider variety of
applications.
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In the application of the model, given in section 5.6, it was shown that
changing the initial time between when the two drugs are administered does
effect the cancer cell survival rates. A first task will be to evaluate the
accuracy of the present model using real parameters, that is, determining
all the parameters of the model for drugs that are actually used in cancer
therapy.

Certainly, the probabilistic process involved in modeling the migration
probabilities discussed in Section 4 is general enough to estimate these pa-
rameters for any type of cells; moreover, even for healthy cells. Estimating
these parameters from real data to fit a specific cancer type is certainly a
challenge.

Once the real parameters are established for a specific type of cancer and
a particular treatment against this disease, it would be in place to evaluate
the impact of side effects on the patient and to quantify the interaction of
the drugs depending on the departure between treatments τ . This model
would then be able to describe the expectancy of improvement in patients
and serve as a guideline for more effective clinical trials of combination
therapies. Further, by varying dosage times as well as initial departures
might eventually sharpen the effectivity expectation and suggest even better
clinical trials.

Over longer treatment intervals, drug resistance would need to be fac-
tored into the model. The authors believe that this can be done by keeping
the relatively simplistic approach of modeling through a discrete dynamical
system. Where over time the original cell cycle would become a coupled
system of cell cycle. The additional cell cycles would correspond to cells
that have developed resistance to given drugs. Instead of having the one
matrix given in equation (31) there would now be multiple matrices.

In the future we might imagine that a patient is diagnosed with cancer
and a series of tests are performed to determine the type and stage of cancer
as well the overall health of the individual. These test results would be
used as inputs to a treatment algorithm that could be used to determine
optimal therapy options4. With regards to chemotherapy the algorithm
would potentially choose the best combination of drugs and drug schedules
to maximize the cancer cell kill rate over a given treatment interval while at
the same time maximizing the patients overall quality of life. As the patient
is being treated additional test may be performed that could be used as
feedback for the algorithm.

4Potentially, several models of cancer growth may be used by the algorithm.
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5.7.2 A Model of Drug Resistance in Small Tumours

Dominic Neslon
Shaughnessy Hawkins
Heidi Muller
Mary-Jane Richardson
Justin Schwark

Our focus was on the way tumours develop resistance to chemother-
apy drugs, and how treatment plans can be chosen to minimize this effect,
specifically those in which two different drugs are used in combination. The
way we modeled drug resistance was to assume that each tumour is rela-
tively heterogeneous and so will contain some cells that are killed by a given
chemotherapy drug and some cells that are not. With two drugs (say A and
B) being administered, we end up with cells that are resistant to neither
drug (usually the vast majority), cells that are resistance to drug A, and
cell that are resistant to drug B. For simplicity, since we assume that each
resistant population is quite small compared to the total population, we ig-
nored the chance of some cells being resistant to both drugs. The model
could be easily extended later to include this case if need be. We assume
also that the tumours are small enough that it still grows exponentially, and
also that exponential death occurs in the presence of chemotherpay drugs
which a population is not resistant to. Thus, our model is

d

dt
N0(t) = kN0(t)− f(A)N0(t)− g(B)N0(t) (36)

d

dt
NA(t) = kNA(t)− g(B)NA(t) (37)

d

dt
NB(t) = kNB(t)− f(A)NB(t) (38)
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where N0, NA, and NB represent cells within the tumour resistance to no
drugs, drug A, and drug B respectively, k represents the growth rate of the
tumour in the absense of drugs, f(A) represents the kill rate of drug A as
a function of concentration, and g(B) is the respective kill rate for drug B.
Both these functions are time-dependent because the concentration of drug
in the body varies in time due to drug administration and natural decay as
it is eliminated or used up.

For our preliminary work, we take our kill rates to be

f(A) = pA
2
π

arctan(A(t)) (39)

g(A) = pB
2
π

arctan(B(t)) (40)

where A(t) and B(t) are the concentrations of drugs A and B in the body,
and we can adjust the relative strengths of the drugs by choosing appropriate
values for pA and pB. These values have not yet been fitted with real clinical
data, but this could easily be done in the future. When we ran the model, we
found that the timing of drug application could make a significant difference
in the size of the tumour. An example is shown in Figure 25.

This figure compares two different drug regimens, with the number of
cells in the tumour plotted against time (measured in hours). One regimen
gives both drugs at the same time over intervals of 36 hours, and another
where drug A is given over intervals of 36 hours and drug B is given over
intervals of 24 hours, offset 12 hours from the beginning of taking drug A.
The results so far show that taking as much drug as early as possible is the
best strategy, but since our model does not yet include side effects of the
drugs, this result might not remain optimal.

Future work on this model could incorporate realistic growth rates for
tumours large enough to have halted their exponential growth, the addition
of side effects to include some measure of patient quality of life, and an
examination of the effect of mutation within the tumour on the development
of drug resistance.

5.7.3 Deterministic Mechanistic Model

Stephen Hudson University of Western Ontario
Parisa Hudson University of Western Ontario
Shannon Collinson
Jiyung

Modelling has become an important tool for simulating tumour growth
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Figure 31: Response to chemotherapy of a non-resistant cell population
within a tumour
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and the application of treatments. For example coupled reaction-diffusion
equations have been used for optimizing the combination of anti-angiogenic
therapy and chemotherapy in a generic tumour [?], for optimizing radio-
therapy and chemotherapy in brain tumours [?], and for optimizing the
sequencing of surgery and chemotherapy for ovarian cancer [?].

Diffusion Model

The model used by Powathil et. al consists of a reaction diffusion equa-
tion for the concentration of tumour cells in the form

∂c(~x, t)
∂t

= · (D(~x)c(~x, t)) + f(c)−R(c, t)−G(c, t) (41)

where c(~x, t) is the density of tumour cells, D(~x) is the diffusion coeffi-
cient, f(c) is a tumour cell growth term, R(c, t) describes the effects of
radiotherapy, and G(c, t) describes the effects of chemotherapy [?]. For sim-
ple exponential growth, f(c) = ρc could be used, but Powathil et. al use
f(c) = ρc(1− c/clim) where clim is called the carrying capacity, because the
non-zero volume of tumour cells limits the maximum concentration. Even
with the limiting concentration, this model will show simple exponential
growth over a long period of time.

Dose Scheduling Investigation

Using the diffusion model described above with no radiotherapy, we kept
the total dose of chemotherapy drugs constant while changing the dose
schedules. In each case, drug was administered on 30 days, each day for
6 hours. For each of those days, 1 6-hour dose, 2 3-hour doses, 3 2-hour
doses, 6-1 hour doses, or no dose was given.

Fig. 32 shows tumour size versus time when drug is administered for
30 days in a row. Fig. 33 shows tumour size versus time when drug is
administered in 2 15-day segments with a 7-day break in between. Fig.
34 shows tumour size versus time when drug is administered in 3 10-day
segments with 7-day breaks in between.

The effectiveness of each treatment schedule can be determined from the
additional time it takes the tumour to reach a specific size compared to an
untreated tumour. The figures show that for 30 days of drug administration,
the tumour growth is impeded by approximately 60 days. The difference
between any two dose schedules is about 10 days or less.

Fig. 35 shows the best treatment schedules from Figs. 32, 33, and 34.
It is clear that changing the dose schedule while holding the total amount
of drug constant has little effect on the total number of days of tumour
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Figure 32: Tumour size versus time in days is shown for the following dose
schedules: 1 6-hour administration per day (green), 2 3-hour administrations
per day (blue), 3 2-hour administrations per day (black), 6 1-hour adminis-
trations (red), and no drug administered (yellow). The drug administration
was repeated 30 days in a row.
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Figure 33: Tumour size versus time in days is shown for the following dose
schedules: 1 6-hour administration per day (green), 2 3-hour administra-
tions per day (blue), 3 2-hour administrations per day (black), 6 1-hour
administrations (red), and no drug administered (yellow). The drug was
administered for 30 days total, but treatment was divided into 2 15-day
segments with a 7-day break in between.
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Figure 34: Tumour size versus time in days is shown for the following dose
schedules: 1 6-hour administration per day (green), 2 3-hour administra-
tions per day (blue), 3 2-hour administrations per day (black), 6 1-hour
administrations (red), and no drug administered (yellow). The drug was
administered for 30 days total, but treatment was divided into 3 10-day
segments with 7-day breaks in between.

98



Figure 35: The best treatment schedules from Figs. 32, 33, and 34. The
yellow curve shows no treatment for comparison.
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Figure 36: Tumour size versus time for growth without treatment, with
Doxorubicin (AC) alone, with Paclitaxel alone, and with a combination of
Doxorubicin and Paclitaxel.

growth delay. However, it may be possible that some dose schedules will
allow a patient to tolerate larger total doses, resulting in more significant
delay of tumour growth. In the limited time available, we were not able to
investigate this hypothesis.

5.8 Combining Drugs for Breast Cancer Treatment

In this section, we investigate the combination of two drugs that are com-
monly used for treating breast cancer. Fig. 36 shows tumour size versus
time for growth without treatment, with Doxorubicin alone, with Pacli-
taxel alone, and with a combination of Doxorubicin and Paclitaxel. The
figure shows that Doxorubicin and Paclitaxel administered together gives
the greatest reduction in tumour size.

Given that combining the two drugs is most effective, we wanted to
determine the best method of combining the drugs. We found that greatest
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reduction in tumour size occurs when the two drugs are given at the same
time.

Incorporating Angiogenesis

Through diffusion of oxygen alone, a tumour will grow to a size of 1–2
in diameter. To grow further, the tumour needs to induce a process called
angiogenesis, which is the growth of new blood vessels towards the tumour
from existing blood vessels. When blood vessels begin to feed oxygen and
nutrients to a tumour, it will undergo rapid growth and quickly progress
towards metastasis.

Clearly, a treatment that hinders angiogenesis will slow tumour growth.
To incorporate angiogenesis, Kohandel et. al coupled Eq. 41 with an equation
that evolves into a distribution of islands that represent blood vessels:

∂m(~x, t)
∂t

= D2∇2m(~x, t) +m(~x, t)
[
α+ βm(~x, t) + γm(~x, t)2

]
(42)

and an equation that introduces oxygen and nutrients from the blood
vessels and describes their diffusion:

∂K

∂t
= D3∇2K(~x, t) + δm exp

[
−
(

m

mlim

)2
]
− λc(~x, t)− ηK(~x, t) (43)

where the terms represent, from first to last, diffusion, oxygen introduced
by the vessels, consumption by tumour cells.

After metastasis occurs, the probability that a patient will survive cancer
drops drastically. For this reason, early detection and treatment of tumours
is essential for patient survival. Unfortunately, diagnosis is often made when
tumours reach a size of 1 in diameter or larger, well after angiogenesis has
occurred. However, the availability and resolution of various imaging modal-
ities is improving, and this will lead to earlier diagnosis. For this reason,
accurate modelling of tumour growth before, during, and after angiogenesis
is important.

Simulation of Early Tumour Growth

The diffusion equation for angiogenesis used by Kohandel et. al (Eq.
42) is independent of the tumour concentration and evolves into vessels re-
gardless of the state of the tumour. We chose a different approach where
angiogenesis is triggered when the tumour becomes large enough that diffu-
sion of oxygen becomes insufficient to feed the tumour. The concentrations
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used are c for tumour cells, K for oxygen and neutrients, m for blood ves-
sels, ctaf for tumour aniogenic factors, and cec for endothelial cells and blood
vessels.

Our diffusion equation for tumour cells is

∂c

∂t
= D1∇2c+A(K)c

(
K

Klim
− 1
)

(44)

where Klim is the minimum oxygen concentration needed for survival. When
the oxygen concentration is above the limit tumour cells divide, and when
the oxygen concentration is below the limit tumour cells die.

Our diffusion equation for oxygen and neutrients is

∂K

∂t
= D2∇2K − λc − ηK +Aeccec (45)

where −λc describes consumption of oxygen by tumour cells, −ηK describes
decay of oxygen, and Aeccec describes oxygen delivered by blood vessels
created by endothelial cells.

Similarly, we have a diffusion equation for tumour angiogenic growth
factors where the factor is created when tumour cells die and a diffusion
equation for endothelial cells where cells will begin to migrate from an ex-
isting blood vessel at the boundary when the concentration of the growth
factor surpasses a threshold value.

Fig. 37 shows tumour size versus time for the model described above.
At early times, oxygen is plentiful and diffusion of oxygen from surrounding
tissue is adequate to allow exponential tumour growth. Before a time of 500
days, the tumour becomes large enough that cells near the centre become
oxygen starved. The tumour growth becomes linear as cells near the outside
continue to receive oxygen, while cells in the centre do not. At this time, a
tumour angiogenic factor (TAF) is created and begins to defuse outwards.
The TAF induces endothelial cells to migrate towards the tumour and to
create new blood vessels. At a time of approximately 1500 days, the new
blood vessels provide enough oxygen that the tumour begins to grow expo-
nentially again. Fig. ?? shows snapshots of the tumour at three different
times: 150 days (early exponential growth before angiogenesis), 750 days
(retarded linear growth, angiogenesis begins), and 1750 days (exponential
growth after angiogenesis).

Fig. 38 shows tumour size versus time when chemotherapy is applied
to our model. When chemotherapy was applied before angiogenesis, we
found that no benefit was achieved in the long term. The chemotherapy
does not reduce the dimensions of the tumour, but reduces the tumour cell
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Figure 37: Tumour size versus time for our model.

concentration. As the diffusion process is much slower than the exponential
growth, the treated tumour quickly catches up to the untreated tumour
while there is an abundance of oxygen.

The model only qualitatively gives more realistic growth and could be
improved in several ways. By tuning parameters, more realistic tumour
sizes and growth rates could be achieved. Rather than having tumour cells
only divide or die, tumour cells could be allowed to survive at low oxy-
gen concentrations but be inactive. The migration of enothelial cells and
the assumption that the blood vessel concentration is proportional to the
endothelial cell concentration is simplistic. More accurate models for an-
giogenesis exist, and with some work, they could be incorporated into this
model. On online review of angiogenesis modelling is available [?].

5.8.1 An Optimal Strategy for Combating Cancer

Janice Cotcher University of Regina cotcherj@uregina.ca
Matt Hennessy Ontario Institute of Technology matthew.henessy@mycampus.uoit.ca

Introduction
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Figure 38: Tumour growth without chemotherapy (dotted line) and with
chemotherapy (solid red line).
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New hope for tumorous cancers is found in anti-angiogenesis therapies.
Unlike chemotherapy, anti-angiogenesis factors already exist within the body
and inhibit normal cells. Since these factors do not target the quickly adapt-
ing cancerous cells, there is hope there will not be resistance to angiogenic
inhibitors.

After a period of avascular growth, a tumour must form its own blood
vessels in a process called angiogenesis to develop beyond 2mm. The tu-
mour produces vascular endothelial growth factors (VEGF) which activate
cell receptors present in nearby pre-existing veins, thus starting the process
of angiogenesis. The activated endothelial cells release an enzyme that de-
grades the outer membrane of the blood vessel allowing the endothelial cells
to escape. The liberated cells undergo mitosis in the surrounding matrix to
form solid sprouts extending from nearby pre-existing veins to the tumour.
The sprouts hook on to the tumour and then form loops that develop into
bloods vessels.

Anti-angiogenesis therapies aim to bind to VEGF so it cannot activate
endothelial cells, reducing the number of immature and leaky vessels. The
remaining mature tumour vasculature remodels, resulting in a more nor-
malized network. Anti-angiogenesis therapy on its own does deprive the
tumour of some nutrients but the greatest benefit may be improved delivery
of cytotoxic drugs, like chemotherapy, through the remaining blood vessels
to the tumour. Current research is trying to determine the optimal dosage
and delivery schedule.

The Model

We model tumour growth in the presence of anti-angiogenic and chemother-
apy treatments. The tumour growth can be modelled logistically with a
carrying capacity that is related to the number of endothelial cells since
they indirectly provide nutrients. Other ways to model the tumour growth
include Gompertzian growth as done by Ledzewicz and Schättler, but the
essential growth dynamics of these models are identical to ours.

Traditionally, modelling the growth of the endothelial cells includes a
term for the natural death of the cells, plus additional terms for stimula-
tion, inhibition, and the death of the cells caused by the anti-angiogenic
treatment. These terms usually depend upon both the tumour size and the
current population of endothelial cells. However, we use the approach taken
by Ledzewicz and Schättler to eliminate the tumour size from the equations
that govern the endothelial growth. This is allows for major simplifications
because it decouples the endothelial cell growth from the tumour growth.

To model the effects of chemotherapy, we introduce the most basic terms

105



into the governing equations for cell growth. In particular, we assume the
dynamics of the anti-angiogenic and chemotherapy drugs are the same in
the equation for the endothelial cells. However, since it is the vasculature
that is ultimately responsible for the transport of the chemotherapy drug to
the tumour, the effectiveness of the chemotherapy on the tumour is going to
depend on the tumour size, the number of endothelial cells, and the amount
of drug that is in the body. To model this, we introduce a cubic term into
the equation for tumour growth that is trilinear in these three factors.

The time evolution of the drugs is assumed to obey a first order linear
ODE with one term representing regular exponential decay and the other
term representing an externally administered dosage. Although our model
of drug interaction is rather rudimentary, is it possible to extend the model
without drastically changing the solution of the optimal control problem.
This will be elaborated on below.

Mathematically, the described model can be written as

ṗ = ξp(q − p)− k1qpc,

q̇ = −µq + bq2/3 − dq4/3 −Gaq − k2qc,

ċ = −k3c+ uc(t),
ȧ = −k4a+ ua(t),

(46)

where the overdot represents differentiation with respect to time and p is
the tumour size, q is the number of endothelial cells, and c and a are the
amount of drug related to chemotherapy and anti-angiogenesis, respectively.
We impose the initial conditions p(0) = p0 > 0, q(0) = q0 > 0, c(0) = c0,
and a(0) = a0. The two functions uc(t) and ua(t) are the administered
dosages that are to be optimized. A summary of each term can be found in
Table 14. Parameter values can be found in Table 15.

Optimal Control

We seek the optimal dosage schedule for administering anti-angiogenic
and chemotherapeutic drugs while being mindful of the consequences for
the healthy cells of the patient. This task is indeed possible with the use of
control theory.

To be precise, we aim to find the optimal dosages ua(t) and uc(t) in order
to minimize the tumour growth at some time T in the future. However, we
also try to minimize the amount of drug that is required in order the maxi-
mize the quality of life for the patient. This problem can be mathematically
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Table 14: Summary of each term in the model. Analogous descriptions can
be made for the equation governing the angiogenesis treatment.

Tumour growth
ξp(q − p) Logistic growth with variable carrying capacity
−k1qpc Reduction of tumour due to chemotherapy

Endothelial cell growth
−µq Natural death
bq2/3 Stimulation
−dq4/3 Inhibition
−Gaq Death due to angiogenesis treatment
−k2qc Death due to chemotherapy

Chemotherapy treatment
−k3c Natural decay of drug through body
uc(t) Externally administered dosage, a control variable

Table 15: Numerical parameter values for the governing equations.

Parameter Value
ξ 0.084
µ 0.02
b 5.85
d 0.00873
G 0.15
k1 0.001
k2 0.001
k3 0.01
k4 0.01
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modelled by finding the optimal dosages that minimize the functional

I[ua(t), uc(t)] =
1
2
p2(T ) +

∫ T

0

[
u2
a(t) + u2

c(t)
]
dt, (47)

where the first term represents the tumour size at time T and the second
term represents the amount of drug used during the treatment. There are
many ways that could describe similar quantities but we chose a quadratic
functional because of its convexity properties and its susceptibility to ana-
lytical analysis.

Thus far our problem is not completely realistic – there is no constraint
on how large the dosages can be. If the concentration of a drug is too
high there could be serious physical harm done to the patient. Therefore,
we impose constraints on the magnitude of the dosages. In particular, we
restrict the dosages to the domain

D = {(ua, uc) ∈ R2 : 0 ≤ ua(t) ≤ Ua, 0 ≤ uc(t) ≤ Uc, ∀t ∈ R+}.

Thus, the constrained optimal control problem that must be solved is

min
u∈D

I[u(t)],

where u(t) = [ua(t), uc(t)] denotes the control variables (dosages). This is
a standard optimal control problems that is treated in many texts. The
optimal control variables can be found by forming the Hamiltonian function
and minimizing it subject to the above constraints (u ∈ D). If we write the
governing equation for the tumour growth as ṗ = fp(p, q, c) and the equation
for endothelial cell growth as q̇ = fq(q, a, c), then the Hamiltonian for this
system is given by

H = u2
a+u2

c +λpfp(p, q, c)+λqfq(q, a, c)+λc(uc−k3c)+λa(ua−k4a), (48)

where the λi are adjoint variables that satisfy the ODEs

λ̇i = −∂H
∂i

, i = p, q, c, a. (49)

Boundary conditions for the adjoint variables can be found by applying
Pontryagin’s principle. We have λp(T ) = p(T ) and λi(T ) = 0 for i = q, c, a.
The boundary condition for λp is different because of the way p(t) appears
in the functional (47).
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As previously mentioned, the optimal controls can be found by minimiz-
ing the Hamiltonian subject to the constraints. However, this minimization
problem is identical to

min
u∈D

(
λaua + λauc + u2

a + u2
c

)
(50)

To solve this constrained nonlinear programming problem and find the op-
timal controls, we must look at three distinct cases:

1. λa > 0, λc > 0. The minimum of (50) is trivial, for ua = uc = 0 are
the minimizers and thus the optimal control.

2. λa > 0, λc < 0. Here ua = 0 and uc = min{(−λc/2)+, Uc}, where

x+ =

{
x if x ≥ 0
0 if x < 0

Notice that the case λc > 0, λa < 0 is analogous to this case.

3. λa < 0, λc < 0, The optimal controls are given by ua = min{(−λa/2)+, Ua}
and uc = min{(−λc/2)+, Uc}.

The solutions for each of the three cases can, in fact, be combined into a
single solution. Thus optimal controls for our model are then given by

ua = min{(−λa/2)+, Ua}, uc = min{(−λc/2)+, Uc}. (51)

We now make a crucial observation that relates to other possible models.
As long as the governing equations and the objective functional have the same
dependence on the control variables as in (46) and (47), the optimal controls
given above in (51) will be “model independent”. That is, by incorporating
the control parameters into linear ODEs as done in (46), we can modify the
equations for endothelial and tumour growth without having to redo the
optimization. The control parameters do not directly enter these equations
so the objective function in (50) does not change. This observation implies
that our crude model can be easily extended to accommodate more realistic
drug interactions. It should be made clear that the actual ui(t) will change
because they depend on the λi(t), which are model dependent, since λi =
−∂H/∂i.

Unfortunately, since the governing equations are nonlinear, the above
equations (51) are a close approximation to an analytical solution for the
optimal controls. Since the form of optimal controls are known, we can
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insert them into (46) and numerically solve the boundary value problem.
Written explicitly, the boundary value problem that must be solved is

ṗ = ξp(q − p)− k1qpc,

q̇ = −µq + bq2/3 − dq4/3 −Gaq − k2qc,

ċ = −k3c+ min{(−λc/2)+, Uc},
ȧ = −k4a+ min{(−λa/2)+, Ua},
λ̇p = λp(2ξp− ξq + k1qc),

λ̇q = λp(k1pc− ξp) + λq

(
µ− 2

3
bq−1/3 +

4
3
dq1/3 +Ga+ k2c

)
,

λ̇c = λpk1pq + λqk2q + λck3,

λ̇a = λqGq + λak4.

(52)

with endpoint conditions

p(0) = p0, q(0) = q0, c(0) = c0, a(0) = a0,

λp(T ) = p(T ), λq(T ) = 0, λc(T ) = 0, λa(T ) = 0.
(53)

We attempted to solve this boundary value problem using a shooting method.
The main idea behind this method is that the boundary value problem is
transformed into an initial value problem by “shooting” (performing a time
integration) for the correct endpoint conditions using iteratively computed
initial conditions. This method is known to be unstable, and in fact, we had
limited success when it was applied to this problem. When trying to find
the optimal solution over a long time interval (365 days), the time integra-
tions diverge and the shooting method fails completely. Thus, the obtained
results are limited to short time intervals of seven days as demonstrated in
Figure 39.

To relieve some of the numerical difficulties, it may be be possible to
rescale the equations to minimize the stiffness of the system. In addition,
higher order numerical differential equation solvers could be implemented
with an adaptive stepsize. Also, a more stable numerical method could be
implemented for the solution of the boundary value problem. Perhaps the
most trivial method to try would be a finite difference method, but this could
fail because it assumes solutions have a certain degree of regularity (recall
that the equations that govern the drugs are only piecewise differentiable).
Instead of trying finite differences, multiple shooting could be attempted.
This involves breaking up the time interval and performing shooting over
each subinterval. However, multiple shooting can have the same shortcom-
ings as regular shooting.
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Figure 39: Example of the tumour growth (top) with the optimal treatment
(bottom). The calculations were done using the initial conditions p(0) =
q(0) = 1 and c(0) = a(0) = 0. The upper bound on dosages were Ua = 5
mg/day and Uc = 1 mg/day.
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Discussion and Conclusions

We have formulated a rough mathematical model of cancerous cell de-
velopment in an environment with anti-angiogeneic and chemotherapeutic
treatments. Using optimal control theory we determined the best theoretical
dosage schedules that will minimize the tumour size while using a minimal
amount of drugs. Future work not only includes implementing improved
numerical methods, but also developing a more realistic model of drug in-
teraction. This could be done by looking at experimental data or developing
a microscopic model of how the drug interacts with cells.

Another approach would be to compare results with different objective
functionals. For example, coefficients could be introduced in front of the
terms in (47) to describe how one treatment could be more helpful than the
other. Also, the drugs could be dropped from the functional altogether and
a new equation that models the patient health could be introduced. New
constraints could be added that state the health cannot fall below a certain
level. Regardless of the model, it is our hope that optimal control theory will
provide new treatments for cancer patients that will improve their quality
of life while still effectively reducing the tumour size.
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