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Editorial:  David Leeming, Managing Editor, Pi in the Sky
We welcome our readers to another issue of Pi in the Sky.  In addition 

to being on-line at www.pims.math.ca/pi , we have about 1200 subscrib-
ers in 56 countries. 

Once again, we were faced with the challenge of trying to publish 
articles that can be understood by capable high school and College-level 
students.  In this context, we are constrained by the articles we receive 
from authors.  This issue contains articles on mathematical games, ge-
ometry, face recognition, the Laws of Physics and elevator rides (in pur-
gatory!).  We also have a book review written by high school students.

In this issue, we announce the winners of the Math Challenge posed in 
Issue #11 (Spring 2008).

One of our Editors, Volker Runde, has resigned. Volker has served the 
magazine well for a number of years and we thank him for his dedicated 
service to Pi in the Sky.  We welcome Murray Bremner, University of 
Saskatchewan, to the Editorial Board.

This is my last issue as Managing Editor of Pi in the Sky. I have thor-
oughly enjoyed my five years in the position.  I would like to acknowl-
edge the support of my Editorial Board for reviewing articles submitted 
and for their efforts in proofreading drafts of pending issues.  I leave the 
magazine in the capable hands of Anthony Quas, University of Victoria, 
who will become Managing Editor of Pi in the Sky starting with Issue 
#14.
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A Simple Version of Lahal

In [1], the authors state that      
\Mathematics is a subject where 
Aboriginal students can feel particularly isolated 
and alienated." There are, however, some examples 
of Aboriginal games and activities that provide 
opportunities for exploration of the underlying 
mathematical ideas. One such game is Lahal, also 
known as `the bones game.' It is usually played by 
two teams and each team could have anywhere 
from three to twenty members. The game consists 
of bones (typically two male, two female) and 
sticks (six or more). An excellent description of 
this and other versions of Lahal is contained in 
[1].

Here, we will present a simple version of Lahal 
for two players. Each player begins with six sticks 
and one bone. They takes turns with one player 
(the hider) hiding the bone in one of his hands 
and the other player (the pointer) guessing which 
hand contains the bone. If the pointer guesses 
correctly he gets a stick from his opponent. If he 
guesses incorrectly, the hider gets a stick from his 
opponent. The game continues until one of the 
players has all twelve sticks. Naturally, we assume 
a 50% probability that the pointer can correctly 
guess the hand containing the bone.

The outcomes of the first six rounds of this 
game are shown in Table 1. Specifically, the entry 
in the kth column of round n indicates the number 
of possible game sequences which arrive at the 
outcome of one player holding k sticks. It is easy 
to compute each successive row in the table as it 
is the sum of the entries to the right and left in 

the row above. So, for instance, we have, in round 
5 (row five - we count the first row as row zero) 
the entry 10 in column k=5. This is the sum of the 
numbers 4 and 6 above it in row 4. This corresponds 
to ten (5, 7) stick arrangements, coming from four 
(4, 8) arrangements and six (6, 6) arrangements in 
the previous round.

The array of numbers in Table 1 is known as 
Pascal's Triangle. Later, we will describe another 
way to find the entries in Pascal's Triangle using 
binomial coefficients. Note that the sum of all the 
entries in each row is a power of 2, more precisely, 
in row n the sum of the entries is 2n. To calculate 
the probability of holding k sticks after n rounds, 
n ≤ 6, we divide the entry in the kth position by 
2n.

For example, after six rounds, since there are 
26=64 different ways to arrive at one of the seven 
outcomes, so the probability of winning all six 
sticks from the pointer (or losing all six sticks to 
the pointer) is 1/64 and the probability that each 
player still holds six sticks is 20/64 = 5/16.

Note that it takes an even number of turns to 
win a game. (Why?) After six rounds, the hider 
could be holding 0, 2, 4, 6, 8, 10 or 12 sticks. After 
six rounds, the game may be over, with the hider 
winning or losing. In case the game is not over, 
we cannot rely entirely on Pascal's Triangle any 
longer to calculate the probabilities of a win or a 
loss. Let us assume now that the game proceeds 
to eight or more rounds. The number of ways of 
reaching one of the outcomes after seven, eight, 
nine or ten rounds is shown in Table 2 below the 
line.

To calculate the probability of a particular 
outcome, for example, 
that each player has 
six sticks after eight 
rounds, we find the 
sum of the numbers in 
row eight which will 
be the denominator 
of the fraction we use. 
That sum is 248, so the 
probability that each 
player has six sticks is 
70/248 = 0.282. Using 
the same reasoning (you 
can fill in the steps) 

1Both authors are with the Department of Mathematics and Statistics, 
University of Victoria, Victoria, B.C., CANADA V8W 3R4  
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we see that after ten rounds, the 
probability that each player has 
six sticks is 252/944 = 0.267. 
Calculate the probability that 
each player has six sticks after 
twelve rounds, or after fourteen 
rounds. What is happening to 
these probabilities as the number 
of rounds increases?

We could continue this process 
to find the probabilities for the 
number of sticks held by the hider 
and the pointer after any even 
number of rounds. However, there 
are some obvious questions that any mathematician 
reading this would be asking by now.

1. Is there a formula for computing the number 
of sequences resulting in a given number of sticks 
for each player?

2. Will the game almost surely end in a finite 
number of turns?

3. If not, is there a limiting value to the 
probabilities? 

The answers to these questions requires probing 
deeper into the mathematics behind this simple 
game. We will pursue these and other questions in 
Section 2 of this article.

If you are familiar with binomial coefficients, 
then you may wish to go directly to the next 
Section. If you are not, then this brief introduction 

may be useful to you in reading 
what follows.

First, let us examine factorials. 
For any non-negative integer n, the 
number n factorial whose symbol 
is n! is defined by 0! = 1, 1! = 1,  
n! = n(n - 1) . . . (2)(1), so for 
instance 4! = 24, 9! = 362880, 
and so on.

For nonnegative integers n 
and k, 0 ≤ k ≤ n, the binomial 
coefficients, denoted by 

0 1 2 3 4 5 6 7 8 9 10 11 12
Start 1

Round 1 1 1
Round 2 1 2 1
Round 3 1 3 3 1
Round 4 1 4 6 4 1
Round 5 1 5 10 10 5 1
Round 6 1 6 15 20 15 6 1

Table 1: Pascal’s Triangle: sticks versus rounds, 0 to 6

1 2 3 4 5 6 7 8 9 10 11
Round 5 1 5 10 10 5 1
Round 6 6 15 20 15 6
Round 7 6 21 35 35 21 6
Round 8 27 56 70 56 27
Round 9 27 83 126 126 83 27
Round 10 110 209 252 209 110

Table 2: sticks versus rounds, 5 to 10

Table 2 below the line.
To calculate the probability of a particular

outcome, for example, that each player has six
sticks after eight rounds, we find the sum of the
numbers in row eight which will be the denom-
inator of the fraction we use. That sum is 248,
so the probability that each player has six sticks
is 70/248 = 0.282. Using the same reasoning
(you can fill in the steps) we see that after ten
rounds, the probability that each player has six
sticks is 252/944 = 0.267. Calculate the proba-
bility that each player has six sticks after twelve
rounds, or after fourteen rounds. What is hap-
pening to these probabilities as the number of
rounds increases?
We could continue this process to find the

probabilities for the number of sticks held by the
hider and the pointer after any even number of
rounds. However, there are some obvious ques-
tions that any mathematician reading this would
be asking by now.

1. Is there a formula for computing the number

of sequences resulting in a given number of
sticks for each player?

2. Will the game almost surely end in a finite
number of turns?

3. If not, is there a limiting value to the prob-
abilities?

The answers to these questions requires prob-
ing deeper into the mathematics behind this sim-
ple game. We will pursue these and other ques-
tions in Section 2 of this article.
If you are familiar with binomial coefficients,

then you may wish to go directly to Section 2. If
you are not, then this brief introduction may be
useful to you in reading what follows.
First, let us examine factorials. For any non-

negative integer n, the number n factorial whose
symbol is n! is defined by 0! = 1, 1! = 1,
n! = n(n − 1) . . . (2)(1), so for instance 4! = 24,
9! = 362 880, and so on.
For nonnegative integers n and k, 0 ≤ k ≤ n,

the binomial coefficients, denoted by
�
n
k


(and
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(and read `n choose k') give us the 

n + 1 entries in the nth row of Pascal's Triangle. 
A very useful identity in calculating the binomial 
coefficients is 

read ‘n choose k’) give us the n + 1 entries in
the nth row of Pascal’s Triangle. A very useful
identity in calculating the binomial coefficients
is
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
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k+1


=

�
n+1
k+1


. See if you can prove this

identity using the factorial form
�
n
k


= n!

k!(n−k)! .
From this, we see that

�
n
k


actually counts the

number of k-element subsets of an n-element set.
For this reason, there is a standard convention
that

�
n
k


is deemed equal to zero if k > n or

k < 0. Pascal’s Triangle gives us a triangular
display of the nonzero binomial coefficients (see
Table 1).

2 Analysis and Generalizations

It is helpful to draw a diagram which depicts a
game such as lahal. Call the two players X and
Y , and associate them with the x- and y-axes of a
Cartesian grid. Suppose instead of sticks trading
back and forth that we simply keep track of how
many times Y has won, versus how many times
X has won. Each point (a, b) in the Cartesian
plane, where a and b are nonnegative integers,
corresponds to a wins for player X and b wins
for player Y . There have been a+b rounds played
so far, and each player has either gained or lost
|a − b| sticks. In this model, the ‘equilibrium’
state is the line y = x, where each player has the
same number of sticks.
Each game of lahal unfolds as a ‘path’ in the

Cartesian grid, from (0, 0) to (a, b), the cur-
rent situation. Moves along these paths are
either east or north, according to whether X
or Y (respectively) wins a given round. Such
paths, which never ‘backtrack’ are called mini-
mal paths. Just as in our early discussion, there
are

�
a+b
a


paths from (0, 0) to (a, b). This is ath

entry in the (a + b)th row of Pascal’s Triangle,
where indexing entries and rows begins with 0.
Figure 1 shows various minimal paths from (0, 0)
to (14, 10).
One player wins when the game’s path reaches

a ‘boundary’, which is a certain diagonal line.
We must now discuss these boundaries further.
A minimal lattice path is subdiagonal if it lies

x

10

14

y

Figure 1: Various minimal lattice paths

on or below the line y = x. (In lahal, this
means one player is always winning throughout
the game.) Counting the number of subdiago-
nal minimal lattice paths is a famous problem
in combinatorics. It turns out that the number
of paths on or below line y = x, from (0, 0) to
(n, n), equals the nth Catalan number, or

Cn =
1

n+ 1


2n
n


.

See the excellent reference [2] for more details
on minimal lattice paths and the Catalan num-
bers.
Let’s return to lahal. Suppose in a general

lahal game with k sticks per player, that after
2n turns one player has k + r sticks, and the
other has k − r sticks, 0 < r < k.
The number of ways this can occur is in one-to-

one correspondence with the number of minimal
lattice paths from (0, 0) to (n+r, n−r) which do
not intersect either of the lines y = x−k and y =
x + k. Like the Catalan restriction above, this
is another problem on lattice paths, now with
two linear boundaries. See Figure 3 for n = 12,
r = 2, k = 6.
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means one player is always winning throughout
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0 1 2 3 4 5 6 7 8 9 10 11 12
Start 1

Round 1 1 1
Round 2 1 2 1
Round 3 1 3 3 1
Round 4 1 4 6 4 1
Round 5 1 5 10 10 5 1
Round 6 1 6 15 20 15 6 1

Table 1: Pascal’s Triangle: sticks versus rounds, 0 to 6

1 2 3 4 5 6 7 8 9 10 11
Round 5 1 5 10 10 5 1
Round 6 6 15 20 15 6
Round 7 6 21 35 35 21 6
Round 8 27 56 70 56 27
Round 9 27 83 126 126 83 27
Round 10 110 209 252 209 110

Table 2: sticks versus rounds, 5 to 10

Table 2 below the line.
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means one player is always winning throughout
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is another problem on lattice paths, now with
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By results in [3] the number of such paths is
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
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n+ r + 2ik


−


2n

n+ r + (2i+ 1)k


.

Note that the sum is finite, since almost all terms
are zero.
In our case, we apply this formula for k = 6,

and r = 0, 1, . . . , 5 to obtain the distribution for
the 2nth round. For instance, the number of
game sequences which result in two players with
6 sticks each (i.e. r = 0) after 2n = 20 rounds is


20
10


−


20
4


−


20
16


= 175 066.

The behavior after an odd number 2n + 1 of
rounds can be determined from round 2n using
the ‘sum rule’ which generates Tables 1 and 2.

The case r = 6 ends the game, and one cannot
explicitly apply the formula in this case.
There are 22n possible sequences for 2n coin

flips (or wins/losses by the lahal pointer). Some
number f(n) of these sequences result in the
game not being over by the 2nth round. This
f(n) can be found using the formula above, and
is shown fully in Figure 2. (Who would have
thought that such a simple game leads to such
a long formula!?) The probability of the game
ending on or before the 2nth round is

P r = 1− 2−2nf(n).

This actually tends to 1 as n → ∞. Therefore,
a game of lahal (almost surely) will end.
This is rather intuitive. If a fair coin is tossed

repeatedly, you should expect eventually a run
of 12 (or even a million) heads in a row. This
outcome delivers the win for one player over the
other, no matter how many sticks are in play!
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game of Lahal (almost surely) will end.

This is rather intuitive. If a fair coin is tossed 
repeatedly, you should expect eventually a run of 
12 (or even a million) heads in a row. This outcome 
delivers the win for one player over the other, no 
matter how many sticks are in play!
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Note that the sum is finite, since almost all terms
are zero.
In our case, we apply this formula for k = 6,

and r = 0, 1, . . . , 5 to obtain the distribution for
the 2nth round. For instance, the number of
game sequences which result in two players with
6 sticks each (i.e. r = 0) after 2n = 20 rounds is
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The behavior after an odd number 2n + 1 of
rounds can be determined from round 2n using
the ‘sum rule’ which generates Tables 1 and 2.

The case r = 6 ends the game, and one cannot
explicitly apply the formula in this case.
There are 22n possible sequences for 2n coin

flips (or wins/losses by the lahal pointer). Some
number f(n) of these sequences result in the
game not being over by the 2nth round. This
f(n) can be found using the formula above, and
is shown fully in Figure 2. (Who would have
thought that such a simple game leads to such
a long formula!?) The probability of the game
ending on or before the 2nth round is

P r = 1− 2−2nf(n).

This actually tends to 1 as n → ∞. Therefore,
a game of lahal (almost surely) will end.
This is rather intuitive. If a fair coin is tossed

repeatedly, you should expect eventually a run
of 12 (or even a million) heads in a row. This
outcome delivers the win for one player over the
other, no matter how many sticks are in play!
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Seventh Grade Blues

Back in the seventh grade, one of the girls told 
me I looked like Keanu Reeves. Seriously, I was 
hanging upside-down on the jungle gym, minding 
my own business, and she just walked over and 
told me like it was no biggie.

Then she giggled like a moron and ran away.

Now while this singular moment of brazen 
flattery would become the highlight of 
my paste-eating academic career, I was 
also torn. On one hand, I wondered how 
anyone could confuse Keanu (black 
shades, gothic trench coat, totally 
awesome) with me (pubescent, 
angst-ridden, gawky)? Was this 
all some awfully cruel and 
sadistic joke girls liked to 
play on unsuspecting boys?

On the other hand, maybe 
| maybe she was on to 
something. Maybe somewhere 
| somehow, behind all that 
bad acne and ruffled hair, my hidden 
Keanu-like features beckoned faintly, 
like some distant lighthouse 
obscured by fog.

Today, however, thanks to 
the latest advances in facial 
recognition, I no longer have to 
wonder: she was right.

Who in the Land is 
Fairest of All?

MyHeritage.com is an internet-
based company that offers 

you the chance to see which 
celebrity you most resemble. 
Remember how in Snow 
White, the queen has a 

magical mirror which provides 
her with uninhibited flattery? This is the same, 
but like, tons better.

After a free signup, you upload a large-ish jpeg 
of your mug, then let the software crank away. 
My personal resemblance results were: Brad Pitt 
(71%), Keanu Reeves (63%), Luke Perry (63%), 
and Matt Damon (63%).

Brad Pitt? Really? Matt Damon? Really? Who 
wouldathunk? But y'know, as I gaze into the 
mirror... well... yes, I see it now. Definitely. We're 
practically brothers!

How does it all work? Is this actual science or 
just deceptive flattery? To understand how facial 
recognition works, we're going to have to delve 
into the mathematics behind the algorithm.

Recognizing Faces

Suppose we were given someone's 
picture. How might we go about 

identifying that person from a large 
database of faces?

One way we can go about 
it is by identifying the 
characteristics of the subject 
| perhaps the person has 
small lips, or a pointed chin, 
or distinctive eyes. From here, 

we then consult the database, 
going from picture to picture, each 

time isolating the features of the faces and 

By 
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How might 
we go about 

identifying that 
person from a 
large database 

of faces?
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can go about it 

is by identifying 
the characteristics 
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A more 
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faces as a statistical 

whole rather than as 
the sum of their 

parts. 
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checking for a match.

Whilst this might work, it 
would also be a lot of work; 

algorithms would need 
to be defined to analyse 
each desired feature.
Imagine having to do 
this for each of the 
thousands of faces 

that stream pass the 
gates at a football match 

or in a busy airport.

   A  more   computationally 
efficient way would be to examine 

these faces as a statistical whole 
rather than as the sum of their 

parts. This is similar to the difference 
between identifying a city by its landmarks 
and identifying the same city by the density 
of its roads, the clusters and heights of its 
buildings, its downtown areas, and so on.

A Picture is Worth a Thousand 
Digits

Snap! But what are pictures, 
really?

As stored in a computer, a picture is 
nothing more than 
a great big grid of 
dots (or pixels). If the picture 
is greyscale, each pixel is 
associated with a number 
from 0 to 255 representing its 
brightness, from pitch black 
(0) to pure white (255).

Now in the abstract theory 
of linear algebra, these 
grids of pixels are called 
vectors. You've probably 
encountered vectors before 
in Physics class and in fact, 
these `face vectors' are quite 
similar.

Like vectors representing 
force or motion, these new ̀face 
vectors' have a magnitude 
(an overall brightness), 

as well as a direction. Moreover, they can be 
added, subtracted, multiplied, and manipulated 
like most other mathematical quantities | the 
only difference is that they inhabit some higher-
dimensional face space, rather than the two or 
three dimensional physical world we live in.

What’s Your Eigenface Basis?

However, face spaces are complicated                 
affairs | they're high dimensional boxes 

stuffed with a large number of faces, each face 
containing thousands of pixels.

It would thus be foolish to try and 
compare each face pixel by pixel; instead 
we look to construct a small group 
of pictures representing the general 
facial patterns of the database. This 
small but crucial group is called the 
eigenface basis.

Think of how, when we analyse 
the motion of a ball flying through the 

air, we break the motion into its horizontal 
and vertical components. These two components 
provide a fundamental basis capable of describing 
any arbitrary motion. 

Similarly, once the eigenface basis is found using 
linear algebra, each face in the database can then 
be expressed using certain percentages of each of 

Now 
in the 

abstract 
theory of 

linear algebra, 
these grids of 

pixels are called 
‘vectors’.

...we look to 
construct a small 
group of pictures 

representing the general 
facial patterns of the 

database. This small but 
crucial group is called 

the eigenface basis.

Figure 1: A picture is nothing 
more than a large  grid of 

numbers.

FIGURE 1: A
PICTURE IS 

NOTHING MORE 

THAN A LARGE 

GRID OF NUMBERS.

Now in the abstract theory of linear algebra,
these grids of pixels are called ‘vectors’. 
You’ve probably encountered vectors before in 
Physics class and in fact, these ‘face vectors’ 
are quite similar.  

FIGURE 2: FACES CAN BE IDENTIFIED AS 

COORDINATES IN A HIGHER DIMENSIONAL 

PLANE.

Like vectors representing force or motion, 
these new ‘face vectors’ have a `magnitude’ 
(an overall brightness), as well as a ‘direction’. 
Moreover, they can be added, subtracted, 
multiplied, and manipulated like most other 
mathematical quantities – the only difference 
is that they inhabit some higher-dimensional 
face space, rather than the two or three-
dimensional physical world we live in. 

What’s Your Eigenface Basis? 

However, Face Spaces are complicated affairs 
— they’re high dimensional boxes stuffed with 
a large number of faces, each face containing 
thousands of pixels. 

It would thus be foolish to try and compare 
each face pixel by pixel; instead we look to 
construct a small group of pictures 
representing the general facial patterns of the 
database. This small but crucial group is called 
the eigenface basis.

FIGURE 3: VECTORS CAN BE DECOMPOSED INTO 

BASIS ELEMENTS.

Think of how, when we analyse the motion of 
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fundamental basis capable of describing any 
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Similarly, once the eigenface basis is found 
using linear algebra, each face in the database 
can then be expressed using certain 
percentages of each of the building blocks. For 
example, we may say that a picture is 
composed of 10% of the first eigenface, 25% 
of the second, 4% of the third, and so on. 

The beauty of this treatment is that even in a 
large database, each unique face can be 
expressed very simply using its eigenface 
decomposition. We no longer have to express 
each face using thousands of pixels; now, like 
a simple recipe in which the eigenfaces are the 
key ingredients, the entire database can be 
reconstructed as it was before. 
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the building blocks. For example, 
we may say that a picture is 
composed of 10% of the first 
eigenface, 25% of the second, 
4% of the third, and so on.

The beauty of this 
treatment is that even 
in a large database, each 
unique face can be expressed 
very simply using its eigenface 
decomposition. We no longer have to express 
each face using thousands of pixels; now, like 
a simple recipe in which the eigenfaces are the 
key ingredients, the entire database can be 
reconstructed as it was before.

 
A Problem of Distance 

Now imagine each face in the database, 
represented in terms of its eigenface percentages, 
akin to coordinates lying in some higher-
dimensional plane. Our test subject (which may 
or may not lie in the database) is then projected 
onto this plane by expressing it in terms of the 

Unfortunately, 
real life is never 
that simple, and 

one must contend 
with a multitude of 

‘noisy’ factors. 

In optimal 
conditions (with 

good lighting, 
a representative 

database, front-facing 
pictures, etc.), a simple 

eigenface routine might 
produce accurate 

readings of up to 90%.

eigenface components.

Now the problem of 
recognising the subject 
becomes as simple as finding 

the shortest distance (or 
closest match) between 

our subject and the 
faces in the database, 

a process aided 
enormously by the 
fact that each face 
is now represented 

by only a handful of 
eigenface components.

The Future and You

But really, just how 
accurate are these eigenface 
algorithms?

In optimal conditions 
(with good lighting, a 
representative database, 
front-facing pictures, etc.), 
a simple eigenface routine 
might produce accurate 
readings of up to 90%.

Unfortunately, real life is 
never that simple, and one 
must contend with a multitude of `noisy' factors. 
These include variance in pose (person facing 
at an angle), obstructions (sunglasses or other 
people), resolution, lighting, and so on. Despite 
this, however, the science of facial recognition has 
steadily improved to the point where today, it is 
becoming a standard for many military, security, 
and commercial applications.

Figure 4: A database of faces 
can be used to construct an 
eigenface basis. Afterwards, 
a face under scrutiny can be 
decomposed into different 

percentages of each 
eigenface (Faces courtesy of 

AT&T Cambridge)

Figure 3: Vectors can be decomposed into 
basis elements.
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composed of 10% of the first eigenface, 25% 
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The beauty of this treatment is that even in a 
large database, each unique face can be 
expressed very simply using its eigenface 
decomposition. We no longer have to express 
each face using thousands of pixels; now, like 
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FIGURE 4: A
DATABASE OF 

FACES (ABOVE)
CAN BE USED TO 

CONSTRUCT AN 

EIGENFACE BASIS.
AFTERWARDS, A 

FACE UNDER 

SCRUTINY CAN BE 

DECOMPOSED INTO 

DIFFERENT 

PERCENTAGES OF 

EACH EIGENFACE.
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A Problem of Distance 

Now imagine each face in the database, 
represented in terms of its eigenface 
percentages, akin to coordinates lying in some 
higher-dimensional plane. Our test subject 
(which may or may not lie in the database) is 
then projected onto this plane by expressing it 
in terms of the eigenface components. 

FIGURE 5: FINDING THE CLOSEST MATCH BOILS 

DOWN TO CALCULATING THE SHORTEST 

DISTANCE BETWEEN POINTS.

Now the problem of recognising the subject 
becomes as simple as finding the shortest 
distance (or closest match) between our 
subject and the faces in the database, a process 
aided enormously by the fact that each face is 
now represented by only a handful of 
eigenface components. 

The Future and You 

But really, just how accurate are these 
eigenface algorithms? 

In optimal conditions (with good lighting, a 
representative database, front-facing pictures, 
etc.), a simple eigenface routine might produce 
accurate readings of up to 90%. 

Unfortunately, real life is never that simple, 
and one must contend with a multitude of 
‘noisy’ factors. These include variance in pose 
(person facing at an angle), obstructions 
(sunglasses or other people), resolution, 
lighting, and so on. Despite this, however, the 
science of facial recognition has steadily 
improved to the point where today, it is 
becoming a standard for many military, 
security, and commercial applications. 

But I digress. You see, the whole point of this 
article was that the inner workings of facial 
recognition is nothing but science and 
mathematics. That's right. It's not half-
drunken, hand-wavy speculation that I 
resemble Brad Pitt and Keannu Reeves. I 
really, really do. It’s backed up with science 
and everything.  

FURTHER READING

[1] M. Turk and A. Pentland. Eigenfaces for 
recognition. Journal of Cognitive Neuroscience 
(1991) 3 (1), 71–86. 

[2] W, Zhao and R. Chellappa. Face Processing: 
Advanced Modeling and Methods, Academic 
Press, 2006. 

http://xkcd.com/
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Figure 5: Finding the closest match boils down to 
calculating the shortest distance between points.
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The idea for this article 
arose from a simple magic 
trick based on error-correcting 
codes. This activity has been 
used in Math Mania, an outreach 
event in which students and staff members at the 
University of Victoria visit local elementary schools 
for hands-on math activities with students.

In the trick, the young student is presented 
with a rectangular array of cups, some face up 
and some face down. While the magician looks 
away, the subject is asked to invert (i.e. flip) any 
cup. Looking back at the cups, the magician then 

is able to determine which 
cup the student inverted, 
without any memorizing! 
To do this trick, the cups 
are initially put into a 
configuration in which 
each row and each column 
contains an even number 
of cups that are the right 
way up, as in Figure 1. 
After a cup is inverted, 
the column in which it sits 
contains an odd number 
of cups the right way up 
(there is either one more 

or one less than before); and similarly the row in 
which it sits contains an odd number of cups the 
right way up. This allows the magician to figure 
out which row and column the cup that the student 
inverted is in. Of course this is enough to figure 
out which cup was inverted.

In this article, we will discuss the connections 
between this magic trick and error-correcting codes, 
and investigate an extension where hexagonal 
arrays replace the rectangular array of cups.

It is shown that the hexagonal pattern 
corresponds to a more robust code (and hence a 
flashier magic trick!) More on this later; we now 
comment on codes and their uses. 

In a basic model of a communication system 
there is a source that produces some sort of data 
that is to be sent to a receiver. A typical first step 
in this process is for the data to be transformed 
into binary digits (bits - 0s and 1s), with strings 
of several bits representing one piece of data. If we 
want to use strings of k bits to represent pieces of 
data then there are 2k different strings. This means 
that if there are N different pieces of data, then 
we need to choose k with 2k ≥ N so that all of the 
possibilities can be encoded. For example, if the 
data that we want to transmit are letters of the 
alphabet, then since 24 < 26 ≤ 25 we need to use Figure 1: Rectangular array of 

cups used in the magic trick.

By  
Anthony Quas 
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University of 
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strings of at least 5 bits to 
encode the letters of the 
alphabet. We can calculate 
the number of bits required 
to be able to encode N 
different possibilities as 
[log

2
 N] (where [x] means 

x rounded up to the next 
integer).

If we code letters in binary (`A' = 00001,  
`B' = 00010, `C' = 00011 etc.), then we 
often run into problems if there is a noisy 
channel where some of the bits may get 
corrupted. For instance, consider stray 
radio interference, a scratch on a CD 
ROM, etc. Notice that the strings 
00110 00001 01100 01100 and 00110 
01001 01100 01100 differ in a single bit 
but represent the words `FALL' and 
`FILL' respectively.

Error-detecting and error-correcting 
codes are designed to give a way to 
encode data so that if not too many bits 
get corrupted, it is possible to detect that 

there has been an error in transmission 
or (even better) to correct it. Note 

that error detection means that you 
know there has been an error, but 
you can't tell what the error was 
whereas error correction means 
that you know that there was 
an error and you can work out 

what was there before the error 
occurred.

Doing this requires that we don't use 
the minimum possible number of bits to represent 
the data. The aim is to design error correcting 
codes which are simple to use, don't involve adding 
too many extra bits to the strings, and are able 
to detect and correct most commonly occurring 
errors.

Codes of this type are used in assigning ISBN 
numbers to books (so that if someone makes a 
mistake with one of the digits then computers 
can detect the error rather than bringing up the 
wrong book), recording data on CDs (so that if 
the CD gets some dirt on it then the music can 
still be read) and in computer memory (so that if 
an electronic glitch corrupts a memory location, 

the error can be fixed).

Now let us return to the magic trick with cups. 
Instead of thinking of cups the right way up and 
the wrong way up, we write a 1 for a cup the right 
way and a 0 for a cup the wrong way up. With 
this view point, the student is presented with an 
array of bits with an even number of 1s in each 
row and column. Let's say that a row or column 
with an even number of 1s (cups the right way up) 
is called balanced. Inverting the cup corresponds 
to corrupting a single data bit, thus making 

some row and column unbalanced. Noting 
these unbalanced lines is a way of correcting 

the error. Translating the configuration of 
Figure 1 into 0s and 1s, we obtain the 
left array in Figure 2. Flipping the bit in 
row 4, column 3 leads to the right array 
in Figure 2. The unbalanced row 4 and 
column 3 identify the corrupted 

bit.

Observe that 2 errors cannot 
always be corrected with this 

procedure. If the magician sees two 
odd rows r; r' and two odd columns 
c; c' he or she is not sure whether 
positions (r; c) and (r'; c') were 
flipped, or positions (r; c') and 
(r'; c) were flipped. We wonder 
whether, using a hexagonal 
array of cups (where there are 3 
directions to check in rather than 
2), it is possible to accurately correct 
two (or maybe more) errors. Before discussing the 
cup trick and hexagonal arrangement further, we 
give a brief introduction to the theory of error-
correcting codes.

Terminology and facts for codes

A word of length    n is a finite sequence of bits  
v     = b

1
 b
2
...  b

n
, where each bit b

i
, is either 0 or 1. 

A code is a set of words. The words belonging to 
some code we are talking about are usually called 
codewords. We will only be concerned with codes 
having codewords all of the same length n. This is 
the length of the code.

The Hamming weight of a word v, written   
wt(v), is the number of times the digit 1 

Error 

detection 
means that 

there has been 
an error, but you 

can't tell what the 
error was

Error 
correction 
means that 

you know there 
was an error and you 

can work out what 
was there before the 

error occurred

Codes 
of 

this type 
are used in 

assigning ISBN 
numbers to 

books

Figure 2: Corresponding array 
of bits, with one flip

��

(so that if an electronic glitch corrupts a memory loca-
tion, the error can be fixed).

Now let us return to the magic trick with cups.  In-
stead of thinking of cups the right way up and the 
wrong way up, we write a 1 for a cup the right way 
and a 0 for a cup the wrong way up.  With this view 
point, the student is presented with an array of bits 
with an even number of 1s in each row and column.  
Let’s say that a row or column with an even number of 
1s (cups the right way up) is called balanced.  Inverting 
the cup corresponds to corrupting a single data bit, 
thus making some row and column unbalanced.  Not-
ing these unbalanced lines is a way of correcting the 
error.  Translating the configuration of Figure 1 into 0s 
and 1s, we obtain the left array in Figure 2.  Flipping 
the bit in row 4, column 3 leads to the right array in 
Figure 2.  The unbalanced row 4 and column 3 identify 
the corrupted bit.

                            

Observe that 2 errors cannot always be corrected 
with this procedure.  If the magician sees two odd rows 
r , r′ and two odd columns c , c′, he or she is not sure 
whether positions (r  , c) and (r′, c′) were flipped, or 
positions (r , c′) and (r′, c) were flipped.  We wonder 
whether, using a hexagonal array of cups (where there 
are 3 directions to check in rather than 2), it is possible 
to accurately correct two (or maybe more) errors.  Be-
fore discussing the cup trick and hexagonal arrange-
ment further, we give a brief introduction to the theory 
of error-correcting codes.

Terminology and facts for codes
 A word of length n is a finite sequence of bits v = 

b 1b 2 ... b n, where each bit b 
i 
, is either 0 or 1.  A code is 

a set of words.  The words belonging to some code we 
are talking about are usually called codewords.  We will 
only be concerned with codes having codewords all of  
the same length n.  This is the length of the code.

The Hamming weight of a word v, written wt (v), 
is the   number   of   times   the   digit 1 occurs in v.  For 
example, wt (110101) = 4 and wt (00000) = 0.

Let u and v be words of the same length n.  The 
Hamming distance between them, denoted d (u, v) is 

0  1  1  0
1  0  1  0
0  0  0  0
1  0  0  1
1  0  1  0
1  1  1  1

0  1
1  0
0  0

1
1
0

0
0
0

1  0 1 1
1  0
1  1

1
1

0
1

Figure 2: corresponding array of bits, with one flip.

the number of positions in which u and v disagree.
If u and v are words of length n, we define u + v 

to be the word obtained by componentwise addition 
modulo1 2.  For example 01101 + 11001 = 10100.

You can check that d (u, v) = wt (u + v), because 
u + v has a 1 in precisely those positions in which u 
and v differ.  For example, d (01101, 11001) = 2 = wt 
(01101 + 11001) = wt (10100).

It is not hard to see that Hamming distance is symmet-
ric ( ie. d (u, v) = d (v, u) and obeys the so-called triangle 
inequality: d (u, w) ≤ d (u, v) + d (v, w).  We use this later 
without commenting on it - see if you can spot where.
For a code C having at least two codewords, the mini-
mum distance of C is the smallest of the numbers d (v , 
w) over all pairs v , w of distinct codewords in C.  For 
example, let C = {0000, 1010, 0111}. The minimum 
distance of C is 2.
   The minimum distance of a code is important with 
respect to error detection and correction since it is the 
minimum number of errors that must occur in order to 
transform one codeword into another. A code C can 
detect all combinations of t or fewer errors if and only 
if the minimum distance of C is at least t + 1. To see 
this, note that if we start from a codeword and make
t errors or less, then we cannot end up at another 
codeword. This means that we can detect that an er-
ror in transmission has taken place. In this case we 
say that C  is t-error-detecting. Even though you can 
identify that an error has taken place, it may not be 
possible to fix the error.  
   We will illustrate error detection with a simple ex-
ample related to the ‘cup game’.   Consider starting 
with all 32 words of length 5. This would be sufficient 
to encode the English letters, plus some punctuation. 
For single error detection, we can append a check bit  at 
the end of each word, creating words of length 6. The 
rule for the check bit is that the resulting weight must
be even. For instance, 00101 becomes 001010 after 
the check bit (zero) is appended. As another example, 
10101 becomes 101011 after the check bit (one) is 
appended. We will think about the code you get con-
sisting of all words arising this way. In this code, there 
are still 32 words, each of length 6, and the distance 
between any pair of different words is at least two. 
(Verify this for yourself: why can’t two codewords, with 
check bits included, be at distance one?) Consequently, 
this code is 1-error detecting. To see that it is not er-
ror-correcting, imagine that we receive the codeword 
001101. There is no way to tell whether it was a cor-
ruption of 101101, 011101, 000101, 001001, 001111 
or 001100.
                                          

1 Addition modulo 2 just means 0 + 1 = 1 + 0 = 1 and 0 + 0 = 1 + 1 = 0
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1 Addition modulo 2 just means 0 + 1 = 1 + 0 = 1 and 0 + 0 = 1 + 1 = 0

occurs in v. For example, wt(110101) = 4 and                       
wt(00000) = 0.

Let u and v be words of the 
same length n. The Hamming 
distance between them, denoted  
d(u, v) is the number of positions in 
which u and v disagree.

If u and v are words 
of length n, we define  
u + v to be the word obtained 
by componentwise addition 
modulo1 2. For example, 
01101 + 11001 = 10100.

You can check that 
d(u, v) = wt(u + v), 
because u   +  v has a 
1 in precisely those 
positions in which u 
and v differ. For example,  
d(01101, 11001) = 2 = wt(01101 + 11001) = 
wt(10100).

It is not hard to see that Hamming distance 
is symmetric, i.e. d (u, v)    =    d (v, u), and 
obeys the so-called triangle inequality:  
d (u, w)  ≤  d (u, v) +  d (v,w). We use this later 
without commenting on it - see if you can 
spot where. For a code C having at least two 
codewords, the minimum distance of C is the 
smallest of the numbers d(v, w) over all pairs  
v ,  w of distinct codewords in C. For  example, let 
C = {0000, 1010, 0111}. The minimum distance of 
C is 2.

The minimum distance of a code is important 
with respect to error detection and correction since 
it is the minimum number of errors that must occur 
in order to transform one codeword into another. 
A code C   can detect all combinations of t   or fewer 
errors if and only if the minimum distance of C is 
at least t  + 1. To see this, note that if we start 
from a codeword and make t errors or less, then we 
cannot end up at another codeword. This means 
that we can detect that an error in transmission has 
taken place. In this case we say that C is t-error-
detecting. Even though you can identify that an 
error has taken place, it may not be possible to fix 
the error. 

We will illustrate error detection with a simple 
example related to the ̀ cup game'. Consider starting 

with all 32 words of length 5. This would 
be sufficient to encode the English 

letters, plus some punctuation. For 
single error detection, we can 

append a check bit at the end 
of each word, creating words 
of length 6. The rule for the 
check bit is that the resulting 
weight must be even. For 
instance, 00101 becomes 

001010 after the check bit (zero) 
is appended. As another example, 

10101 becomes 101011 after the check 
bit (one) is appended. We will think about the 
code you get consisting of all words arising this 
way. In this code, there are still 32 words, each 
of length 6, and the distance between any pair 
of different words is at least two. (Verify this for 
yourself: why can't two codewords, with check 
bits included, be at distance one?) Consequently, 
this code is 1-error detecting. To see that it is 
not error-correcting, imagine that we receive the 
codeword 001101. There is no way to tell whether 
it was a corruption of 101101, 011101, 000101, 
001001, 001111 or 001100.

A stronger condition is that a code C be such 
that whenever a codeword is subjected 
to a combination of t or fewer errors, 
we can guarantee to correctly recover 
the codeword. For this, we require 
the minimum distance of C to be at 
least 2t +  1. The idea is that if t 
(or fewer) positions change in v, 
the resulting `noise corrupted 
word' v’ is still closer to v than 
to any other codeword. (The 
distance from v to v’  is at most  
t so the distance from v’ to any 
other codeword is at least t + 
1.) The way to decode a word that is 
received across a noisy channel is just to replace 
it by the closest codeword. As we've just seen, 
provided the code has minimum distance at least  
2t   +  1 and no more than t bits change, we are 
guaranteed to get back to the original word.

Thinking back to the cup game, we think of all 
the rectangular arrays of 0s and 1s with an even 

The 
minimum 

distance of 
a linear code 

C is the smallest 
weight of a non-
zero codeword 

in C.

The 
minimum 

distance of a 
code is important 

with respect to error 
detection and correction 

since it is the minimum 
number of errors that must 
occur in order to transform 

one codeword into 
another.

The 
rule for 

the check 
bit is that the 

resulting weight 
must be even.
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number of 1s in each row and column as the set 
of codewords in a code (we could write them out 
as a long string instead of as a rectangular array 
if we wanted). We pointed out before that the 
rectangular cup code is 1-error-correcting. It turns 
out that the minimum distance of the code is 4 
(we will see this below) so that the code is 3-error-
detecting and 1-error-correcting.

Linear Codes

A code C is called a linear code if u   +   v is in 
C whenever both u   and v are in C. Observe that 
u and v are allowed to be the same! In this case, 
u  + u  = 000 ... 0 is in C. Therefore, linear codes 
always contain the zero word, which we usually 
abbreviate simply as 0. Structure like this makes 
linear codes an important branch of coding theory. 
For example, rather than checking all pairs of 
words to find the minimum distance, things are a 
bit simpler for linear codes.

Theorem 1: The minimum distance of a 
linear code C is the smallest weight of a 
non-zero codeword in C. 

Our strategy to prove this will be the following: 
if we let m stand for the minimum distance of 
the code and w stand for the smallest weight of 
a non-zero codeword, we will show first that m  ≤  
w and secondly that w  ≤  m. Of course this proves 
that they are equal. This method for showing that 
two numbers are equal (prove that the first is no 
bigger than the second; then prove that the second 
is no bigger than the first) is used all the time in 
higher mathematics.

Proof. Let u be a word in C  of weight w. Since 

d (0, u)  =  w and 0 and u are both in the code, we 
see that the minimum distance of the code is less 
than or equal to w  (i.e. m  ≤  w). 

On the other hand, since m is the minimum 
distance, there must be words v and w in 
the code with d(v, w)  = m. Since the code is 
linear, we must have v  +  w  d  C. We now have  
d(v, w) =  wt(v  +  w)    from earlier. However, 
we also have d(0,  v  +  w) =  wt(v  + w) so that  
d(0, v  +  w) = m. It follows that C contains a 
codeword (v +  w) with weight m so that the 
minimum weight of a non-zero codeword is less 
than or equal to m (i.e. w  ≤  m). This shows that 
w  = m.

It turns out that the rectangular cup code that 
we described before is a linear code. We can see 
this as follows: suppose u and  v  are two codewords 
(so that each has an even number of 1s in each 
row and column). Let's set w  =  u  +  v and let's 
think about any row of  w. Suppose that u had 2s 
1s in the row and v had 2t 1s in the row. Let's 
also assume that there are exactly r places where 
both u and v have 1s (r can be an even number 
or an odd number). Now, thinking about how 
binary addition works, we see that w has a 1 in 
a spot exactly when  u had a 1 there and  v had 
a 0 or vice versa. There are 2s  - r places in the 
row where u has a 1 and v has a 0, and 2t -   r  
places v had a 1 and u has a 0. This means that 
the total number of 1s in the chosen row in w is  
(2s - r) + (2t - r) = 2(s + t - r)   -  an even number. 
This argument works for every row and every 
column so that we see that w is in the code. It 
follows that the code is linear. We now use this 
together with Theorem 1 to work out the minimum 
distance of the code. This is the same thing as the 
minimum weight of a non-zero element. 

To be a non-zero element, it must contain a 
row with at least two 1s in (remember that rows 
have to contain an even number of 1s). The 
columns containing the 1s need an even number 
of 1s in them, so there must be at least one further 
1 in each of these columns. This shows that the 
minimum weight must be at least 4. In fact the 
minimum weight is exactly 4 as we can think of 
the configuration with 1s in all four corners and 
0s everywhere else. This proves that the minimum 
distance is 4 as we claimed before.

Every linear code has a dimension, which 

http://twistedpencil.com/
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Figure 4: 5-hexagon

we now describe. Given a set of 
words S, the linear span of S, 
span(S) is defined to be the set of 
all words that can be obtained as 
a sum of elements of S (counting 
the 0 word as the sum of none of 
the elements of S). 

Consider the following process 
applied to a linear code C. First, set  S = Ø. 

We now keep repeating 
the following step until  

span(S) = C: Notice that 
span(S) is a subset of C. If  

span(S) ≠ C we add 
any element of C  that 

is not in span(S) to S.

When we have finished 
doing this we end up with 
a set S with span(S) = C. 
The set S is then called a 
basis for C.

 For example, suppose our code is 
C = {000, 101, 110, 011}. Start with S = Ø 
and add 110 to S. Now span(S) = {000, 110}. 
We add 011 to S so that S = {110, 011}. Now  
span(S) = {000, 110, 011, 101} = C so that  
{110, 011} is a basis for C. Observe that all four 
words in C are found by summing either none, one 
of, or both of these basis words. In general, the 
sum of any subset of the basis words gives a unique 
codeword in C.

Theorem 2: Suppose there are k codewords 
in a basis for C. Then C has 2k codewords.

Corollary: Every basis for C has the same 
number of codewords. In other words, the order in 
which words are crossed off in the process does not 
affect the number of remaining elements.

This common number of basis elements for a 
linear code is what we mean by its dimension. 
If a linear code with dimension k and length n 
is used, we say it has information rate k/n. 
Thus, in the Example above, C has a dimension 
2. This is because if the dimension of the code is 
k then there are 2k  codewords which means that 
sending a single codeword carries the same amount 
of information as k bits. Since the actual length of 
the word is n  bits the information rate is k useful 
bits per n bits sent.

For example, our earlier code 
C = {000, 101, 110, 011} has 
information rate 2/3. At one 
extreme, we have the code {000 ... 
0,111...1} with one basis element, 
and information rate 1/n. At 
the other extreme, we have the 
code consisting of all words of 

length n, having rate n/n = 1. But the first code 
has distance n (and can detect n - 1 errors), while 
the second code has no error detection at all, since 
its minimum distance is 1. Both of these codes 
are rather useless. Coding theory aims for nice 
compromises between rate and distance.

For further reading on coding theory, consult 
the web or reference [1].

4 Hex-arrays and correcting two errors

By an n-hexagon, we mean a pattern of cups 
(or data positions) arranged so that each interior 
cup is surrounded by six neighbouring cups forming 
a regular hexagon, and the boundary cups trace 
out a regular hexagon with n cups per side. For 
instance, a 1-hexagon is just a single cup, and a 
2-hexagon has seven cups as in Figure 3 (a).

The translation from cups to binary words is 
illustrated in Figures 3 (b) and (c). The array for 
a 5-hexagon is shown in Figure 4.

By the way, it is a fun exercise to get a formula 
for the number of cups in an n-hexagon. Notice 
that there are several 
geometric differences from 
the rectangular array. 
First, the rows go in three 
directions: horizontal, 
northwest, and northeast. 
Also, the number of cups 
in a line is not constant: 
it depends on how close 
the line is to the centre. 
However, we can still insist 
that a line is balanced if 
the number of cups in it which are the right way 
up is even.

Going back to the magic trick, this time on a 
hexagonal array, the argument we gave earlier 
shows that the set of codewords (the arrangements 
that are balanced in each of the three directions) 

Figure 3: 2-hexagon with associated  
binary word

Figure 5: A weight 6 codeword
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is a linear code. In fact, the 
dimension of this code is 
the number of cups in an 
(n-1)-hexagon — see below 
for more on this. More 
importantly though, we 
want to find the minimum 
distance in the code. By 
Theorem 1, this is the same 

as the minimum weight of a non-zero configuration, 
balanced in every line. 

One possible configuration is shown in Figure 
5. Check that all lines are balanced, so that the 
minimum weight in this code is no more than 6. 
On the other hand, we can see that the minimum 
weight is at least 6 as follows. In order to be a non-
zero configuration, there must be a horizontal line 
which is not all 0s. If there is just one horizontal 
line that is not all 0s then we're in trouble because 
a diagonal line that goes through one of the 1s 
would have just a single 1 on it (an odd number). 
This shows that there must be at least two 
horizontal lines with 1s on them. Similarly for the 
northwest and northeast directions. If there are 3 
or more lines in one of the directions with 1s on 
then since each line contains at least two 1s, we'd 
have at least six 1s in total.

The only possibility to rule out is that there are 
exactly two lines in each of the directions and each 
line has exactly two 1s so that the total number 
of 1s in the configuration is 4. Considering the 
two diagonal directions first, the only possibility 
would be that the 1s form a parallelogram with 
1s at the corners and edges parallel to the two 
diagonal directions. It is then easy to see that the 
top and bottom of the parallelogram are in lines 
with a single 1.

This shows that the minimum weight is at least 6 
and so the minimum distance of the code is exactly 
6. According to our observations from before, this 
means that we can detect that up to 5 errors have 
been made (but not which errors they are), but since  
6 ≥ 2 x 2 + 1, we can correct any 2 errors!

Finally we should do what a good magician 
should never do and tell you how to perform 
the magic trick in this case. First you need to 
set up a hexagonal array of cups so that in each 
direction there are an even number of cups the 
right way up. This isn't quite as easy as it sounds 

but quite a good way to do 
it is to put the cups in an  
(n-1)-hexagon in any 
arrangement at all. It turns 
out that if you then try to 
extend the configuration 
to an n-hexagon, there's 
always exactly one way 
to do it. Another way to 
proceed is to start with all 
cups down, and repeatedly perform six flips as in 
Figure 5. (There is also a way to wrap around the 
boundary by flipping eight cups).

Next you should invite your victim to turn over 
any two cups. As the magician you have to figure 
out which two cups were inverted. Look along the 
horizontal and diagonal rows and see which rows 
have odd numbers of upturned cups.

There are 2 basic possibilities. In the first 
case (see Figure 7) there are two rows in each 
of the three directions that have odd numbers of 
upturned cups. In this case there will be exactly 
two spots where three lines cross. These spots are 
where the cups were inverted.

In the second case (refer to Figure 8) two 
cups were inverted on 
the same line so that 
this line ended up 
with an even number 
of upturned cups. In 
this case there are two 
directions that have two 
unbalanced lines and in 
the third direction all 
the lines are balanced. 
The unbalanced lines 
taken together trace out a parallelogram. One of 
the diagonals of the parallelogram is in the third 
direction. The two corners of the parallelogram on 
this line are the cups which were inverted.

REFERENCES:

Pless, V. 1982, Introduction to the Theory of 
Error-Correcting Code, John Wiley & Sons Inc.

Figure 6: A 3-hexagon of cups, 
balanced in every line Figure 7: Two flips on different 

lines.

Figure 8: Two flips in the same 
line.
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Carole (C) was sitting on the beach 
watching her little brother Ivan 
(I) play in the water. It was only 
knee-deep, and she was not worried 
about him at all. He always 
enjoyed clowning around, 
grimacing and gesticulating. 
When he suddenly cried  
\Help!" Carole just waved 
at him, but when his head 
disappeared under water and 
stayed there, she jumped up 
and ran to help. 

Fred (F) was impressed to 
see her veer toward Henry 
(H), almost stepping on 
Donna (D), instead of going 
straight for Ivan (see Figure 
1). But, Carole was a certified 
life guard and knew that she 
would get there faster by this 
little detour, and Fred knew 
why this was so. 

Since she ran twice as fast on the sand as through 
the splashing water, she had learned that the cosine 
of the angle FDC should be twice as big as that of 

HDI. The general rule was 
that these cosines should 
be in the same ratio as 
the respective speeds. The 
instructor had said that 
this was just a fact, called  
Snell's Law, and that you 
could not understand it 
unless you knew Calculus. 

The attentive reader 
might wonder what Grant 
(G) and Judy (J) are doing 
in the picture, and the 

answer is: very little. For now, let us just say that 
Grant was ogling Judy through his binoculars. This 
whole story could be told entirely without them, 
except that Judy stubbornly insisted on being part 

of this excursion, and as she 
went so did Grant. We shall 
say more about them at the 
end of this tale.  

Fred's real name was 
Fernando, and at school they 
called him \Ferd the nerd" 
because he liked mathematics. 
When Carole had told him 
about Snell's Law, his first 
reaction was to pull out a 
piece of paper and scribble. 
\It's easy, Carole," he said,  
\.. but, hm, yes, I am using 
derivatives. There's got to be 
another way: that Dutchman 
Snell died in 1626 — long 
before Newton was even born." 

She was used to that kind of stunt from him, but 
this much detail astonished her. \How come you 
remember that?" she wanted to know. \Ten years 
after Shakespeare," was his answer. 

The next day, he was back with two neat 
drawings, the first of which is shown here in Figure 
2. That was his style: only rarely did he use algebra 
with Carole because he knew it did not convince 
her. She had taken an \interdisciplinary" course, 
where she learned to speak about derivatives and 
integrals but not to work with them. Fred spent 
hours with her using reams of graph paper, until 
one day she exclaimed: \You mean, the steeper the 
curve, the faster it's moving away from the x-axis? 
And that steepness, is the derivative? Wow!"  

Their conversation about the new diagram was 
rather private, so we'll paraphrase it. If you go 
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The 

general 
rule was 

that these 
cosines should 

be in the same ratio 
as the respective 

speeds.

back to the beach picture and imagine 
D moving from F to H, you'll easily 
see that CD would be increasing 

while DI would be decreasing. As 
you slide your pencil-tip from left 

to right along the horizontal 
line in Figure 3, its distance 
from the upper green area is 
increasing (like CD), while 
its distance from the lower 
gray area is decreasing (like 
DI). As this drawing is not 

to scale anyway, we might as 
well regard the lower distance as 

representing not DI itself but mDI, where m is 
a positive numerical factor reflecting the ratios 
of the speeds on sand and through water. Then  
CD + mDI would be represented by the vertical 
distance between the green and gray regions, 
right? 

That distance is minimal at the place 
where they would just barely touch if you 
slid them together vertically. \Yes," said 
Carole, \the red points would be kissing."  
\And the chaperone could separate them with 

one straight thrust of her cane," Fred added.  
\They'd share the same tangent line, you mean," 

Carole sighed, \(you are so romantic, 
Fred) — if you don't wish to slide 

them together, let us say, it's 

where their boundaries have the same steepness." 

Back to the beach scene. As D’ moves toward D, 
the triangle FD’C gradually morphs into FDC, and 
we wish to compare the growth of the hypotenuse 
(CD’ to CD) with that of the side (FD’ to FD). If 
we mark D” on CD so that CD” always equals CD’ 
in length (i.e. the green triangle remains isosceles 
throughout), the changes in hypotenuse and side 
are represented by D”D and D’D, respectively. 

Now, as D’ slides toward D (in synchronisation 
with its twin D”), the green base angles approach 
90 degrees, and the quotient D”D/D’D approaches 
— hold your breath — the cosine of the included 
angle FDC. 

So, now you have all the ingredients to roll 
your own proof of Snell's Law. But how Grant 
and Judy fit into this ? Well, it so happens 
that in issue Number 7 [1] some graphics expert 
thought it would be pretty if the whole picture 
were inside a circle, with Donna in the centre 
and Ivan on the rim (where Judy is now). With  
CD = DI of equal length, CD + mDI was constant, 
and the argument was sunk. But who needs a 
theory when you have facts? 

Exercise

If v and w are Carole's speed on land and water, 
respectively, what is the total time it takes her to 
reach Ivan? What is the meaning of the factor m? 
How does it show up in the segment FG?

References

[1]  Judith V. Grabiner, How Looking for the 
Best Explanations Revealed the Properties of 
Light, Pi in the Sky, September 2003, 20-22. 
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Interview 
by  Gordon 
Hamilton Reiner - I want you to imagine a 

triangle with the points labeled  
\Entertainment Businessman,"  

\Creative Artist" and \Scientific Researcher" 
(researching \What is fun?") Where would 
you place yourself?

Least on the Scientific Researcher side… 
and probably in the middle between the 
Entertainment Businessman and the 
Creative Artist - because it takes both. 
I think this is one of the main success 
criteria in game design: that you can 
handle both. There are lots of artists out 
there who are very good artistically, but 
they are chaotic and don't get themselves 
organized… and if you organize yourself, 
but have no artistry (and game design 
is an art) then you are also kind of 
empty handed. Getting both of them 
combined in your life is the big 
challenge.

Artists are sometimes called 
upon to protest with their art. Do 
you ever feel the urge to protest 
through your art?

The honest answer is 
probably `No.' I think 
games are there to entertain 
people, and to bring enjoyment to people. I think 
there is no mission beyond that. However there are 
nuances: We have educational games where you 
engage kids emotionally so that they are open to 
learning.

Last year, a randomized controlled trial found 
some games improved mathematical ability [Child 
Development, March/April 2008, Volume 79, 

Number 2, Pages 375-394]. Do you 
think games are under-utilized in 

mathematics classrooms?

It is difficult to say. I think 
you can teach math without 
using games at all, so it's not 
a necessity; there are many 
different methods of exciting 
kids and making them 
want to learn. I think the 

important thing in learning 
is that you have a positive 

emotional experience; If the emotions 
are not there the learning is very flat. 

If you can create positive emotions 
in the learning process you get by 

far the best results – and this is 
where games can help a 

lot. If the learning 
content is almost 

in the background, almost unnoticeably 
presented, then I think we have an ideal situation. 
The learning needs to become fun. I think games 
are an ideal tool for this – they can be used much 
more widely than today, but they are not the only 
tool.

Reiner, to avoid becoming biased, you don't 
play other people's games.

You're right - When you design games you have 
to take lots and lots of minute decisions. All these 
decisions have to be taken, and if you already 
know a decision from somebody else, it is much 

"Genius 
is 1% 

inspiration 
and 99% 

perspiration.” 
Where are you on 
Thomas Edison’s 

Scale?

I 

mean 
99 and 1 

is probably a 
little bit extreme... 
I think you actually 

need both. You need to 
have a good mind and you 

need to have the capability to 
do things, but then it very much 

depends on discipline and 
the willingness to put in the 

work to produce a really 
good product.

Reiner Knizia has published hundreds 
of board games including eleven in 

the top 100 on 
www.boardgamegeek.com
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more difficult to think of a new one. Once 
you know how a light bulb works – this is 

the way to do lights – and if you don't 
know you might come up with a very 
different solution…

As a Masters and PhD student 
did you also protect your mind from 

bias?

No I did not do that in mathematics 
– there were many things to learn – and I had 
great fun in learning them… and I didn't try to 
re-invent the wheel – so I was quite happy to take 
in the knowledge from other people and because in 
mathematics it is not about solving the problem 
in a different way – once it has been solved it's 
solved – it's about finding new knowledge – and 
the more you know, the more new knowledge you 
can create.

Let's go back to some of your high school 
experiences with math. Can you think of an 
instance where you thought \Mathematics is really 
beautiful!" 

I remember looking at mastermind, and working 
out an algorithm: What do you need to ask, and 
when you have the answers what do you need to 
do to actually solve it? I tried to work out the 
complete algorithm and therefore prove that you 
could always do it in so many steps. I applied that 
approach to quite a number of logic puzzles so 
I was always fascinated by combinatorics – how 
many different ways are there to do this or that.

The most fascinating questions in mathematics 
for the general public are probably coming from 
number theory: \Okay, so I understand what a 
prime number is. So how do I know that there 
are an infinite number of prime numbers? How 
many pairs of prime numbers [x, x+2] are there?" 
You can ask very simple number questions which 
are unsolved in mathematics and people can really 
understand. That is rare – most of the questions in 
mathematics today are complicated and you first 
need years to understand the question. 

I was perplexed that you chose the area of 
mathematics that you did. You just named 
combinatorics which was where I would have 
pegged you. Why not?

I think – apart from finding a mission in life 
it is extremely important to find good mentors. 

And one of the great mentors was my professor 
with whom I did my thesis. He was a professor in 
Germany and he was a professor in America, and 
he was working in Analysis so naturally I drifted 
towards this. I learned a lot from him. With 
respect to mathematics, but also how to approach 
problems generally. I could probably have worked 
in many fields, but I knew him from very early 
stages in my studies so we kept working together. 
I did my diploma with him and then my doctoral 
thesis with him.

Apart from your mentor, who are you standing 
on the shoulders of – or is game design too young 
for that?

In game design I probably don't stand on 
anybody's shoulders. I think I have very much 
developed my own style and learned by doing and 
I think game design is a very peculiar profession in 
a way because you can't really study it.

If you can't study it, and you don't play other 
people's games - how do you stay fresh?

My teacher always said: \If you don't read your 
daily newspaper – you will always be uneducated 
and stupid." I have always been uneducated and 
stupid because I've never read it regularly in my 
life. (laugh-out-loud) I have a different philosophy. 
I'm not interested in day to day news which is 
relevant today to talk to people and next week 
is totally irrelevant. I prefer to read books rather 
than newspapers because they have long term 
relevance. 

It is very important to take in the world. 
Hemingway said so nicely \In order to write you 
have to live" and the same is true for game design. 
Games are a mirror of our times. We have a very 
hectic life and a small attention span - so the 
dynamic of the game has to be much much greater 
today than 50 years ago. Half an hour playing time 
is almost too long. There are a lot of things that 
are influenced by our times and I need to take 
these in if I am to remain successful. So, as well as 
reading, I stay in contact with people - particularly 
with the younger age group. I learn what the kids 
like and then I build that into my design process.

You`re quoted as saying \Other people steal my 
ideas before I've ever had them." 

Yes–absolutely!

“In 
order 

to write, 
you have to 

live”
Ernest 

Hemingway



Is this a big motivator?

Yes it is, because I do believe there 
are lots of games in the universe (like 
mathematics) and I believe that lots 
of these games should be mine, and 
belong to me (I'm kind of smiling when 

I say this)... and the panic always grabs 
me when I walk around a fair and I look 

at games – and I say \hmmm – yes – that's one 
I should have developed – that's the one I should 
have found - that should have been mine, I'm too 
late there and somebody else stole it." I mean this 
is meant to be funny, but there is a sense of urgency 
that overcomes me in these fairs...

There are the right times for certain things 
when the technology becomes ripe. For example, 
I will soon have a game on the market that works 
with transparent cards... I was very anxious to get 
it out quickly... I might have been the first one to 
design a game with transparent cards, but it took 
a while to get it to market and now I see one or 
two other products coming out which means I'm 
only second or third. It's this urgency. When the 
time is ripe you need to do it and then you need 
to be fast. 

You haven't asked me the most difficult 
question, which was to explain my PhD thesis to 
a high school audience.

Well - I subsequently looked at your thesis, 
and thought that it would be too tough a 
question! ...but go for it if you wish!

...There is this funny thing called an 
integral that we use to calculate the area of 
certain shapes. Of course we all know very nice 
formulas that tell us how to calculate the area of 
specific shapes: The area of a rectangle... length 
times width; the area of triangle... length times 
height divided by two. It gets more difficult when 
you want to calculate the area of a circle – but 
there is a method there as well – and then you ask, 
\What happens if I put some holes in there? Can I 
still have a process to calculate the area?" If I have 
twenty holes can I do it? If I 
have a thousand holes can 
I do it? Yes – because I can 
still count them, but what if 
I have uncountably many? 
Can I still calculate the 

area? Well then our 
normal understanding 
of area starts to fail, 
but if the process still 
leads to a result we 
still have something 
tangible to talk about. 
What I worked on in 
my thesis was a very 
general mathematical 
process (which we 
call the integral) to calculate the \area" for very 
very crazy shapes where the normal processes that 
calculate area no longer work.

You did it ;) 

One last quote: \Life offers so many good 
choices, you can never take them all, and that's 
good, because it makes life so rich." That's by 
Reiner Knizia...

Absolutely – that is one of the absolute 
statements – I don't want to be bored – I think I 
can only do one or two things in life really properly. 
There are many other routes I could have taken: 
I enjoyed being a board member, and running 
financial companies, and doing mathematical 
research – I enjoyed all that, and it was a great 
satisfaction, but I don't think in the end it was 

my mission.

As a young person, you need to find your 
mission in life and then to have the courage 
to follow it. I only found my mission when 
I got to 40, and I jumped and said \now I 

do games full time" – I've never regretted it 
and I've found my niche. I know I miss out on 

almost everything in life, but as you say \you can 
have anything, but you can't have everything." 
Its lots of choices we have to take – and if these 
are rich choices and you have lots of alternatives 
then it's a great life. 

And this also reflects into games. A good game 
for me is one that gives me rich choices. I do not 
want to find the least bad option. I want to have 

so many good options. I want 
to sit there biting my finger 
nails and hoping that when 
it comes round to me that 
option is still there.

What happens if I put 
some holes 
in there?

Other 
people 

steal my 
ideas before 
I’ve ever had 

them

If you 
don’t read 
your daily 

newspaper - you 
will always be 

uneducated and 
stupid
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Reiner - I want you to imagine a triangle 
with the points labelled  “Entertainment 
Businessman”, “Creative Artist” and “Scientific 
Researcher” (researching “What is fun?”) 
Where would you place yourself?

Least on the Scientific Researcher side… 
and probably in the middle between the 
Entertainment Businessman and the Creative 
Artist - because it takes both. I think this is 
one of the main success criteria in game 
design: that you can handle both. There 
are lots of artists out there who are very 
good artistically, but they are chaotic and 
don’t get themselves organized… and 
if you organize yourself, but have no 
artistry (and game design is an art) then 
you are also kind of empty handed. 
Getting both of them combined in 
your life is the big challenge.

Artists are sometimes called upon 
to protest with their art. Do you ever 
feel the urge to protest through 
your art?

The honest answer is 
probably “No”. I think 
games are there to 
entertain people, and 
to bring enjoyment to people. I think there is no mission 
beyond that. However there are nuances: We have 
educational games where you engage kids emotionally 
so that they are open to learning. 

The Board Gaming Genius: 

Reiner Knizia
PhD Mathematics

Interview by Gordon Hamilton

Last year, a randomized controlled trial found 
some games improved mathematical ability [Child 
Development, March/April 2008, Volume 79, Number 2, 
Pages 375-394]. Do you think games are under-utilized 
in mathematics classrooms?

It is difficult to say. I think you can teach math without 
using games at all, so it’s not a necessity; there are many 
different methods of exciting kids and making them want 
to learn. I think the important thing in learning is that you 
have a positive emotional experience; If the emotions 
are not there the learning is very flat. If you can create 
positive emotions in the learning process you get by far 
the best results – and this is where games can help a 
lot. If the learning content is almost in the background, 
almost unnoticeably presented, then I think we have an 
ideal situation. The learning needs to become fun. I think 
games are an ideal tool for this – they can be used much 
more widely than today, but they are not the only tool. 

Reiner Knizia has published hundreds of 
board games including eleven in the top 

100 on www.boardgamegeek.com
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The dynamical laws of physics are described by 
differential equations. As a theoretical physicist, 
a big part of the job is solving those equations in 
various settings and, sometimes, coming up with 
new equations that might describe nature in some 
unexplored regime. For me, inventing new theories 
of physics is the most exciting part of the job. Of 
course, one can't just start writing down 
equations haphazardly and expect these 
to play some role in nature. There are 
a lot of criteria that we must use to 
guide our attempts to come up with 
new physical theories. For example, 
any candidate for a new law of 
physics must be studied in detail 
to make sure that its predictions 
don't conflict with what is already 
known about nature. In this 
article, one of the things I want to 
accomplish is to give you a sense of what it's 
like to try to develop new theories of physics.

Before we can try to come up with new 
equations we need to understand the existing 
laws of physics. Perhaps the most famous example 
is Newton's law
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The dynamical laws of physics are described
by differential equations. As a theoretical
physicist, a big part of the job is solving those
equations in various settings and, sometimes,
coming up with new equations that might de-
scribe nature in some unexplored regime. For
me, inventing new theories of physics is the
most exciting part of the job. Of course, one
can’t just start writing down equations hap-
hazardly and expect these to play some role in
nature. There are a lot of criteria that we must
use to guide our attempts to come up with new
physical theories. For example, any candidate
for a new law of physics must be studied in
detail to make sure that its predictions don’t
conflict with what is already known about na-
ture. In this article, one of the things I want to
accomplish is to give you a sense of what it’s
like to try to develop new theories of physics.
Before we can try to come up with new equa-

tions we need to understand the existing laws
of physics. Perhaps the most famous example
is Newton’s law

F = ma , (1)

that tells us how a body of mass,m, accelerates
in response to an applied force, F . Sometimes
when we are first introduced to equation (1) it
is made to look like a simple algebraic relation,
but it really is a differential equation! To see
this, suppose that the position x of the mass

at any time t is described by the function x =
x(t). Velocity is the rate of change of position
with respect to time

v =
dx

dt
, (2)

and acceleration is the rate of change of the
velocity

a =
dv

dt
=

d2x

dt2
. (3)

Using (3) we could replace the acceleration, a,
in (1) by a second derivative of position with
respect to time. We can also do something
similar with the force, F . The particular form
of F depends on the system under considera-
tion. In general the force acting on some body
might depend on the position, x (for example
restoring force of a spring), or on the velocity,
v (for example the viscous drag as a body is
moved through molasses). This means that,
even without specifying the physical system,
we can write Newton’s law in true differential
form as

d2x

dt2
=
1

m
F

�

x,
dx

dt

�

. (4)

For any given choice of F we can find a unique
solution once the initial conditions x(0) = x0

and v(0) = v0 are provided. Note that only two
initial conditions are needed corresponding to
the fact that (4) is second order in derivatives

(it contains derivatives no higher that d2

dt2
).

1

 (1) 

that tells us how a body of mass, m, accelerates 
in response to an applied force, F. Sometimes 
when we are first introduced to equation (1) it 
is made to look like a simple algebraic relation, 
but it really is a differential equation! To see 
this, suppose that the position x of the mass 
at any time t is described by the function  
x   =  x(t). Velocity is the rate of change of position 
with respect to time
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The dynamical laws of physics are described
by differential equations. As a theoretical
physicist, a big part of the job is solving those
equations in various settings and, sometimes,
coming up with new equations that might de-
scribe nature in some unexplored regime. For
me, inventing new theories of physics is the
most exciting part of the job. Of course, one
can’t just start writing down equations hap-
hazardly and expect these to play some role in
nature. There are a lot of criteria that we must
use to guide our attempts to come up with new
physical theories. For example, any candidate
for a new law of physics must be studied in
detail to make sure that its predictions don’t
conflict with what is already known about na-
ture. In this article, one of the things I want to
accomplish is to give you a sense of what it’s
like to try to develop new theories of physics.
Before we can try to come up with new equa-

tions we need to understand the existing laws
of physics. Perhaps the most famous example
is Newton’s law

F = ma , (1)

that tells us how a body of mass,m, accelerates
in response to an applied force, F . Sometimes
when we are first introduced to equation (1) it
is made to look like a simple algebraic relation,
but it really is a differential equation! To see
this, suppose that the position x of the mass

at any time t is described by the function x =
x(t). Velocity is the rate of change of position
with respect to time

v =
dx

dt
, (2)

and acceleration is the rate of change of the
velocity

a =
dv

dt
=

d2x

dt2
. (3)

Using (3) we could replace the acceleration, a,
in (1) by a second derivative of position with
respect to time. We can also do something
similar with the force, F . The particular form
of F depends on the system under considera-
tion. In general the force acting on some body
might depend on the position, x (for example
restoring force of a spring), or on the velocity,
v (for example the viscous drag as a body is
moved through molasses). This means that,
even without specifying the physical system,
we can write Newton’s law in true differential
form as

d2x

dt2
=
1

m
F

�

x,
dx

dt

�

. (4)

For any given choice of F we can find a unique
solution once the initial conditions x(0) = x0

and v(0) = v0 are provided. Note that only two
initial conditions are needed corresponding to
the fact that (4) is second order in derivatives

(it contains derivatives no higher that d2

dt2
).

1

   (2) 

and acceleration is the rate of 
change of the velocity
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The dynamical laws of physics are described
by differential equations. As a theoretical
physicist, a big part of the job is solving those
equations in various settings and, sometimes,
coming up with new equations that might de-
scribe nature in some unexplored regime. For
me, inventing new theories of physics is the
most exciting part of the job. Of course, one
can’t just start writing down equations hap-
hazardly and expect these to play some role in
nature. There are a lot of criteria that we must
use to guide our attempts to come up with new
physical theories. For example, any candidate
for a new law of physics must be studied in
detail to make sure that its predictions don’t
conflict with what is already known about na-
ture. In this article, one of the things I want to
accomplish is to give you a sense of what it’s
like to try to develop new theories of physics.
Before we can try to come up with new equa-

tions we need to understand the existing laws
of physics. Perhaps the most famous example
is Newton’s law

F = ma , (1)

that tells us how a body of mass,m, accelerates
in response to an applied force, F . Sometimes
when we are first introduced to equation (1) it
is made to look like a simple algebraic relation,
but it really is a differential equation! To see
this, suppose that the position x of the mass

at any time t is described by the function x =
x(t). Velocity is the rate of change of position
with respect to time

v =
dx

dt
, (2)

and acceleration is the rate of change of the
velocity

a =
dv

dt
=

d2x

dt2
. (3)

Using (3) we could replace the acceleration, a,
in (1) by a second derivative of position with
respect to time. We can also do something
similar with the force, F . The particular form
of F depends on the system under considera-
tion. In general the force acting on some body
might depend on the position, x (for example
restoring force of a spring), or on the velocity,
v (for example the viscous drag as a body is
moved through molasses). This means that,
even without specifying the physical system,
we can write Newton’s law in true differential
form as

d2x

dt2
=
1

m
F

�

x,
dx

dt

�

. (4)

For any given choice of F we can find a unique
solution once the initial conditions x(0) = x0

and v(0) = v0 are provided. Note that only two
initial conditions are needed corresponding to
the fact that (4) is second order in derivatives

(it contains derivatives no higher that d2

dt2
).
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Using (3) we could replace the acceleration, a, in 
(1) by a second derivative of position with respect 
to time. We can also do something similar with the 

force, F. The particular form of F depends on 
the system under consideration. In general 
the force acting on some body might depend 
on the position, x   (for example, restoring 

force of a spring), or on the velocity, v 
(for example the viscous drag as a body 

is moved through molasses). This 
means that, even without specifying 
the physical system, we can write 
Newton's law in true differential 
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The dynamical laws of physics are described
by differential equations. As a theoretical
physicist, a big part of the job is solving those
equations in various settings and, sometimes,
coming up with new equations that might de-
scribe nature in some unexplored regime. For
me, inventing new theories of physics is the
most exciting part of the job. Of course, one
can’t just start writing down equations hap-
hazardly and expect these to play some role in
nature. There are a lot of criteria that we must
use to guide our attempts to come up with new
physical theories. For example, any candidate
for a new law of physics must be studied in
detail to make sure that its predictions don’t
conflict with what is already known about na-
ture. In this article, one of the things I want to
accomplish is to give you a sense of what it’s
like to try to develop new theories of physics.
Before we can try to come up with new equa-

tions we need to understand the existing laws
of physics. Perhaps the most famous example
is Newton’s law

F = ma , (1)

that tells us how a body of mass,m, accelerates
in response to an applied force, F . Sometimes
when we are first introduced to equation (1) it
is made to look like a simple algebraic relation,
but it really is a differential equation! To see
this, suppose that the position x of the mass

at any time t is described by the function x =
x(t). Velocity is the rate of change of position
with respect to time

v =
dx

dt
, (2)

and acceleration is the rate of change of the
velocity

a =
dv

dt
=

d2x

dt2
. (3)

Using (3) we could replace the acceleration, a,
in (1) by a second derivative of position with
respect to time. We can also do something
similar with the force, F . The particular form
of F depends on the system under considera-
tion. In general the force acting on some body
might depend on the position, x (for example
restoring force of a spring), or on the velocity,
v (for example the viscous drag as a body is
moved through molasses). This means that,
even without specifying the physical system,
we can write Newton’s law in true differential
form as

d2x

dt2
=
1

m
F

�

x,
dx

dt

�

. (4)

For any given choice of F we can find a unique
solution once the initial conditions x(0) = x0

and v(0) = v0 are provided. Note that only two
initial conditions are needed corresponding to
the fact that (4) is second order in derivatives

(it contains derivatives no higher that d2

dt2
).
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The dynamical laws of physics are described
by differential equations. As a theoretical
physicist, a big part of the job is solving those
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even without specifying the physical system,
we can write Newton’s law in true differential
form as

d2x

dt2
=
1

m
F

�

x,
dx

dt

�

. (4)

For any given choice of F we can find a unique
solution once the initial conditions x(0) = x0

and v(0) = v0 are provided. Note that only two
initial conditions are needed corresponding to
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medium, the Einstein equations that describe 
how space-time curves in response to matter or 
energy, the Schrodinger equation that describes 
the quantum mechanical state of a microscopic 

system, ... The list could go on and on 
and on!

I want to draw your attention to a 
common feature of all these different 

equations. In all known theories of 
physics, the underlying dynamical 

equations contain at most two 
time derivatives when written 
in terms of fundamental 
degrees of freedom.1 It's 
kind of surprising that so 
many different equations 
that describe nature in very 

different regimes all share such 
a fundamental mathematical 

property.In fact, this commonality is so fundamental 
that it is often overlooked. At first glance this seems 
like a remarkable conspiracy; is there something 
wrong with higher-order equations that prevents 
them from playing a fundamental role in physics?

To answer this question, let's consider an explicit 
example. Suppose we focus on a mass m bouncing 
around on a spring. We denote the displacement 
of the mass away from the equilibrium position 
by x(t). As long as x(t) is not too large, then the 
restoring force is proportional to the displacement

Newton’s law is not the only example of a
differential equation in physics. There are the
Navier-Stokes equations that describe the dy-
namics of fluids, the Maxwell equations that
describe the laws of electro-magnetism, the dif-
fusion equation that describes the propagation
of heat through a medium, the Einstein equa-
tions that describe how space-time curves in
response to matter or energy, the Schrodinger
equation that describes the quantum mechan-
ical state of a microscopic system, ... The list
could go on and on and on!
I want to draw your attention to a common

feature of all these different equations. In all

known theories of physics, the underlying dy-
namical equations contain at most two time
derivatives when written in terms of fundamen-
tal degrees of freedom.1 It’s kind of surprising
that so many different equations that describe
nature in very different regimes all share such
a fundamental mathematical property. In fact,
this commonality is so fundamental that it is
often overlooked. At first glance this seems
like a remarkable conspiracy; is there some-
thing wrong with higher-order equations that
prevents them from playing a fundamental role
in physics?
To answer this question, let’s consider an ex-

plicit example. Suppose we focus on a mass m
bouncing around on a spring. We denote the
displacement of the mass away from the equi-
librium position by x(t). As long as x(t) is not
too large, then the restoring force is propor-
tional to the displacement

F ≈ −k x(t) , (5)

where k is a constant that characterizes the
stiffness of the spring. (Don’t let the minus

1There is a caveat here that you could obtain higher
order equations by taking derivatives or by decoupling
a set of equations. I’m referring only to the most fun-
damental formulation. So I’m definitely not trying to
claim that higher order equations are never useful in
physics, only that where they appear it is as a stand-in
for a more fundamental set of lower-order equations.

sign in this equation bother you, it simply re-
minds us that the force is always pulling the
mass back towards x = 0.) We have writ-
ten equation (5) as an approximation because
at larger displacements there will be nonlinear
corrections like αx3, βx5, etc. Newton’s law
for this system now takes the simple form

d2x

dt2
+ ω2x = 0 , (6)

where we have defined ω =
�

k/m in order to
make the equation look simpler. The general
solution of equation (6) is

x(t) = x0 cos(ωt) +
v0

ω
sin(ωt) . (7)

The solution (7) describes a function that os-
cillates in time with frequency ω, just the be-
haviour we expect a mass on the end of a
spring! This function is illustrated in Figure
1 for the special case where mass is released
from rest so that v0 = 0. Exercise: check
that (7) really does solve (6) and also that x0,
v0 appear correctly to be interpreted as initial
position and velocity.

Figure 1: A plot of the solution (7).

Often in physics one would like to know the
total energy of a system. There are two kinds
of energy: kinetic and potential. Kinetic en-
ergy is generically given by

K =
1

2
mv2 . (8)
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Newton’s law is not the only example of a
differential equation in physics. There are the
Navier-Stokes equations that describe the dy-
namics of fluids, the Maxwell equations that
describe the laws of electro-magnetism, the dif-
fusion equation that describes the propagation
of heat through a medium, the Einstein equa-
tions that describe how space-time curves in
response to matter or energy, the Schrodinger
equation that describes the quantum mechan-
ical state of a microscopic system, ... The list
could go on and on and on!
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feature of all these different equations. In all

known theories of physics, the underlying dy-
namical equations contain at most two time
derivatives when written in terms of fundamen-
tal degrees of freedom.1 It’s kind of surprising
that so many different equations that describe
nature in very different regimes all share such
a fundamental mathematical property. In fact,
this commonality is so fundamental that it is
often overlooked. At first glance this seems
like a remarkable conspiracy; is there some-
thing wrong with higher-order equations that
prevents them from playing a fundamental role
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To answer this question, let’s consider an ex-

plicit example. Suppose we focus on a mass m
bouncing around on a spring. We denote the
displacement of the mass away from the equi-
librium position by x(t). As long as x(t) is not
too large, then the restoring force is propor-
tional to the displacement

F ≈ −k x(t) , (5)

where k is a constant that characterizes the
stiffness of the spring. (Don’t let the minus

1There is a caveat here that you could obtain higher
order equations by taking derivatives or by decoupling
a set of equations. I’m referring only to the most fun-
damental formulation. So I’m definitely not trying to
claim that higher order equations are never useful in
physics, only that where they appear it is as a stand-in
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minds us that the force is always pulling the
mass back towards x = 0.) We have writ-
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cillates in time with frequency ω, just the be-
haviour we expect a mass on the end of a
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1 for the special case where mass is released
from rest so that v0 = 0. Exercise: check
that (7) really does solve (6) and also that x0,
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position and velocity.
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response to matter or energy, the Schrodinger
equation that describes the quantum mechan-
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feature of all these different equations. In all
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this commonality is so fundamental that it is
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librium position by x(t). As long as x(t) is not
too large, then the restoring force is propor-
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where k is a constant that characterizes the
stiffness of the spring. (Don’t let the minus

1There is a caveat here that you could obtain higher
order equations by taking derivatives or by decoupling
a set of equations. I’m referring only to the most fun-
damental formulation. So I’m definitely not trying to
claim that higher order equations are never useful in
physics, only that where they appear it is as a stand-in
for a more fundamental set of lower-order equations.
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dt2
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�

k/m in order to
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x(t) = x0 cos(ωt) +
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ω
sin(ωt) . (7)

The solution (7) describes a function that os-
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haviour we expect a mass on the end of a
spring! This function is illustrated in Figure
1 for the special case where mass is released
from rest so that v0 = 0. Exercise: check
that (7) really does solve (6) and also that x0,
v0 appear correctly to be interpreted as initial
position and velocity.

Figure 1: A plot of the solution (7).

Often in physics one would like to know the
total energy of a system. There are two kinds
of energy: kinetic and potential. Kinetic en-
ergy is generically given by

K =
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For our simple harmonic oscillator the poten-
tial energy is

U =
1

2
mω2x2 . (9)

The total energy is given by the sum of the
potential and kinetic energies

E = K + U =
1

2
mv2 +

1

2
mω2x2 . (10)

To check that this really is the right expres-
sion, notice that E defined by (10) is conserved.
That is, if you take the derivative you’ll find
that

dE

dt
= 0 (11)

implying that E is a constant in time. Exer-

cise: check that E really is conserved by taking
the derivative of (10) and using equation (6).

Now, let’s see what would happen if we de-
cided to modify Newton’s laws by adding some
higher derivative terms. This might sound like
a funny thing to do (after all, we know that
Newton’s law works perfectly fine!) but it’s a
worthwhile exercise. Often, we can learn a lot
about why the laws of nature take the form
they do by imagining how things would be dif-
ferent if they took some other form. So, let’s
boldly consider replacing (4) by the following
equation

g
d4x

dt4
+

d2x

dt2
=
1

m
F

�

x,
dx

dt

�

, (12)

where g is a new constant of nature having di-
mensions of seconds squared. If we take g = 0
then obviously this reproduces the usual force
law (4). For g sufficiently small we expect that
equation (12) will give basically the same pre-
dictions as (4). So (12) seems like a decent
starting point for our first attempt at modify-
ing the laws of nature.

To make life even simpler, let’s focus again
on our mass-on-a-spring example. Using the

restoring force (5) with our modified Newton’s
law (12) we find

g
d4x

dt4
+

d2x

dt2
+ ω2x = 0 . (13)

This equation is not much harder to solve than
(6). The general solution looks like

x(t) = A+ cos(ω+t) +B+ sin(ω+t)

+ A− cos(ω−t) +B− sin(ω−t) ,(14)

where we have defined the frequencies

ω± =
1√
2g

�

1±
�

1− 4ω2g . (15)

The solution contains four arbitrary constants
A±, B± rather than two because (12) is fourth
order in time derivatives. These constants
could be related to the initial conditions x(0),
v(0), etc. But we don’t need to go through that
effort to make our point. The solution (14) is
plotted in Figure 2 with gω2 = 0.01 and a rep-
resentative choice of initial conditions. Com-
pare this plot to Figure 1. Exercise: verify
that (14) solves equation (13).

Figure 2: A plot of the solution (14).

To see what’s wrong with equation (13), we
need to compute the energy. It turns out in
our higher derivative theory equation (9) still
gives the potential energy, however, the sim-
ple expression (8) for the kinetic energy is no
longer valid. The easiest way to see that is by
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Using this new expression for kinetic energy
the total energy E = K+U will be conserved if
you use equation (13) to describe the dynamics
of x(t), just as it should be.

Aside from being very complicated, there’s
something deeply troubling about equation
(16): the kinetic energy can be negative! Re-
gardless of the sign of g we can always imagine
some function x(t) that makes this expression
less than zero. This is unlike any system that
we are used to in physics. At first glace it’s not
at all obvious how to make sense of negative ki-
netic energies. In physics, negative kinetic en-
ergies are usually interpreted as signaling an
instability.2 Physically this is unacceptable:
we know that a mass bobbing around on the
end of a spring is a completely stable system.

It’s important to be clear about exactly what
the problem with equation (13) is. This is a
perfectly well-defined mathematical equation.
However, it isn’t an acceptable law of physics
because it predicts something - namely nega-
tive kinetic energy - that is not compatible with
the world we see around us. So we are forced to
discard our first attempt to modify Newton’s
law and regard equation (13) as a dead end.
But what about more complicated equations?
What if we added even more derivatives? In

2We didn’t really see this instability manifest itself
in our toy model because we didn’t included nonlinear
terms like αx

3 in equation (5).

1850 a Russian mathematician named Ostro-
gradski was able to prove an amazingly gen-
eral theorem [1]. Ostrogradski showed that any

fundamental laws of physics involving N -th or-
der differential equations will lead to negative
kinetic energy if N > 2. This powerful theo-
rem precludes the possibility of higher deriva-
tive equations playing any fundamental role in
physics. Moreover, it explains why every suc-
cessful law of physics that has been discovered
to date has involved no more than two time
derivatives.

Ostrogradksi’s theorem is very general and
also very deep. If explains what might oth-
erwise have looked like a strange coincidence
and it also serves as a guide for trying to mod-
ify the laws of nature. However, this theorem
is not widely appreciated by most practicing
physicists. The reason, I think, is that this
theorem is so fundamental. Most of us take it
for granted that the laws of nature must be sec-
ond order in derivatives without ever stopping
to ask why.

You might find it a little depressing that our
first attempt to modify the laws of physics was
unsuccessful. But don’t despair! Indeed, many
new theories of physics are found to be incom-
patible with nature even without the need to
perform any new experiments. Failed theories
are still useful because they help to guide fu-
ture attempts. It turns out that there is a loop-
hole to Ostrogradski’s theorem that allows us
to add higher derivatives to the laws of nature
without running into trouble with instabilities.
However, it requires recourse to some exotic
mathematical objects (for example equations
with infinitely many derivatives) and a com-
plete discussion is beyond the scope of this ar-
ticle.
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x3 in equation (5).

Newton’s law is not the only example of a
differential equation in physics. There are the
Navier-Stokes equations that describe the dy-
namics of fluids, the Maxwell equations that
describe the laws of electro-magnetism, the dif-
fusion equation that describes the propagation
of heat through a medium, the Einstein equa-
tions that describe how space-time curves in
response to matter or energy, the Schrodinger
equation that describes the quantum mechan-
ical state of a microscopic system, ... The list
could go on and on and on!
I want to draw your attention to a common

feature of all these different equations. In all

known theories of physics, the underlying dy-
namical equations contain at most two time
derivatives when written in terms of fundamen-
tal degrees of freedom.1 It’s kind of surprising
that so many different equations that describe
nature in very different regimes all share such
a fundamental mathematical property. In fact,
this commonality is so fundamental that it is
often overlooked. At first glance this seems
like a remarkable conspiracy; is there some-
thing wrong with higher-order equations that
prevents them from playing a fundamental role
in physics?
To answer this question, let’s consider an ex-

plicit example. Suppose we focus on a mass m
bouncing around on a spring. We denote the
displacement of the mass away from the equi-
librium position by x(t). As long as x(t) is not
too large, then the restoring force is propor-
tional to the displacement

F ≈ −k x(t) , (5)

where k is a constant that characterizes the
stiffness of the spring. (Don’t let the minus

1There is a caveat here that you could obtain higher
order equations by taking derivatives or by decoupling
a set of equations. I’m referring only to the most fun-
damental formulation. So I’m definitely not trying to
claim that higher order equations are never useful in
physics, only that where they appear it is as a stand-in
for a more fundamental set of lower-order equations.

sign in this equation bother you, it simply re-
minds us that the force is always pulling the
mass back towards x = 0.) We have writ-
ten equation (5) as an approximation because
at larger displacements there will be nonlinear
corrections like αx3, βx5, etc. Newton’s law
for this system now takes the simple form

d2x

dt2
+ ω2x = 0 , (6)

where we have defined ω =
�

k/m in order to
make the equation look simpler. The general
solution of equation (6) is

x(t) = x0 cos(ωt) +
v0

ω
sin(ωt) . (7)

The solution (7) describes a function that os-
cillates in time with frequency ω, just the be-
haviour we expect a mass on the end of a
spring! This function is illustrated in Figure
1 for the special case where mass is released
from rest so that v0 = 0. Exercise: check
that (7) really does solve (6) and also that x0,
v0 appear correctly to be interpreted as initial
position and velocity.

Figure 1: A plot of the solution (7).

Often in physics one would like to know the
total energy of a system. There are two kinds
of energy: kinetic and potential. Kinetic en-
ergy is generically given by

K =
1

2
mv2 . (8)
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kinetic energy - that is not 
compatible with the world we 

see around us. So we are forced 
to discard our first attempt to modify Newton's 
law and regard equation (13) as a dead end. But 
what about more complicated equations? What if 
we added even more derivatives? In 1850 a 
Russian mathematician named Ostrogradski 
was able to prove   an amazingly general 
theorem [1]. Ostrogradski showed that any 
fundamental laws of physics involving 
nth order differential equations will 
lead to negative kinetic energy if 
n  > 2. This powerful theorem 
precludes the possibility of higher 
derivative equations playing any 
fundamental role in physics. 
Moreover, it explains why every 
successful law of physics that 
has been discovered to date has 
involved no more than two time 
derivatives.

Ostrogradksi's theorem is very 
general and also very deep. It explains what might 
otherwise have looked like a strange coincidence 
and it also serves as a guide for trying to modify 
the laws of nature. However, this theorem is not 
widely appreciated by most practicing physicists. 
The reason, I think, is that this theorem is so 
fundamental. Most of us take it for granted that the 
laws of nature must be second order in derivatives 
without ever stopping to ask why.

You might find it a little depressing that our 
first attempt to modify the laws of physics was 
unsuccessful. But don't despair! Indeed, many new 
theories of physics are found to be incompatible with 
nature even without the need to perform any new 

experiments. Failed theories are still useful 
because they help to guide future attempts. 
It turns out that there is a loophole to 
Ostrogradski's theorem that allows us 
to add higher derivatives to the laws 
of nature without running into trouble 
with instabilities. However, it requires 
recourse to some exotic mathematical 
objects (for example equations with 
infinitely many derivatives) and a complete 
discussion is beyond the scope of this article.
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“...the 
elevator 

almost always 
appeared as it was 

going down, and so 
the journey [up to see 

his friend] would be 
a frustrating ‘down 

and then up’...” 
Julian Havil 

in “Impossible?” 
(reviewed in Pi in 

the Sky - #12)
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George
Gamow’s

George Gamov 
1904 – 1968

Domenico di Michelino, La 
Divina Commedia di Dante 

(Dante and the Divine Comedy). 
Fresco in the nave of the Duomo 

of Florence, Italy - the terrace 
purgatorio lies over his right 

shoulder

In 
Julian 
Havil’s 

“Impossible?” 
(reviewed in 

Volume 12) George’s 
original calculations 

are extended to include 
multiple elevators. Although 
he does not state it, Julian’s 

multiple elevators are 
assumed stationary 

when George pushes 
the buttons.

likely to be on any floor.

• It goes at a constant speed when moving, and 
when it has no requests, it just waits where it is.

• When the elevator is going past a floor, souls 
like George can jump on or off without altering 
the final destination of the elevator.

In his 1958 book, Puzzle Math, George showed 
the impulsive answer of ½ is wrong. He argued 

that the elevator's last stop before visiting his 
floor was equally likely to be 1 or 2 (below), 

or 4, 5, 6 or 7 (above) so 
the elevator is twice as 

likely to have descended 
from a sweet smelling 
floor than to have 
ascended from the 
stench below. That 
was great news. It 

meant that George 
could expect to have a 

bad elevator ride only 1/3rd of 
the time.

Sure enough, when George 
arrived in purgatory in 1968, 
before the population explosion, 
he confirmed that his day-to-
day elevator rides were a nasty 
experience only about 1/3rd of the 
time.

But over the last few years, 
George has realized that something is 
wonderfully wrong. He is now getting 
bad elevator experiences a lot less 
frequently than 1 in 3 and his luck 
is especially good during morning 
rush-hour. Find an explanation for 
George's statistical joy. (Spoiler alert: 
answer on the next page.)

Since his death in 1968, George 
Gamow has been living in purgatory 

in a seven floor terraced apartment 
building with penthouse garden 
on top. Scummy tenants reside on 
the lowest floor, but the residents 

become increasingly sophisticated as 
one moves up. George's apartment is on 

the third floor.

Each day George wakes up, dresses, eats, 
locks-up, walks down the corridor to the 
elevator and impetuously pushes both the 
up and down buttons. When the elevator 
arrives – he compulsively steps in – 
before checking whether it's ascending 
from the nicotine miasma of the lower 
floors or descending from the perfumed 
fragrances of the upper floors.

If it's ascending from the lower floors, 
George gets a nasty elevator ride, and is off 
to a bad start in the day.

What goes up must come down - so the first 
impulse is to think that George is going to have 

a bad start to the day about ½ the time. 
Is that right or wrong? Before we try to 
solve the problem, we need to understand 
exactly how the elevator operates:

• The elevator goes 
up and down picking up 
and dropping off souls 

on different floors. The 
elevator's destination 

is always randomly 
determined - 
so when the 
elevator is at 
rest, it is equally 

By  
Gordon 

Hamilton
Masters Academy  

& College
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The only thing that is different now compared to 
1968 is that there are more souls after the population 
explosion. The only thing different between rush-
hour and non-rush-hour is that there are more 
souls using the elevator at rush-hour. Using these 
two clues, George finally figures out that before, 
when he pushed the buttons, the elevator was at 
rest. The probability was 1/3rd of a bad elevator 
experience. Now, during rush-hour, the elevators 
are moving when George pushes the buttons. Does 
that make a difference? The elevator travels with 
a constant speed, so all we need to do is to find all 
possible origin-destination pairs and find out how 
much of each is below George's floor. 

 The total length beneath George 
Gamow's is 16 floor heights out of a total of  
21 + 15 + 10 + 6 + 3 + 1 = 56 floor heights. That 

is, the probability that a moving elevator 
is below George when he presses the 

buttons is 2/7 which is less than 1/3. 
That is why, as more and more souls 

moved in and started increasing 
elevator usage – George got 

luckier and luckier as his 
probability of getting 

a smelly elevator 
dropped from 1/3 
to 2/7. 

In general, if 
George is on floor 
f in a building 
with F floors: 
The total length 
of possible floor-

to-floor commutes is a tetrahedral number:  
(F  - 1)(F)(F  + 1)/6 and the total length of these 
below George's floor is another tetrahedral number  
(f - 1)(f)(f + 1)/6 plus a \triangularprism" number 
(F - f)(f - 1)(f)/2. 

Probability (elevator below)

1�

Heavel to Hell
Elevator Rides in Purgatory

Part II

                                                    by Gordon Hamilton
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– George got luckier and luckier as his probability of 
getting a smelly elevator dropped from 1/3 to 2/7.
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floors: The total length of possible floor-to-floor com-
mutes is a tetrahedral number: (F-1)(F)(F+1)/6 and the 
total length of these below George’s floor is another 
tetrahedral number (f-1)(f)(f+1)/6 plus a “triangular-
prism” number  (F-f)(f-1)(f)/2. 

probability (elevator below)

               (f - 1) (f) (f + 1)  +  (F - f) (f - 1) (f)

              6         2
                       =                                                          

                (F - 1) (F) (F + 1)

                 6
In an attempt to deal with the purgatory population 

explosion (which lags behind the 
earth’s population explosion by 
an average lifespan), the transcen-
dental administration decided last 
month to scrap the outdated ter-
raced landscaping that Dante vis-
ited, and replace it with a modern 
apartment complex that has each 
soul allocated to their own unique 
floor. 

Earlier this week, George learned 
that he will be allocated floor p 
where 0≤p≤1. He quickly figured 
out that his probability of having a 
smelly elevator in the morning is:

•p if he presses the buttons when the elevator is 
    stationary. 

•p2  (3-2p) if he presses the buttons when the   
    elevator is moving. George used integration to  
    find this, but he might also have used the limit 
   of the ratio above:

probability (elevator below)

   (pF - 1) (pF) (pF+1) + (F - pF) (pF - 1) (pF)

                 6                        2
                             (F - 1) (F) (F + 1)
                              
                                                         6

                     (pF-1) (pF) (pF+1) + 3 (F-pF) (pF-1) (pF)

                             (F - 1) (F) (F + 1)
                    

 =  (pF)3 + 3(F - pF) (pF)2

                     (F)3

 =   p2  (3-2p)

In Julian Havil’s “Impossible?” (reviewed in Volume 12) George’s origi-
nal calculations are extended to include multiple elevators. Although he does 
not state it, Julian’s multiple elevators are assumed stationary when George 
pushes the buttons.                               

= lim
     F→∞

= lim
     F→∞
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elevator travels with a constant speed, so all we need 
to do is to find all possible origin-destination pairs and 
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which is less than 1/3. That is why, as more and more 
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– George got luckier and luckier as his probability of 
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raced landscaping that Dante vis-
ited, and replace it with a modern 
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soul allocated to their own unique 
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that he will be allocated floor p 
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out that his probability of having a 
smelly elevator in the morning is:

•p if he presses the buttons when the elevator is 
    stationary. 

•p2  (3-2p) if he presses the buttons when the   
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    find this, but he might also have used the limit 
   of the ratio above:
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not state it, Julian’s multiple elevators are assumed stationary when George 
pushes the buttons.                               
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We usually think of 
mathematics as something that 
is largely independent of an 
individual culture. However, 
when a society is isolated 
from the rest of the world, 
mathematical thought will 
continue and sometimes 
develops in a direction that 
is independent of what is happening elsewhere. 
That is exactly what took place in Japan in the 
Edo period, when the feudal government of the 
Tokugawa clan decreed that Japan should be 
closed to the outside world. This situation started 
in the early 1600s and was to continue until 
the country was opened up more or 
less forcibly to the west, notably 
with the Meiji restoration of 1868. 
During that long period, wasan, 
Japanese mathematics, went its 
own way. This has been very 
nicely discussed in an excellent 
book by Annick Horiuchi, but 
you have to read French. 1

The present book, in 
English, also discusses this 
period, but rather than  looking 
at research mathematics, 
it presents a remarkable and 
intriguing fad: the posting of 
mathematical problems, particularly in geometry, 
on pieces of wood outside temples as a kind of 
offering. This is the \sacred mathematics" of the 
book's title. Offerings of images at Japanese temples 

became very common in the Edo period, and 
were usually painted on wooden shingles in ink. 
The most common images were lucky animals, 
such as horses, but the images associated with 
mathematical problems, called sangaku, filled 
the dual role of showing reverence to the god and 

demonstrating the mathematical prowess of the 
individual who made the offering. The problems 
were also collected in books and apparently were 
widely popular, and there are also manuscripts 
containing such problems that have not been 
found posted at temples. The problems range from 
easy to very difficult.

Hidetoshi and Rothman here present a 
selection of the problems, graded 

according to difficulty, with 
hints and solutions. The 
aim is to give the flavour 

of these works, and this is 
quite successful. High school 

or beginning university students 
interested in problems can read and 

work on these with profit, since the methods for the 
most part don't go beyond elementary calculus.

The traditional solutions are often surprising. 
The very first of the ninety problems cited states: 
\There are 50 chickens and rabbits. The total 
number of feet is 122. How many chickens and 
how many rabbits are there?" Most students 
now would approach this with algebra, but the 
traditional solution begins: \If rabbits were 
chickens the total number of feet would be 100 
..." A problem that has a more Japanese  flavour 
involves drawing figures on a folding fan. Unfolded, 
the Japanese fan is a sector of a circular annulus 
or ring. Suppose the sector has radius R, and draw 1A. Horiuchi, les mathématiques japonaises à l’époque d’Edo. Paris: Vrin, 

1994.

Reviewed by

Tom Archibald

Simon Fraser

University

By 
Fukagawa 
Hidetoshi 

and 
Tony Rothman 

Princeton University Press 
ISBN 978-0-691-12745-3
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two circles of the same radius r that touch 
one another and also the outer and inner 
edges of the fan. we draw a chord length d 
to the outer edge tangent to the tops of the 
two circles, and add a small circle radius 
t tangent to the chord and the fan, as 
shown. Given d and the diameter of the 
small circle, we are invited to find the 
diameter of the large circles. The 
proposer gives the answer (3.025 
if d=3.62438 and 42t=3.025) 
but not the method. Indeed, we 
don't know his method, since the 
answer is incorrect. The authors 
don't provide an explanation for 
the error; nor do they suggest any 
reasons for these rather surprising values. 
But they do give a solution, involving constructing 
some auxiliary lines and using the Pythagorean 
theorem.

The authors also give some basic historical 
background and examples of the Chinese sources 
of Japanese mathematical work. Hence the book 
gives a nice glimpse of East Asian mathematics 
of several centuries past. Not all of the historical 
details are as carefully written as would be ideal, 
for example on the subject of the language of the 

tablets. This doesn't detract from the interest and 
overall usefulness of the volume, especially for the 
student reader, and it should serve to stimulate 
further reading on the mathematics of these 
cultures. The illustrations, some in full colour, will 
also entice the reader.

Students and teachers will read and work on 
the problems in this book with pleasure. They 

give an interesting glimpse of another 
culture, one in which the value of 
mathematical problem solving merits 

a kind of religious recognition. An 
inscription on one of the sangaku 

gives a hint of why: \Confucius 
says, you should devote all of 
your time to study, forgetting to 
have meals and going without 
sleep. His words are precious 
to us. Since I was a boy I have 

been studying mathematics 
and have read many books on 

mathematics. When I had questions, I visited and 
asked mathematician Ono Eijya. I appreciate my 
Master's teachings. For his kindness, I will hang 
a sangaku in this temple." These days, such 
recognitions are unusual.

Most 

students 
now would 

approach this 
with algebra, 

but the traditional 
solution begins: “If 

rabbits were chickens 
the total number of 
feet would be 100 ...

There 
are 50 

chickens and 
rabbits. The 

total number of 
feet is 122. How many 

chickens and how 
many rabbits are 

there?

By 
Apostolas 
Doxiadis

Faber and Faber 
ISBN-13 978-0571205110

Reviewed 
by

Clara Park
CheongShim 

International Academy

Goldbach's conjecture is 
easy to state:

\Every even number 
greater than 2 is the 
sum of two primes."

This statement seems to 
be straightforward as we can 

attempt proving it straight away. 

4=2+2

6=3+3

8=3+5

10=3+7=5+5

12=5+7

14=3+11=7+7…

We can conclude easily that this theorem is 



26

The story is not 
about problem 

solving. It is rather 
a story of challenge, 

persistence, and 
devotion. 

It 
will 

appeal to 
almost any 

student, even 
students with no 
previous interest 
or background in 

mathematics.

plausible! But, seemingly, this simple 
theorem, known as Goldbach's 
Conjecture, has remained one of 

the most tormenting problems in 
the field of mathematics, along 

with Fermat's Last Theorem. 
For centuries, many talented 
mathematicians were enticed 
to this myth but were unable 
to prove the theorem. 

Thanks to today's 
technology, mathematicians 

discovered, with the help of 
supercomputers, that the conjecture holds true 
for all even numbers up to 400,000,000,000,000 
(four hundred trillion). Faced with the reality that   
\numbers are infinite," however, they were once 
again depressed since they are still not able to 
provide a general proof.

Books on mathematics are often `how-
to' guides on problem-solving or earnest 
treatises on some area of mathematics, 
but Apostolas Doxiadis' Uncle Petros 
and Goldbach's Conjecture takes the 
form of a fictional story that can 
entertain and inform a wide range of 
readers regardless of their mathematical 
knowledge. Readers may feel the same 
sort of enjoyment as watching a movie, 
such as Forrest  Gump.

The main character, Petros Papachristos, is a 
mathematical genius but considered a complete 
failure in life. Recklessly, he abandoned a successful 
career in academics, shutting himself up away from 
family and friends in order to devote his every 
waking hour to proving Goldbach's conjecture, a 
theorem that mathematicians have been unable 
to solve for almost three centuries. As foolish as 
any of us might believe such an action might be, 
through the eyes of an understanding nephew, we, 
too, soon come to understand Petros' passion and 
realize he is deserving of our respect. We empathize 
with Petros' bleak hope of solving the problem, 
and we are just as exhilarated as Petros' nephew 
when he learns that his uncle has finally cracked 
the secret.

The story is not about problem solving. It is 
rather a story of challenge, persistence, and 
devotion. Petros' obsession with the problem 

suggests that the result is not the only thing 
that matters in life. 

I strongly recommend this book to other 
readers. It will appeal to almost any 
student, even students with no previous 
interest or background in mathematics. 
They will be stimulated and entertained 
as well as delighting simply in the spirit 

of determination of all those people, 
including mathematicians, who risk all in 

attempting to do the seemingly impossible. 

Obtaining solutions to four Math Challenge Problems posed in Issue #11 (Spring 
2008) proved challenging to our readers.  At the time of publication of Issue #12 (Fall 
2008) we had not received any solutions, so the deadline for submissions was extended to 
February 28, 2009.  I am delighted to announce the decision of our panel, who decided 
to split the prize between two very talented students.  Each submitted three correct 
solutions to the Challenge Problems, however, neither submitted a solution to the fourth 
one - Problem #6.

The two winners, who will split the $300 prize money, are: Joshua Lam of The Leys 
School, Cambridge, England and Rati Gelashvili, of Tbilisi, Georgia, currently studying 
at the Georgian Technical University.   Congratulations to Joshua and Rati.

Solutions to the four Challenge Problems appear in this Issue of Pi in the Sky.  We 
have included some solutions by our two Prize winners.

Math Challange Winner Announced
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Prove that any positive integer n  coprime 
to 10 is a divisor of a repunit.

Solution by Rati Gelashvili

Since (9n, 10) = 1 according to Euler-Fermat's 
theorem 9n is a divisor of 10

Solutions to problems 4,5, 6, and 7 published in the
Spring 2008 Issue of Pi in the Sky

Problem 4. Prove that any positive integer n coprime to 10 is a divisor
of a repunit.

Solution by Rati Gelasvili:
Since (9n, 10) = 1 according to Euler-Fermat’s theorem 9n is a divisor of
10ϕ(9n) − 1 = 99...99. Consequently, n is a divisor of 11...11.

Alternative solution by Joshua Lam
Let m be a positive integer coprime to 10. Let Rn be the repunit with

n 1s. Consider each Rn (mod m). Since there are infinitely many Rn, but
only m different residues (mod m), by Pigeonhole Principle we can find
i > j such that Ri ≡ Rj (mod m). Then Ri − Rj ≡ 0 (mod m) , hence
m|Ri−j · 10j and since (m, 10) = 1 we conclude that m|Ri−j

Problem 5. Let n be a positive integer and let ϕ(n) denotes the number
of positive integers less or equal to n that are coprime to n. Prove that for
any positive integers m and n

ϕ(mn) ≤

ϕ(m2)ϕ(n2).

Solution:
Let pi be the prime factors of m and n, qj the prime factors of m only,

and rk the prime factors of n only.
We have

ϕ(mn) = mn

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pi

 
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1− 1
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 
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Notice that each product

i
,

j
or


k

is replaced by 1 if there are no

factors containing pi, qj ,or rk .
Now the required inequality is equivalent to


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≤ 1

1

(9n) - 1 = 99...99. 
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that is obviously true. The equality occurs only if 
m and n have the same prime factors.

A similar solution was submitted by 
Joshua Lam and Rati Gelashvili

R and r are respectively the radii of the 
spheres circumscribed about, and inscribed in 
a tetrahedron. Prove that R ≥ 3r.

Solution

Let us consider the tetrahedron having the 
vertices at the centroids of the faces of the given 
tetrahedron. This tetrahedron is similar to the 
given one and the ratio of similitude is 1/3 . Its 
circumscribed sphere is therefore of radius R/3. This 
sphere intersects all the faces of the tetrahedron, 
therefore its radius should be greater or equal than 
the radius of the inscribed sphere.
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Prove that in any convex polyhedron (a) 

there is either a triangle face or a vertex at 
which three edges meet and (b) there is a face 

having less then six sides.

Solution

If v, e, f denotes the number of vertices, edges 
and respectively faces of the polyhedron then we 
have Euler's polyhedral formula

v - e + f = 2 .

Let F
1 
, ...,  F

f 
, V

1
, ...V

v
 be the faces and the vertices 

of the polyhedron, f
i
 the number of edges of F

i
 and 

v
i
  the number of edges issuing from V

i
.

(a) Assume the contrary, that there is no triangle 
face and there is no vertex at which three edges 
meet, i.e.

f
i
 ≥ 4, v

i
 ≥ 4

Then we have:

that is obviously true. The equality occurs only if m and n have the same
prime factors.

Remark: A similar solution was submitted by Joshua Lam and Rati
Gelasvili

Problem 6. R and r are respectively the radii of the spheres circum-
scribed about, and inscribed in a tetrahedron. Prove that R ≥ 3r.

Solution:
Let us consider the tetrahedron having the vertices at the centroids of the

faces of the given tetrahedron. This tetrahedron is similar to the given one
and the ratio of similitude is 1/3 . Its circumscribed sphere is therefore of
radius R/3 . This sphere intersects al the faces of the tetrahedron, therefore
its radius should be grater or equal than the radius of the inscribed sphere.

Problem 7. Prove that in any convex polyhedron (a) there is either a
triangle face or a vertex at which three edges meet and (b) there is a face
having less then six sides.

Solution:
If v, e, f denotes the number of vertices, edges and respectively faces of

the polyhedron then we have Euler’s polyhedral formula

v − e+ f = 2

Let F1, ..., Ff , V1, ...Vv be the faces and the verices of the polyhedron, fi

the number of edges of Fi and vi the number of edges issued from Vi.
(a) Assume the contrary, that there is no triangle face and there is no

vertex at which three edges meet, i.e.,

fi ≥ 4, vi ≥ 4

Then we have:

2e =
f

i=1

fi ≥
f

i=1

4 = 4f and 2e =
v

i=1

vi ≥
v

i=1

4 = 4v

hence e ≥ 2f and e ≥ 2v.
By using these inequalities and Euler’s polyhedral formula we get

4 = (2f − e) + (2v − e) ≤ 0

2

hence e ≥ 2f and e ≥ 2v. 

By using these inequalities and Euler's polyhedral 
formula we get

4 = (2f - e) + (2v - e) ≤ 0

which is a contradiction. Therefore any convex 
polyhedron should have at least a face with three 
edges or at least a vertex at which three edges 
meet.

(b) Assume by contradiction that every face has 
more then five edges. As above we have:

which is a contradiction. Therefore any convex polyhedron should have at
least a face with three edges or a at least vertex at which three edges meet.

(b) Assume by contradiction that every face has more then five edges.
As above we have:

2e =
f

i=1

fi ≥
f

i=1

6 = 6f hence e ≥ 3f.

Also, in any polyhedron we have

2e =
v

i=1

vi ≥
v

i=1

3 = 3v hence 2e ≥ 3v.

On the other hand by using Euler’s polyhedral formula we get

6 = (3f − e) + (3v − 2e)

which combined with the above two inequalities leads to a contradiction.
Hence at least one face should have at most five edges.

Remark: A similar solution was submitted by Joshua Lam. The prob-
lem was also solved by Rati Gelasvili.
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1
Prove that the equation: 

x5 + y5 + 2 = (x + 1)5 + (y + 2)5

does not have integral solutions

Solution by Edward T. H. Wang

If x and y are of the same parity, then the left 
side of the equation is even while the right side is 
odd. If x and y are of opposite parity, then the left 
side is odd while the right side is even.

Also solved by Rati Gelashvili, and Joshua 
Lam

Prove that p
n
 > 2n for every n ≥ 5 where p

n
 

denotes the nth prime number (p
1
=2)

Solution by Rati Gelashvili

Let's prove by using induction. The assumption 
holds for n = 5. If p

n - 1
 > 2(n - 1) then p

n - 1
 ≥ 2n - 

1 hence p
n
 > p

n - 1
 ≥ 2n - 1. Since p

n
 ≠ 2n we must 

have p
n
 > 2n

Also solved by Edward T. H. Wang, 
Joshua Lam and Andrew J. Pai

2



29

3
Inside a square with side length 1 there are 

201 points. Prove that there exists a circle 
of radius 0.1 which contains at least three of 
these points.

Solution by Rati Gelashvili
The square can be partitioned in 100 little 

squares of side lengths 0.1. By the Pigeonole 
Principle at least one square contains at least 
three points. Since a square of side length 0.1 can 
be completely covered by a circle with radius 0.1 
we conclude that there exists a circle of radius 0.1 
which contains at least 3 of the given points.

Also solved by Edward T. H. Wang, 
Joshua Lam and Andrew J. Pai.
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Let a, b, c be positive numbers such that 

abc = 18. Prove that

Solutions to the problems published in the
Fall 2008 Issue of Pi in the Sky
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Problem 4. Let a, b, c be positive numbers such that abc = 18. Prove
that

a3 + b3 + c3

3
≥ a

√
b+ c+ b

√
a+ c+ c

√
a+ b

Solution by Rati Gelasvili:
Since abc = 18 then

√
abc = 3

√
2. If we multiply the left side of the

inequality by 3
√
2 and the right side by

√
abc then the inequality which

should be proved is replaced by
√
2

a3 + b3 + c3

 ≥ √abc(a
√

b+ c+ b
√

a+ c+ c
√

a+ b). (∗)

4

(*)

Solution by Rati Gelashvili

Since abc = 18 then 

Solutions to the problems published in the
Fall 2008 Issue of Pi in the Sky

Problem 1. Prove that the equation x5 + y5 + 2 = (x+ 1)5 + (y + 2)5

does not have integral solutions.
Solution by Rati Gelasvili:
Let a be any integer. Since a5 − a = (a − 1)a(a + 1)(a2 + 1) and

(a− 1)a(a+ 1) ≡ 0 (mod 3) we conclude that a5 ≡ a (mod 3).
If by contradiction we assume that the given equation has an integral

solution (x, y), then x+y+2 ≡ (x+1)+(y+2) (mod 3) i.e., 2 ≡ 0 (mod 3)
which is impossible.

Problem 2. Prove that pn > 2n for every n ≥ 5, where pn denotes the
nth prime number (p1 = 2) .

Solution by Rati Gelasvili:
Let’s prove by using induction. The assumption holds for n = 5. If

pn−1 > 2(n − 1) then pn−1 ≥ 2n − 1 hence pn > pn−1 ≥ 2n − 1. Since
pn = 2n we must have pn > 2n.

Problem 3. Inside a square with side length 1 there are 201points.
Prove that there exists a circle of radius 0.1 which contains at least three of
these points.

Solution by Rati Gelasvili:
The square can be partitioned in 100 little squares of side lengths 0.1. By

the Pigeonhole Principle at least one square contains at least three points.
Since a square of side length 0.1 can be completely covered by a circle of
radius 0.1 we conclude that there exists a circle of radius 0.1 which contains
at least three of the given points.

Problem 4. Let a, b, c be positive numbers such that abc = 18. Prove
that

a3 + b3 + c3

3
≥ a

√
b+ c+ b

√
a+ c+ c

√
a+ b

Solution by Rati Gelasvili:
Since abc = 18 then

√
abc = 3

√
2. If we multiply the left side of the

inequality by 3
√
2 and the right side by

√
abc then the inequality which

should be proved is replaced by
√
2

a3 + b3 + c3

 ≥ √abc(a
√

b+ c+ b
√

a+ c+ c
√

a+ b). (∗)

4

 If we multiply 
the left side of the inequality by 

Solutions to the problems published in the
Fall 2008 Issue of Pi in the Sky

Problem 1. Prove that the equation x5 + y5 + 2 = (x+ 1)5 + (y + 2)5

does not have integral solutions.
Solution by Rati Gelasvili:
Let a be any integer. Since a5 − a = (a − 1)a(a + 1)(a2 + 1) and

(a− 1)a(a+ 1) ≡ 0 (mod 3) we conclude that a5 ≡ a (mod 3).
If by contradiction we assume that the given equation has an integral

solution (x, y), then x+y+2 ≡ (x+1)+(y+2) (mod 3) i.e., 2 ≡ 0 (mod 3)
which is impossible.

Problem 2. Prove that pn > 2n for every n ≥ 5, where pn denotes the
nth prime number (p1 = 2) .

Solution by Rati Gelasvili:
Let’s prove by using induction. The assumption holds for n = 5. If

pn−1 > 2(n − 1) then pn−1 ≥ 2n − 1 hence pn > pn−1 ≥ 2n − 1. Since
pn = 2n we must have pn > 2n.

Problem 3. Inside a square with side length 1 there are 201points.
Prove that there exists a circle of radius 0.1 which contains at least three of
these points.

Solution by Rati Gelasvili:
The square can be partitioned in 100 little squares of side lengths 0.1. By

the Pigeonhole Principle at least one square contains at least three points.
Since a square of side length 0.1 can be completely covered by a circle of
radius 0.1 we conclude that there exists a circle of radius 0.1 which contains
at least three of the given points.

Problem 4. Let a, b, c be positive numbers such that abc = 18. Prove
that

a3 + b3 + c3

3
≥ a

√
b+ c+ b

√
a+ c+ c

√
a+ b

Solution by Rati Gelasvili:
Since abc = 18 then

√
abc = 3

√
2. If we multiply the left side of the

inequality by 3
√
2 and the right side by

√
abc then the inequality which

should be proved is replaced by
√
2

a3 + b3 + c3

 ≥ √abc(a
√

b+ c+ b
√

a+ c+ c
√

a+ b). (∗)

4

 and the 
right side by 

Solutions to the problems published in the
Fall 2008 Issue of Pi in the Sky

Problem 1. Prove that the equation x5 + y5 + 2 = (x+ 1)5 + (y + 2)5

does not have integral solutions.
Solution by Rati Gelasvili:
Let a be any integer. Since a5 − a = (a − 1)a(a + 1)(a2 + 1) and

(a− 1)a(a+ 1) ≡ 0 (mod 3) we conclude that a5 ≡ a (mod 3).
If by contradiction we assume that the given equation has an integral

solution (x, y), then x+y+2 ≡ (x+1)+(y+2) (mod 3) i.e., 2 ≡ 0 (mod 3)
which is impossible.

Problem 2. Prove that pn > 2n for every n ≥ 5, where pn denotes the
nth prime number (p1 = 2) .

Solution by Rati Gelasvili:
Let’s prove by using induction. The assumption holds for n = 5. If

pn−1 > 2(n − 1) then pn−1 ≥ 2n − 1 hence pn > pn−1 ≥ 2n − 1. Since
pn = 2n we must have pn > 2n.

Problem 3. Inside a square with side length 1 there are 201points.
Prove that there exists a circle of radius 0.1 which contains at least three of
these points.

Solution by Rati Gelasvili:
The square can be partitioned in 100 little squares of side lengths 0.1. By

the Pigeonhole Principle at least one square contains at least three points.
Since a square of side length 0.1 can be completely covered by a circle of
radius 0.1 we conclude that there exists a circle of radius 0.1 which contains
at least three of the given points.

Problem 4. Let a, b, c be positive numbers such that abc = 18. Prove
that

a3 + b3 + c3

3
≥ a

√
b+ c+ b

√
a+ c+ c

√
a+ b

Solution by Rati Gelasvili:
Since abc = 18 then

√
abc = 3

√
2. If we multiply the left side of the

inequality by 3
√
2 and the right side by

√
abc then the inequality which

should be proved is replaced by
√
2

a3 + b3 + c3

 ≥ √abc(a
√

b+ c+ b
√

a+ c+ c
√

a+ b). (∗)

4

 then we need the inequality: 
We first remark that

a3 + b3 = (a+ b)(a2 − ab+ b2) ≥ (a+ b)ab

hence

a3 + b3

2
√
2
+

c3

√
2
≥ (a+ b)ab

2
√
2

+
c3

√
2
≥ 2


(a+ b)ab

2
√
2

c3

√
2
= c
√

abc
√

a+ b.

Similarly,

c3 + b3

2
√
2
+

a3

√
2
≥ a

√
abc
√

c+ b

a3 + c3

2
√
2
+

b3

√
2
≥ b
√

abc
√

a+ c

The inequality (∗) is obtained by adding side by side the above three
inequalities.

Problem 5. Let ABCD be a convex quadrilateral, M the midpoint
of BC and N the midpoint of CD. If AM + AN = 1 then prove that the
area of the quadrilateral is less than 1/2.

Solution:
We have

SABCD = SABC + SADC = 2SAMC + 2SANC

= 2SAMCN = 2SAMN + 2SCMN .

Since dist(C, MN) < dist(A,MN) ( the quadrilateral is convex) we con-
clude that SCMN < SAMN . HenceSABCD < 4SAMN .

On the other hand

SAMN =
1
2
AM ·AN sin MAN ≤ 1

2
AM ·AN

=
1
2
AM (1−AM) ≤ 1

2
· 1
4
=
1
8
.

Therefore
SABCD < 4

1
8
=
1
2
.
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Notice that we used the inequality x + y ≥ 2
√

xy

which is valid for any non-negative numbers x and y.
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Adding these inequalities together, we get 

4(a3 + b3 + c3)
2
√

2
≥

√
abc(a

√
b + c + b

√
a + c + c

√
a + b).

Dividing through by 
√

abc = 3
√

2 and rearranging 
gives the inequality (*)

Also solved by Joshua Lam using 
techniques that would not be standard for a 
general audience.
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Also solved by Joshua Lam.

6
There are given five line segments having 

the property that any three of them can be the 
sides of a triangle. Prove that at least one of 
these triangles must be acute.

Solution
Let a ≤ b  ≤  c  ≤   d  ≤   e be lengths of the segments. 

Assume by contradiction that all the constructed 
triangles are right or obtuse. 

Then 

e2 ≥ d2 + c2, d2 ≥ c2 + b2, c2 ≥ b2 + a2 

and therefore 

e2 ≥ d2 + c2  ≥   c2 +  b2  + b2 + a2 ≥ b2 + 2ba + a2

From this inequality we obtain that e ≥ a + b, 
a contradiction.



 
Problem 1

Find all positive integers n such that 

log
2008
n = log

2009
n + log

2010
n.

Problem 5
Find all functions f :  such that  

3f(n) - 2f(n + 1) = n - 1, for every n .  
(Here  denotes the set of all integers).

 

Problem 2
Find the smallest value of the positive integer n such that  

(x2 + y2 + z2)2 ≤ n(x4 + y4 + z4) for any real numbers x, y, z.

Problem 3 
Let a be a positive real number.  

Find f(a) = max
x

 {a + sin x, a + cos x}.

Problem 4
Prove that the equation x2 - x + 1 = p(x + y)  

where p is a prime number, has integral solutions (x,  y) for 
infinitely many values of p.

Problem 6
In ∆ABC, we have AB = AC and BAC = 100o.  

Let D be on the extended line through A and C such that C is 
between A and D and AD = BC. Find DBC.

.


